Homework 2 : Solutions

1 (a) The number of sequences of length n we’re denoting R,. Clearly,
Ry = Cy = 1, since the empty sequence is allowed. It remains to show that,
for all n > 0,

Rn = z Rm—an—m-

m=1
FIRST SOLUTION :

For m =1,...,n — 1 let R,(m) denote the number of sequences of length n
such that

am+1 =m~+1, a; <ifori=2,.,m. (1)
Let R,(n) denote the number of sequences for which
a; <i for alli=2,..,n. (2)

Then clearly

Ru=Y Ru(m), 3)

m=1

so we’ll be done if we can show that
R,(m)=R,-1Ry—m, m=1,..n. (4)

First suppose 1 < m < n—1 and let a; - - - a, be one of the R, (m) sequences
satisfying (1). Then ag = 1 and the sequence asas - - - am,, of length m — 1,
must satisfy exactly the same requirements as at the outset. Hence, there
are R,,_1 possibilities for it. Next, for i = m+1,m+2,...,n let b = a; —m.
Then the sequence by,4+1bm42 - - by, of length n — m, satisfies exactly the
saem requirements as at the outset, so there are R, ,, possibilities for it,
and hence also for ap1am42-- - ay.

Thus, by MP, there are R,,,—1R,—., possibilities for the whole sequence
ay - -+ ap, which proves (4) in the case 1 <m <n — 1.

Finally, then, we consider the R,(n) sequences satisfying (2). These are



the sequences for which a2 = 1 and the sequence as - - - ap, of length n — 1,
satisfies exactly the same conditions as at the outset. Hence there are
R, _1 = R,_1Ry possibilities, and so (4) is verified even in this case.

SECOND SOLUTION :

Instead, for m = 1,...n, define R,(m) to be the number of sequences of
length n such that

am =m, a; <iforalli>m. (5)

Clearly, (3) holds and so it again suffices to prove (4) for each m.

So let aq - - - a, be one of the R,(m) sequences satisfying (5). The left-
subsequence aq --- a,;,—1, of length m — 1, must satisfy exactly the same
conditions as at the outset and hence there are R, 1 possibilities for it.

To deal with the right-subsequence ap,y1 -+ an, let b; = a; — (m — 1)
for i = m + 1,...,n. Then the condition (5) implies that by = 1 and that
the whole sequence by, 41 - - - by, of length n — m, satisfies exactly the same
conditions as at the outset. Hence there are R,,_,, possibilities for it, and
hence also for a1 -+ - ay.

Finally, an application of MP verifies (4).

(b) There is exactly one way to divide a line segment (a 2-gon) into zero
triangles, namely do nothing, hence Sy = Cy = 1. Hence it suffices to prove
that, for all n > 0,

Sn = Z Smflsnfm- (6)
m=1

Think of our (n + 2)-gon as inscribed in a circle. Fix two adjacent vertices,
call them A and B, where B is clockwise from A. Moving clockwise from
B, label the remaining n vertices with the integers 1, ..., n.

Now, for m = 1,...,n, let S,(m) denote the number of triangulations of
our (n +2)-gon which include the triangle {4, B,m}. Since the edge {4, B}
must be included in SOME triangle, it is clear that

Sy = znj Sy (m).

m=1

Hence, it suffices to prove that

Sp(m) = Sm—1Sn—m, m=1,..,n. (7)



But this is easy. The triangle {A, B, m} divides the remainder of the (n+2)-
gon into 2 smaller regions, call them X and Y, where X is to the left of the
triangle and Y to the right. X is an (n—m+2)-gon consisting of the vertices
m,m+1,...,n, A, hence there are S,,_,, ways to triangulate it. Similarly, Y’
is an (m+1)-gon consisting of the vertices B, 1,2, ...m, hence can be triangu-
lated in S,,—1 ways. By MP, there are thus S,,_1S5,_m ways to triangulate
both X and Y, in other words, to triangulate the entire (n + 2)-gon so that
the triangle {A, B, m} appears. This proves (7).

. 2 .
(c) First we prove that there are ( 7? possible n-tuples (z1, ..., z,) sat-
isfying only the requirement that
0<z1 <--- <z, <. (8)

Indeed, there is a simple 1-1 correspondence between these n-tuples and the
n-element subsets of {1, ...,2n} given by

(15 s ) < {Y1, -y Un}s

where

r1:=y — 1,
Tk = Tp—1 + (yk —Yk-1— 1); k=2, ..n.

When an integer is divided by n + 1, there are n + 1 possibilities for the
remainder, namely 0,1,...,n. Hence we’ll be done if we can show that,
amongst all the n-tuples satisfying (8), the remainders modulo n + 1 left by
the sums ) i ; z; are equidistributed.

This is also easy, for we may describe, for each r = 1,...,n, an ex-
plicit 1-1 correspondence between the n-tuples (z1, ..., z,) such that > z; =
r (mod n + 1) and those for which }" z; =r — 1 (mod n + 1).

The correspondence is described as follows : an n-tuple (z1, ..., z,) for which
> x; = r is first taken to

(Il 5] 171‘2 S ]-a vy T D 1)7

where @ denotes addition modulo n + 1. Then the coordinates are rear-
ranged, if necessary, so that (8) holds. One readily checks that

in®152$i®21zr+nET—l(modn—i—l), V.S.V.



2. Let X be the set of all permutations of the 2n people. For i = 1,...,n let
A; denote the set of all those permutations in which the 7:th married couple
stand next to one another. Then we want to compute

2 (Y))

We do this using the inclusion-exclusion principle, which says that

n n
‘X\ (U A)‘ =X =) |4 (9)
=1 1=1
Y JANA = DT AN AN Ayl
1£] i£j#k
+o (D)4 NN Ay

A typical term on the rhs of (9) is
(—l)k - |14Z1 N Aiz n---N Azk| (10)

where i) # iy # --+ # i and 0 < k < n. Apart from the (—1)* factor, this
counts the number of permutations for which a specificed &k of the n couples
are put together. We claim that

|Aiy N Ajy NN Ay | = 25 (20 — K)! (11)

We explain (11) as follows : first we may permute as we like 2n — k ‘objects’,
one for each of the k ‘glued’ couples, and one for each of the remaining 2n—2k
individuals. There are (2n — k)! ways to do this. We still have to decide, for
each of the k glued couples, who’ll stand to the left and whom to the right.
There are thus 2 choices left for each such couple, hence (by MP) 2¥ choices
in all for this final step. Another application of MP verifies (11). From (11)
we are lead to directly to the result that

‘X\ (L”J Ai)‘ = i(—nk ( Z ) 25 (2n, — k)!

=1 k=0

For one simply has to note that, for each k& = 0,...,n, the factor Z
arises since there are so many terms of the form (10) on the rhs of (9), one
for each choice of k couples from n.



3. Let (z,y) be an integer solution to
ot —1 =22 (12)

We will show that £ = +1, which immediately implies that y = 0. First,
since the HL of (12) is even, so is the VL, hence z* is odd, hence so is z.
Let us now write (12) as

(= - 1) ($2; 1) = (13)

Note that, since z is odd, both factors on the VL of (13) are integers. We
claim that these two factors are relatively prime. So let d be a common di-
visor of 22 — 1 and (22 + 1)/2. Then d also divides z? + 1 and hence divides
(z24+1) — (22 — 1) = 2. Hence d is either 1 or 2. To prove our claim it there-
fore suffices to show that (z?+1)/2 is an odd number. This is equivalent to
22 4 1 not being divisible by 4. But z, being odd, is = 1 (mod 4). Hence
2+ 1=(£1)24+1=14+1=2%0 (mod 4), v.s.v.

So we’ve established the claim that the two factors on the VL of (13) are
relatively prime. But their product, being equal to 42, is a perfect integer
square. Hence, FTA implies that each factor is itself a perfect square. In
other words, there exist integers z,w such that

m2+1_ 9

2 _ .2
zt—1=2" 2 w”.

But it is clear that the only solutions to the first equation above are z = +1,
z = 0, since this is the only way two integer squares can differ by 1. So we’re
done !

4. One integer solution to the equation

w2 —2y% =1 (14)
isxzg = 3, yo = 2. Let (z,,y,) be any integer solution. Then so is
(Tn+1,Yn+1) where

Int1 = x?z + 2?/?“ Yn+1 = 2TnYn. (15)



For a little algebra shows that, for any variables A, B we have
(A? —2B?%)% = (A? +2B?)? — 2. (2AB)?. (16)

Thus, if we take A = z,,, B = y,, so that A2 —2B2% = 1, then the VL of (16)
is also equal to 1.

Starting from (zg,y0) = (3,2) and iterating the recurrence (15), we get
infinitely many distinct solutions, since it is clear that if z, > 1, y, > 1,
then xp 1 > zn and yp41 > Yn-

As good pedegogy, we note that (15) doesn’t need to be pulled out of a
hat - there’s an idea behind it. Namely, A% — 2B? can be factorised as

A* —2B% = (A+V2B)(A - V2B). (17)

We think of the HL of (17) as being of the form 2z, where

A+v2B %t 4 B

whenever A, B are integers (rational numbers are ok, too, but not anything
involving v/2). Numbers of the form of z can be multiplied together, and
one gets back numbers of the same form. One may also check by direct
computation that, for any two such numbers 21, 29, one has

Z1%29 = Z1 Za.
Thus, squaring (17), we get
(A2 — 2B?)? = (22)? = 2%(2)% = 2222 (18)
A direct computation gives
= (A+V2B)? = (A% 4+ 2B?) + V2(24B). (19)
From (19), (18) and (17), we deduce (15).

5. One observes that

E)EN-5r e

n=1



where

an = Zu(d).

din

I claim that
> u(d)=0, foralln> L. (21)
dln

Since p(1) =1, (21) implies that the HL of (20) equals simply 1, and hence
that

i pn) 6
2 T 2
= n s
So it remains to prove (21). Let n be an integer greater than 1 and let

n=p'py’---ppr,  (m2>1),

be its’ prime factorisation. The only divisors d of n for which u(d) # 0 are
those which are products of distinct primes. For each k& = 0, ..., m there are

( 7]:' ) such divisors which are products of exactly k distinct primes. Each
of these contributes (—1)* to the sum in (21). Hence
= m
> u(d) = (-1 ( " ) . (22)
dln k=0

But we recall that it is a consequence of the binomial theorem that the HL
of (22) is equal to zero for any integer m > 1. So we’re done !



