First practice exam

Solutions

1. If you choose 1002 of the numbers from 1 to 2003 then either
(i) you choose all the odd numbers or,
(ii) (at least) two of the numbers you choose are consecutive.

In case (i), you choose in particular the number 1, and this is relatively
prime with any other number you choose.

In case (ii), well we know that any two consecutive numbers are relatively
prime.

2 (i) For m = 1,...,n let us consider the number of such paths which first
meet the z-axis at (2m,0). Then there is only one choice for that part of the
path from (0,0) to (2n,0), namely : the first step is up, the last step down,
and in-between it zig zags with alternating up- and down-steps. There are
D,,_y, choices for the part of the path from (2m,0) to (2n,0). Hence we
may conclude that

n n—1
D, = Z D, .= Z D,,, v.s.v.
m=1 m=0

(ii) If you compute the first few values of D,,, it’s easy to spot the pattern.
I claim that D, = 2"~! for all n > 1. We may prove this, for example, by
strong induction' on n. For n = 1, it’s clear that D; = 2° = 1. So suppose
Dy =21 for k = 1,...,n. We must deduce that D, = 2". Simply use
the recurrence relation. Noting that Dy = 1, we have

n
Dn—l—l = Z D,
m=0

n
=Do+ ) Dn

m=1
n
=14y
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!This means the following : to prove that a proposition P(n) holds for all n > ng, you
first verify the base case n = ng. Then, for any given n > ng, you assume that P (k) holds
for all no < k < n, and thereby deduce that P(n + 1) holds.




n—1
=1+ > 2™
m=0
=1+((2"-1)=2", vs.v.
3. Clearly g9 = 1, since the empty word works, and g; = 4 since each of the
one-letter words a, b, c,d work. Now let n > 2. Divide the g,, allowed words
of length n into two types :

(i) those that begin with a b. Then the second letter must be a,c or d
(i.e.: 3 choices), and there are g,_s choices for the remaining letters. So
there are 3¢,_2 words of this type.

(ii) those that don’t begin with a b. Then the first letter can be a,c or

d (3 choices) and there are g, 1 choices for the remaining letters. There are
thus 3g,—1 choices for the remaining letters.

From the above analysis we deduce the following recurrence relation for
the g, :

q0 = ]-a q1 = 45 (1)
an = 3qn—1+3qn—2, Yn>2.

Eqg. (1) is a standard (second order, linear, homogeneous) recurrence rela-
tion. The general solution is

dn = Clan + CQ/Bna
where a, 8 are the two roots of the quadratic equation
2’ — 3z —3=0.

Hence

3++v21\" 3-v21\"
qn = Ch (7_‘_2\/_) + Cy (7{) .

Inserting the initial conditions ¢ = 1, ¢ = 3 we get the following two
equations for C and C :

Cl +CQ = ]-7
<73 +2*/2_1> Cy + <73 _2*/2_1> C, = 4.



After a little algebra we get the solution

5+ +/21 V21 -5

Ci=——F1+—-, Cy=
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and hence

3421 3—v21\"
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4. First note that 240 = 16 - 3 - 5 so it suffices to prove divisibility by each
of 16,3 and 5.
First, let’s take 3. We have the factorisation

n —n=nm*-1)=nm?-1)0*+1)=nn—-1n+1)®>+1). (2

Hence n®—n is divisible by n(n—1)(n+1), which is a product of 3 consecutive
numbers, hence divisible by 3. Hence n® — n is also divisible by 3.

Next, consider 5. Here we can simply refer to Fermat’s Theorem which,
for the prime 5, states that n° = n (mod 5) for ALL integers n and hence a
fortiori for all odd integers n.

Finally, we take care of 16. We use the factorisation (2) again. Note
that, since n is odd, each of n — 1, n + 1 and n? + 1 is even. Hence we have
at least divisibility by 8. But one of n + 1 must in fact be divisible by 4,
and so we get divisibility by 16.

5. This is a real ‘typtal’.

Step 1 : We compute the inverse of 11 - 13 = 143 modulo 7. Since 143 =
3 (mod 7), we seek a solution to

3a; =1 (mod 7).

You can run Euclid’s algorithm back-and-forth if you like, but it’s probably
easier just to search for a solution directly. Anyway, a solution is a; = 5.

Step 2 : Compute the inverse of 7 - 13 = 91 modulo 11. Since 91 =
3 (mod 11), we must solve

3az =1 (mod 11).



A solution is a9 = 4.

Step 3 : Compute the inverse of 7 - 11 = 77 modulo 13. Since 77 =
—1 (mod 13), we see immediately that an inverse is given by a3 = —1.

Step 4 : A solution to the three congruences is given by

£=2a;-(11-13) +3-ay- (7-13) +4-az- (7-11)
=2.5-11-1343-4-7-134+4-(=1)-7-11
= 2214.

Step & : The general solution is
z = 2214 + (7-11-13) - n = 2214 + 10017,

where n is an arbitrary integer.
(NOTE : the smallest positive solution is x = 212, got by taking n = —2.)

6 (i) We may compute the prime factorisation
7000 = 2° - 5° - 7.
Hence

$(7000) = $(2%) - $(5°) - ¢(7)
=(22-2%).(5*-5%)-(7-1)
=4-100 - 6 = 2400.

(ii) Euler’s theorem states that
a®™ =1 (mod n), whenever SGD(a,n) = 1.

We have that ¢(n) = ¢(p)¢(q) = (p — 1)(¢ — 1) and hence it is required to
prove that

a0V =1 (mod n), whenever SGD(a,n) = 1.

Henceforth, let a denote an integer satisfying SGD(a,n) = 1. We must show
that a(P~1(4=1) _1 is divisible by n. Since SGD(p, ¢q) = 1, it suffices to show
divisiblity by both p and ¢. In other words, it suffices to prove that both

a®~@1) =1 (mod p) (3)



and
aP D@1 =1 (mod ¢). (4)

I'll demonstrate the proof of (3). That for (4) is identical.
Note that SGD(a,n) = 1 = SGD(a,p) = 1. Hence, Fermat’s theorem
implies that

a?~! =1 (mod p).
But then

aP= ) — (P19 1 = 1971 =1 (mod p), v.s.v.



