Week 4 practice problems: Solutions

0. Factorise

$$n^{3} + 3n^{2} + 2n = n(n^{2} + 3n + 2) = n(n+1)(n+2).$$

As a product of 3 consecutive numbers, this is always divisible by 3. One checks readily that it is divisible by 4 for n = 0, 2, 3 but not for n = 1.

Hence, the conclusion is that $n^3 + 3n^2 + 2n$ is divisible by 12 if and only if $n \not\equiv 1 \pmod{4}$.

1 (i) Suppose x = p/q is a rational root, where SGD(p,q) = 1. Then

$$a_n \left(\frac{p}{q}\right)^n + a_{n-1} \left(\frac{p}{q}\right)^{n-1} + \dots + a_1 \left(\frac{p}{q}\right) + a_0 = 0.$$

If we multiply through by q^n , then all denominators are cleared and we have that

$$a_n p^n + a_{n-1} p^{n-1} q + \dots + a_1 p q^{n-1} + a_0 q^n = 0.$$
 (1)

The HL of (1), being zero, is obviously divisible by q. But some power of q appears in every term on the VL except the first. Hence, it must be that $q|a_np^n$, and since SGD(p,q)=1, FTA implies that $q|a_n$.

SImilarly, the HL of (1) is divisible by p. Every term on the VL includes some power of p except the last. Hence it must be that $p|a_0q^n$, and sicne SGD(p,q) = 1, FTA implies that $p|a_0$, v.s.v.

- (ii) There's so much to choose from, but consider for example the polynomial x^3+x^2+3x+1 . Suppose p/q were a rational root, where SGD(p,q)=1. The conditions $p|a_0, q|a_n$ now say that p|1 and q|1. Since p,q are integers, the only possibility is that both p and q are ± 1 and hence $p/q=\pm 1$ also. So one just needs to check that neither $x=\pm 1$ is a root of our polynomial.
- **2.** Noting that 5 = SGD(35, 15), we first solve

$$35a + 15b = 5.$$

One solution is immediately obvious, namely

$$a_0 = 1, b_0 = -2.$$

Hence the general solution is

$$a = 1 + 3m, \quad b = -2 - 7m, \quad m \in \mathbf{Z}.$$

And, for any fixed $c \in \mathbf{Z}$, the general solution to

$$35a + 15b = 5c$$

is

$$a = c + 3m, \quad b = -2c - 7m, \quad m \in \mathbf{Z}.$$
 (2)

Next we solve

$$5c + 21z = 1.$$

A solution is also pretty obvious, namely

$$c_0 = -4$$
, $z_0 = 1$.

Hence the general solution is

$$c = -4 + 21n, \quad z = 1 - 5n, \quad n \in \mathbf{Z}.$$
 (3)

Combining (2) and (3), we find that the general solution to

$$35x + 15y + 21z = 1$$

is

$$x = (-4 + 21n) + 3m,$$

$$y = -2(-4 + 21n) - 7m,$$

$$z = 1 - 5n,$$

where m, n are arbitrary integers.

3. Let $n=x_kx_{k-1}\cdots x_1x_0$ be the base-10 expansion of the number n, i.e.: each $x_i\in\{0,...,9\},\ x_k>0$ and

$$n = \sum_{i=0}^{k} x_i 10^i.$$

Now $10 \equiv 1 \pmod{9}$ and so the same is true for every power of 10. Hence

$$n = \sum x_i 10^i \equiv \sum x_i \cdot 1 = \sum x_i \pmod{10}.$$

In other words, a number is divisible by 9 if and only if the same is true of the sum of its' base-10 digits.

We get a similarly simple rule for divisibility by 11. This time $10 \equiv -1 \pmod{11}$ and hence $10^i \equiv (-1)^i \pmod{11}$. Thus

$$n = \sum x_i 10^i \equiv \sum x_i (-1)^i \pmod{11}.$$

In other words, a number is divisible by 11 if and only if the same is true of the alternating sum of its' base-10 digits, reading from right to left.

4 (i) On the contrary, suppose that $\sqrt{10}$ were rational, say

$$\sqrt{10} = \frac{p}{q}$$
, where $SGD(p, q) = 1$.

Squaring both sides we get that $10 = p^2/q^2$ and hence

$$2 \cdot 5 \cdot q^2 = p^2. \tag{4}$$

The VL of (4) is divisible by 2, hence $2|p^2$, and so 2|p. But then $4|p^2$. So dividing both sides of (4) by 2 we get

$$5q^2 = 2\left(\frac{p^2}{4}\right) \tag{5}$$

and the HL of (5) is still an even integer. Hence $2|VL \Rightarrow 2|q^2 \Rightarrow 2|q$. So both p and q are even integers, contradicting the assumption that SGD(p,q) = 1.

(ii) On the contrary, suppose that $\sqrt{5} + \sqrt{2}$ were rational, say equal to p/q. Then

$$\left(\frac{p}{q}\right)^2 = (\sqrt{5} + \sqrt{2})^2 = 5 + 2 + 2\sqrt{10},$$

and hence

$$\sqrt{10} = \frac{1}{2} \left(\frac{p^2}{q^2} - 7 \right). \tag{6}$$

Eq. (6) says in particular that $\sqrt{10}$ is a rational number, which contradicts part (i) of this exercise.

5. We have that

$$\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \left(\sqrt{2}\right)^{\sqrt{2}\cdot\sqrt{2}} = (\sqrt{2})^2 = 2,$$

is a rational number. Also, we know that $\sqrt{2}$ is irrational. We don't know if $\sqrt{2}^{\sqrt{2}}$ is rational or not, but it doesn't matter:

For if $\sqrt{2}^{\sqrt{2}}$ is rational, take $a = b = \sqrt{2}$. If it isn't, take $a = \sqrt{2}^{\sqrt{2}}$ and $b = \sqrt{2}$.

In either case, a and b are two irrational numbers such that a^b is rational.

6. I'm writing these solutions on Saturday, Oct. 4, 2003. Note that $365 \equiv 1 \pmod{7}$. Since every fourth year contains an extra day, we can say that every group of 4 years, from today onwards, shifts the day on which Oct. 4 falls forward 5 days or, which is the same thing, shifts it back 2 days - so Oct.4, 2007 will be a Thursday, for example.

Anyway, the point is that the day on which Oct. 4 falls in 10^{15} years will be shifted from a Saturday by x days where

$$x \equiv \frac{10^{15}}{4} \times (-2) = 25 \times 10^{13} \times -2 \pmod{7}.$$

So it remains to compute this big number modulo 7. First, $25 \cdot (-2) \equiv 4 \cdot (-2) \equiv -8 \equiv -1$. Fermat's theorem implies that $10^6 \equiv 1$. Hence

$$25 \cdot (-2) \cdot 10^{13} \equiv (-1) \cdot (10^6)^2 \cdot 10 \equiv (-1) \cdot 1^2 \cdot 10 \equiv -3 \equiv 4 \pmod{7}.$$

Hence, the universe will end on a Wednesday.

7 (i) This is a consequence of FTA. More precisely, FTA implies that if m, n are two relatively prime integers, then we have a 1-1 correspondence

$$\{\text{divisors of } m\} \times \{\text{divisors of } n\} \leftrightarrow \{\text{divisors of } mn\}$$

given by

$$(d_1, d_2) \leftrightarrow d_1 d_2. \tag{7}$$

Now let's show that

$$g(mn) = g(m)g(n), \text{ whenever } SGD(m,n) = 1.$$
 (8)

By definition,

$$g(mn) = \sum_{d|mn} f(d).$$

By the corrspondence (7) and the fact that f already satisfies (8), we have

$$\sum_{d|mn} f(d) = \sum_{d_1d_2 \text{ s.t. } d_1|m, \ d_2|n} f(d_1d_2) = \left(\sum_{d_1|m} f(d_1)\right) \left(\sum_{d_2|n} f(d_2)\right) = g(m)g(n), \ \text{ v.s.v.}$$

(ii) We know (Chinese Remainder Theorem) that the function $\phi(n)$ satisfies (8). Hence, by part (i), so also does the function $g(n) = \sum_{d|n} \phi(d)$. But, clearly, the function h(n) = n also satisfies (8). We want to show that g(n) = h(n) for all n. Since both satisfy (8), it suffices to prove this when n is a prime power, say $n = p^k$. But then

$$\sum_{d|p^k} \phi(d) = \sum_{i=0}^k \phi(p^i) = 1 + \sum_{i=1}^k (p^i - p^{i-1}) = p^k, \quad ext{v.s.v.}$$