TMA 055: Diskret Matematik (E3)

Week 3

Demonstration problems for Wedenesday, Sept 17

- 1 (11.4.2 in Biggs) Find the number of ways of arranging the letters A,E,M,O,U,Y in a sequence in such a way that the words ME and YOU do not occur.
- **2.** A function f from a set X to a set Y is said to be *surjective* if, for every $y \in Y$, there exists at least one $x \in X$ such that f(x) = y.
- (a) Find the number of surjective functions from the set $\{1, 2, 3, 4, 5\}$ to the set $\{1, 2, 3\}$.
- (b) More generally, let m > n be positive integers and let $A_{m,n}$ denote the number of surjective functions from the set $\{1, 2, ..., m\}$ to the set $\{1, 2, ..., n\}$. Explain why

$$A_{m,n} = \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^m.$$

Demonstration problems for Friday, Sept 19

DEFINITIONS: A relation \mathcal{R} on a set X is said to be antisymmetric if

$$x\mathcal{R}y$$
 and $y\mathcal{R}x \Rightarrow x = y$.

A relation which is reflexive, transitive and antisymmetric is called a *partial* order.

- 1. Which of the following relations are reflexive/symmetric/antisymmetric/transitive/equivalence relations/partial orders? In the case of an equivalence relation, describe the equivalence classes.
- (a) X is the set of all lines in the plane.

$$\mathcal{R} = \{ (L, M) \in X \times X : L \perp M \}.$$

- **(b)** $X = \mathbf{Z}, \ \mathcal{R} = \{(a, b) : |a b| < 3\}.$
- (c) $X = \mathbf{Z}, \mathcal{R} = \{(a, b) : a \leq b\}.$
- (d) $X = \mathbf{Z}, \mathcal{R} = \{(a, b) : a + b \text{ is even}\}.$
- **2.** For a positive integer n let d(n) denote the numbr of positive integers that divide n, including 1 and n itself. Let

$$n=p_1^{lpha_1}p_2^{lpha_2}\cdots p_k^{lpha_k}$$

be the prime decomposition of n. Find a formula for d(n). Hence compute d(3000).

- **3.** Let p be a prime and $1 \le i \le p-1$. Prove that the binomial coefficient $\begin{pmatrix} p \\ i \end{pmatrix}$ is divisible by p. (we will make use of this result later in the lectures).
- 4. Show that there are no integer solution to the equation

$$x^2 - 2y^2 = 5.$$

Further practice problems

(this list will be constantly updated)

- 1. Without listing them all, compute the number of positive integers less than or equal to 10,000 which have no common factor with 60.
- 2. Compute, in terms of binomial coefficients, the number of solutions to the equation

$$a + b + c + d + e = 127$$
,

where a,b,c,d,e are non-negative integers such that $a \leq 12,\ b \leq 10$ and $c \leq 15.$

3 (recommended as practice for homework 2) A permutation $a_1, a_2, ..., a_n$ of the integers 1, 2, ..., n is said to be 1 - 3 - 2 avoiding if there does not exist any three integers i, j, k such that

$$1 \le i < j < k \le n$$

 $\quad \text{and} \quad$

$$a_i < a_j > a_k > a_i.$$

Write out all 1-3-2 avoiding permutations of $\{1, 2, ..., n\}$ for n = 1, 2, 3, 4. Let A_n denote the number of such permutations. Show that $A_n = C_n$, the n:th Catalan number.

(Hint: By considering the position of n in a permutation, show that the A_n satisfy the same recurrence relation as the C_n .)