Short course summary

The course can more or less be divided up into 3 parts :

- Enumerative combinatorics
- Arithmetic
- Graph theory

ENUMERATIVE COMBINATORICS

This involved studying more or less sophisticated techniques for ‘counting’,
that is, for computing integer-valued functions f(n) of an integer variable
n. We introduced three broad techniques

(a) Multiplication principle (MP). This simple principle has applications
to counting, for example,

- ordered selections with repitition allowed

- ordered selections with repitition not allowed, of which an important
special case is permutations

- unordered selections with repitition allowed (godisar till barn, or, more
formally, placing indistinguishable objects in distinguishable cells)

- unordered selections with repitition not allowed, so-called combinations.
The binomial coefficient C(n, k) is the number of ways to choose k different
objects from n. We learned some identities involving binomial coefficients,
in particular the binomial theorem.

(b) Recurrence relations.

If you can’t directly (i.e.: using something as simple as, say, MP) find an
explicit formula for a function f(n), the next-best thing is often to look for
a recurrence relation. To find such a relation involves counting your f(n)
objects in a smart way, usually by dividing them up into a small number
of ‘types’. Sometimes the recurrence relation can be ‘solved’ to produce an
explicit formula for f(n).

(i) We illustrated how one finds recurrence relations by giving several of
the more famous examples (as well as some not so famous ones) : Fibonacci
numbers, Stirling numbers of the second kind S(n, k), integer partitions
p(n, k) and Catalan numbers.



(ii) We developed general techniques for solving linear recurrence relations
with constant coefficients. In the homogeneous case, one just needs to solve
an auxiliary polynomial equation. In the non-homogeneous case, one intro-
duces a so-called generating function. The method of generating functions
can, in theory, be applied to any recurrence relation whatsoever. It rarely
leads anywhere,!, though the cases in which it does so are important. As
well as the non-homogeneous linear recurrences, we illustrated how the gen-
erating function method yields an explicit formula for the Catalan numbers.

One important technical tool in applying the GF method was a gen-
erlised binomial theorem.

(¢) Inclusion-Exclusion (Sieve) Principle.

This is a very primitive counting technique of limited application. A classic
example of its’ applicability is to counting derangements. Other applications
appear in the exercises.

ARITHMETIC

There were two main (and sometimes interlinked, for example in the discus-
sion of RSA cryptography) themes

(a) Integer factorisation.

The Fundamental Theorem of Arithmetic, proven by Euclid in around 300BC,
is the central result here. In Euclid’s treatment, the basic concept is that of
the greatest common divisor of two integers. Fuclid’s algorithm gives a very
fast method for computing this.

(b) Modular arithmetic.
We defined the notion of congruence modulo an integer n. The central

result is the following : for a given n, the relation of congruence modulo n
is an equivalence relation on the integers Z. There are n equivalence classes,

!There is the analogous power series method for tackling ordinary differential equations.
Once again it is, in theory, always applicable, but only in rare, though important cases,
yields results.



and they form a ring (notation : Z/nZ) under addition and multiplication
modulo n.

Among the more advanced results, the most famous is probably Fermat’s
(little) theorem and its’ generalisation by Euler. The simplest application of
these ideas is to fast computation of a® (mod c).

Remark Much of the theory described above was and is motivated by the
desire to develop techniques for studying Diophantine equations. These are
ordinary polynomial equations, but where all variables are considered as
integer-valued. We mostly studied linear Diophantine equations

ax+by=c

where Euclid’a algorithm yields a general method of solution. There exists
a general theory for binary (i.e.: 2-variable) quadratic equations, developed
by Gauss, which we only hinted at in one homework exercise. Other than
that, we only had scattered examples.

One common way of proving that a Diophantine equation has no solution
is to show that it has no solution modulo a certain integer n. This leads us
to also study Diophantine congruences. In the absence of anything better,
one can always try to solve a Diophantine congruence by ezhaustive search,
since there are only finitely many possibilities for each variable. In some
cases, we saw how to do better :

- Euclid’s algorithm gives a method to solve a 1-variable linear congruence
az = b (mod n).

- The Chinese Remainder Theorem gives an algorithm to solve a system of
1-variable congruences, provided the bases are relatively prime.

- The formula for the roots of a quadratic equation (or the method of com-
pleting squares, which is the same thing) reduces the amount of searching
needed to solve quadratic 1-variable congruences (see ex. 1 for Thursday,
week 4).

- Sometimes Fermat’s or Euler’s theorem can be applied to reduce the
amount of searching required (see ex. 4 for Friday, Week 3 and Q.6 on
3rd practice exam)



- In general, when solving p(z) = 0 (mod n), it reduces the workload if
you can factorise p(z) and/or n (this follows from FTA). See, for example,
Q.4 on 3rd practice exam).

GRAPH THEORY
We discussed the following topics :

(a) Euler paths and cycles. Fuler’s theorem gives a necessary and suffi-
cient condition for a graph to have an Euler path/cycle. If the conditions
are satisfied, a suitable path/cycle can be found by DFS.

(b) Ramsey numbers. R(p,q) is the least integer n such that every sim-
ple graph on n vertices contains either a clique of size p or an independent
set of size ¢. Not much is known about Ramsey numbers, but in a homework
exercise we proved that R(4,3) = 10.

(¢) Hamilton paths/cycles. The problem of determining whether a graph
has a Hamilton path/cycle (so-called travelling salesman problem) is NP-
complete. Dirac’s theorem gives a (very restrictive) sufficient condition.
Petersen’s graph is a famous example of a graph without a Hamilton cycle.

(d) Graph coloring. The problem of finding the chromatic number of a
graph is NP-complete. The greedy algorithm is a general graph-coloring al-
gorithm. A graph is 2-colorable (so-called bipartite) if and only if it has no
odd cycles. The famous four color theorem states that every planar graph is
4-colorable. As an aside, in a homework exercise you proved Fuler’s formula
for planar graphs: V— E+ R=1.

(e) Trees. Spanning trees, minimal spanning trees (MST) in weighted
graphs, shortest paths in weighted (di)graphs. A spanning tree can be found
by DFS, but finding a minimal spanning teee requires BFS. Dijkstra’s algo-
rithm for finding a shortest path is also of BFS type.



