‘Week 2 practice problems : Solutions

1 (i) The point is to show that
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from which it follows in turn that
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(1) and (2) immediately imply that
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as required. To prove (1), just compute :
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(ii) Since d; = 0 and dy = 1 we may verify directly for £ = 2 that

dp = dg_1 + (—1)".
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We now proceed by induction on k. Suppose (3) holds for k = n — 1, i.e.:

that
dp—1=(n—1)dp—o + (—1)"’1.

We rewrite this as
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We know that
dp = (n—1)(dp—1 + dp—2).
Substituting (4) into this we find that
1
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Now let E(z) be the exp. generating function of the sequence (d,,). In the
following computation, note that dy = 1, d; = 0 and dy = 1. We have
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So now we have
E(z)=e*(1—z)!
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The coefficient of ™ in this expression is
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On the other hand, this coefficient must be %. Hence it follows that
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which is the formula we were supposed to recover.

3. Consider words of length n > 1. If the first letter is an a, then the
second must be b, c,d or e (i.e.: 4 choices), and then there are ¢,_o choices
for the remaining n — 2 letters. Hence, there are 4¢, o words of this type.

If the first letter is not an a, then it is one of b, c,d or e (i.e.: 4 choices),
and then there are ¢,_1 choices for the remaining n — 1 letters. Thus there
are 4q,—1 words of this type.

From the above discussion, we deduce the recurrence relation
Gn = 4qn_1 +4qn_o, for allm > 2. (5)

By inspection, we have the initial conditions

9o=1 q=>5 (6)
The auxiliary quadratic equation is

z? — 4z —4=0,
which has the two real roots

z=2(1+2).

Hence the general solution to (5) is
an=2"[C1 (1+v2)" + G (1-v2)"].

The initial conditions (6) yield two equations for C; and Cy which, after a
little algebra, are found to be
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Thus we conclude that
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denote the generating function of the sequence (u,). Let’s rock !
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1 -5z + 622 = (1 —2z)(1 — 3z),
we conclude that
—10z3 + 252% — 17z + 3
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(1—2)%2(1 —2z)(1 — 3x)
We seek a partial fraction decomposition
—10z3 + 2522 — 17z + 3 A B C D
= + + + (7)
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Clearing denominators, we have

—102® 4+ 2522 — 172 + 3 = A(1 — z)(1 — 2z)(1 — 3z) + B(1 — 2z)(1 — 3z)
+C(1 — z)%(1 - 3z) + D(1 — 2)*(1 — 2z).

Gathering coefficients, we get the following system of linear equations to
solve
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After the usual Gauf elimination and back substitution (I omit the details),
we get the solution
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Substituting into (7) and using the relations
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we conclude that
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Hence, it follows that
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7 (i) fn is the coeffiecient of z™ in the power-series expansion of G(z). But

Ga)=— 1 =1 S (at P

S l-z-22 1-(z+12) =




It is now ‘clear’ (!!) that the coefficient of 2™ in this series equals the number
of ways of writing n as an ordered sum of 1’s and 2’s.
(ii) On the other hand, 2 appears in the binomial expansion of (z +z2)* if
and only if n/2 < k < n, in which case the coefficient for z" is < 9 kk_ n > ]
Hence,
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If we make the change of variables r := n — k, then
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Now let’s try to reprove (i) without using G(z). Let g, denote the number
of ways to write n as an ordered sum of 1’s and 2’s. Tt suffices to show that
the g, satisfy the same recurrence relation as the f,, namely that

go = g1 = ]-a (8)
n =gn—1+Ggn-2, Vn2>2 (9)

The initial conditions (8) are verified by inspection. To verify (9), we argue
as follows : if we write n as an ordered sum of 1’s and 2’s and the last part
is a 2, then the remaining parts sum to n — 2, and hence there are g, o
possibilities for them. Otherwise, if the last part is a 1, then the remaining
parts sum to n — 1 and there are g,_1 possibilities for them.

Finally, let us reprove (ii) without using G(z). The formula is correct for
n = 0, by inspection. For n > 0, we use the description of f,, as the number
of (n—1)-digit binary words not containing any two consecutive zeroes. The
number of digits in any such word is at most [(n — 1)/2] = [n/2]. I claim

that, for each r = 0, ..., [n/2], there are n ; "] such words containing

exactly r zeroes. Suppose the zeroes are in positions

1<z <9< -~ <xpp <m—1.



Define new variables y1, ..., Yr+1 Dy

y1:=1x1 — 1,
Yp =T —Tp_1— 2, fork=2,...,r1,

Yr41 = (n — 1) — z,.

The requirement that no two zeroes are consecutive then translates into the
requirement that all y; be non-negative integers. We may compute that

Y1+t Yy =n— 21 (10)

By the morse-code method, we know that the number of solutions in non-
negative integers to (10) is

n—2r+(r+1)-1\ (n-r
(r+1)—1 = , , V.S.V.



