1. A permutation $a_1, a_2, ..., a_n$ of the integers 1, 2, ..., n is said to be 1-3-2 avoiding if there does not exist any three integers i, j, k such that

$$1 \le i < j < k \le n$$

and

$$a_i < a_i > a_k > a_i$$
.

Write out all 1-3-2 avoiding permutations of $\{1, 2, ..., n\}$ for n = 1, 2, 3, 4. Let A_n denote the number of such permutations. Show that $A_n = C_n$, the n:th Catalan number.

(Hint: By considering the position of n in a permutation, show that the A_n satisfy the same recurrence relation as the C_n .)

- **2.** In this exercise, p(n,k) denotes the number of partitions of a positive integer n into k parts and $p(n) = \sum_{k} p(n,k)$ the total number of partitions of n.
- (i) Evaluate p(8).
- (ii) Find a formula for p(n, 2).
- (iii) Explain why p(n, n k) = p(k) when $k \le n/2$.