BLURB

The text below is virtually identical to that in last year’s document. The
only change of note is that the Ford-Fulkerson algorithm in network graphs
has been removed as we didn’t get to that this time. There are several
questions on old exams asking you to implement this : you may ignore these
exercises. Otherwise, the course material is pretty much identical to last
year’s. Whereas on the homeworks I have mainly given problems which
require some independent thought, the exam is mainly focused on checking
that you’'ve learned basic techniques. This will be sufficient to be able to
achieve a clear passing grade - for a top grade, you'll need to do a bit more.
This situation is far from ideal, but the fact that most of you are still part
of the (thankfully soon to be extinct) system where you take 4-5 three point
courses simoultaneously makes anything else practically impossible.

END OF BLURB

I have divided the course material into three levels below. You will pass
(fail) the exam if you can solve all (none) of the problems from Level 1.
There will be 6 questions on the exam, of which about 4 will belong to
Level 1, and about one each from each of levels 2 and 3. Note that, by
contrast, the nomework exercises have been divided much more evenly be-
tween all three levels, with perhaps even a surplus of Level 2 and 3 exercises.

Finally note that, of the 6 questions, 2 will come from Del 1 (Kombina-
torik), 2 from Del 2 (Aritmetik), 1 from Del 3 (Grafteori) and 1 will be a
‘Wild Card’, i.e.: it can come from anywhere or from several places.

Level 1

Everything which involved carrying out some algorithmic procedure.
DEL 1 :

Solving linear recurrence relations

aUp 42 + bup1 + cup, = f(n),
uy = @, up = S.

DEL 2 :



(i) Euclid’s algorithm to compute SGD(a, b).
(ii) Euclid’s algorithm to solve linear Diophantine equations

ax + by = c,

or, equivalently, to solve one-variable linear congruences az = b (mod n).
(iii) Fuclid’s algorithm to compute o' (mod n) when SGD(a,n) = 1.

(iv) Computing a® (mod n) quickly when a and b are large. The square-and-
multiply method always works, but can be slow. If b is much bigger than n
and SGD(a,n) = 1, then we can use Fermat’s/Euler’s theorem.

(v) The Chinese Remainder Theorem to solve a system of linear congru-
ences.

(vi) Solving quadratic congruences in Z,, where p is a prime.

DEL 3 :

(i) Checking whether a graph has an Euler cycle or path and finding one
using a greedy search when it has.

(ii) FInding a Hamilton path or cycle in a graph - there is no good algorithm
here, you just have to experiment.

(iii) Greedy algorithm for graph coloring ; computing x(G).

(iv) Finding a minimal spanning tree in a weighted graph (Kruskal or Prim
algorithm).

(v) Finding a shortest path between two points in a (directed) graph - Di-
jkstra’s algorithm..

Level 2

Some kind of formula is available, but it’s not perhaps immediately obvious
how to use it.

DEL 1:

(i) Use of the multiplication principle and applications of it (permutations,
combinations, binomial theorem, unordered selection with repitition) for
counting.

(ii) Inclusion-Exclusion principle.

DEL 2 : Nothing really.



DEL 3 :

(i) Using Euler’s formula for plane graphs.
Level 3

Solving the problem requires a bit more creativity, or a deeper understand-
ing of the theory.

DEL 1:

(i) Proving a combinatorial identity (usually involving binomial coefficients).
(ii) Finding or verifying (with proof) a recurrence relation.
(iii) Catalan numbers, Stirling numbers, partitions.

DEL 2 :

Everything not included under Level 1. In particular, clever use of the
Fundamental Theorem of Arithmetic or of congruences for studying non-
linear Diophantine equations.

DEL 3 : We didn’t do very much graph theory, so there’s not a lot I can
say here. We did enough so that I could formulate a challenging problem :
make sure you understand the basic definitions, and do a few exercises from
the end of the chapters in Grimaldi or Biggs.



