Third practice exam

Solutions

1. $40 = 2^3 \cdot 5$ so $\phi(40) = \phi(2^3) \cdot \phi(5) = (2^3 - 2^2)(5 - 1) = 4 \cdot 4 = 16$. Hence, Euler's Theorem states that, if n is an integer relatively prime to 40, then

$$n^{16} \equiv 1 \pmod{40}.$$

Note that both 3 and 7 are relatively prime to 40. Hence (all congruences are modulo 40)

$$3^{97} = (3^{16})^6 \cdot 3 \equiv 1^6 \cdot 3 \equiv 3,$$

and

$$7^{50} = (7^{16})^3 \cdot 7^2 \equiv 1^3 \cdot 49 \equiv 1 \cdot 9 \equiv 9.$$

Thus,

$$(3^{97} + 7^{50})^3 \equiv (3+9)^3 = 12^3 = 144 \cdot 12 \equiv 24 \cdot 12 = 288 \equiv 8.$$

So the answer is 8.

2. Let

$$G(x) = \sum_{n=0}^{\infty} u_n x^n$$

denote the generating function of the sequence (u_n) . Let's rock!

$$(1 - 3x)G(x) = u_0 + \sum_{n=1}^{\infty} (u_n - 3u_{n-1})x^n$$
$$= 1 + \sum_{n=1}^{\infty} nx^n$$
$$= 1 + \frac{x}{(1 - x)^2}$$
$$= \frac{x^2 - x + 1}{(1 - x)^2}.$$

Thus

$$G(x) = \frac{x^2 - x + 1}{(1 - x)^2 (1 - 3x)}.$$

We seek a partial fraction decomposition

$$\frac{x^2 - x + 1}{(1 - x)^2 (1 - 3x)} = \frac{A}{1 - x} + \frac{B}{(1 - x)^2} + \frac{C}{1 - 3x}.$$
 (1)

Clearing denominators, we have

$$x^{2} - x + 1 = A(1 - x)(1 - 3x) + B(1 - 3x) + C(1 - x)^{2}.$$

Gathering coefficients, we get the following system of linear equations to solve

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 4 & 3 & 2 \\ 3 & 0 & 1 \end{array}\right) \left(\begin{array}{c} A \\ B \\ C \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right).$$

After the usual $Gau\beta$ elimination and back substitution (I omit the details), we get the solution

$$A = -\frac{1}{4}, \quad B = -\frac{1}{2}, \quad C = \frac{7}{4}.$$

Substituting into (1) and using the relations

$$\frac{1}{1-t} = \sum_{n=0}^{\infty} t^n,$$
$$\frac{1}{(1-t)^2} = \sum_{n=0}^{\infty} (n+1)t^n,$$

we conclude that

$$F(x) = -\frac{1}{4} \sum_{n=0}^{\infty} x^n - \frac{1}{2} \sum_{n=0}^{\infty} (n+1)x^n + \frac{7}{4} \sum_{n=0}^{\infty} 3^n x^n.$$

Hence, it follows that

$$u_n = -\frac{1}{4} - \frac{n+1}{2} + \frac{7}{4} \cdot 3^n.$$

3. We use inclusion-exclusion. Let X denote the set of all permutations of the numbers 1, ..., 100. Define three subsets A, B, C of X as follows:

 $A = \{\pi \in X : \pi \text{ places 43 and 59 side-by-side}\},$ $B = \{\pi \in X : \pi \text{ places 43 and 89 side-by-side}\},$ $C = \{\pi \in X : \pi \text{ places 59 and 89 side-by-side}\}.$

Then the number we want to compute is precisely $|X\setminus (A\cup B\cup C)|$. By the I-E principle, we have

$$|X \setminus (A \cup B \cup C)| = |X| - |A| - |B| - |C|$$

$$+|A \cap B| + |A \cap C| + |B \cap C| - |A \cap B \cap C|.$$

$$(2)$$

Firstly, |X| = 100!. Next, $|A| = 2 \cdot 99!$. For we may take the pair $\{43, 59\}$ as a single 'number'. We then have 99 'numbers' to permute, and also 2 choices for the ordering of the pair. Similarly, $|B| = |C| = 2 \cdot 99!$.

Now consider $A \cap B$ for example. This set consists of those permutations which place 43 next to 59 and 59 next to 89. Hence, the triple $\{43, 59, 89\}$ can first of all be considered as a single 'number', which leaves us with 98 'numbers' to permute freely. Within this triple, there are 2 possible orderings which satisfy our requirements, namely those that place 59 in the middle. Hence, we conclude that $|A \cap B| = 2.98!$, and likewise for $|A \cap C|$ and $|B \cap C|$.

Finally, I claim that $|A \cap B \cap C| = 0$. For it is not possible to order 3 objects such that each is placed next to the other.

Substituting everything into (2) and adding/subtracting, the answer becomes $100! - 6 \cdot 99! + 6 \cdot 98!$.

4. After a little work we find the factorisation

$$n^4 + 6n^3 + 11n^2 + 6n = n(n+1)(n+2)(n+3) := p(n)$$
, say.

Now $40 = 8 \cdot 5$ so a number is divisible by 40 if and only if it is divisible by both 8 and 5. I claim that p(n) is divisible by 8 for every integer n. For p(n) is the product of 4 consecutive integers. Two of these will always be even, and one of those two in turn will be divisible by 4.

Similarly, since 5 is prime, p(n) is divisible by 5 if and only if at least one of its' factors is so. But among 4 consecutive numbers we always find a multiple of 5, except when the smallest of them is congruent to 1 modulo 5.

Hence, the final conclusion is that p(n) is not divisible by 40 exactly when $n \equiv 1 \pmod{5}$.

5 (i) Apply Dijkstra's algorithm to build up the following tree

Step	Choice of edge	Labelling
1	(s,b)	b := 6
2	(s,a)	a := 7
3	(s,c)	c := 8
4	(b,d)	d := 10
5	(a, f)	f:=12
6	(c,h)	h := 12
7	(d,g)	g := 13
8	(c,e)	e := 14
9	(h,t)	t := 18

Hence the shortest path from s to t is $s \to c \to h \to t$ and has length 18.

- (ii) Suppose the contrary. Then G is bipartite. Let the two 'sides' of G contain s and t vertices respectively, where s+t=n. Then the maximum possible number of edges in G is st=s(n-s). Simple calculus shows that this quantity, as a function of s, attains a maximum of $n^2/4$ at s=n/2. Hence, if G has no odd cycles it has at most $n^2/4$ edges, v.s.v.
- **6.** We work modulo 5. Fermat's theorem states that, if a is an integer not divisible by 5, then

$$a^4 \equiv 1 \pmod{5}$$
.

If a IS divisible by 5, then naturally so is a^4 , in other words $a^4 \equiv 0 \pmod{5}$ in this case.

To sum up, $a^4 \equiv 0$ or 1 (mod 5) for all integers a. Hence, there are only 4 possibilities modulo 5 for the expression $x^4 - 3y^4$, namely

$$0 - 3 \cdot 0 \equiv 0,$$

$$1 - 3 \cdot 0 \equiv 1$$

$$0 - 3 \cdot 1 \equiv 2,$$

Hence, we see that the remainder of 4 modulo 5 is unattainable, and since this is precisely the remainder left by 19, we conclude that $x^4 - 3y^4$ can never equal 19, for any integers x, y, v.s.v.