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5. Notera att 122 = 2 (mod 8). Som vi sag pa forelisningen i morse
(mandag, v.5), om a ar ett godtyckligt heltal sa giller att

a®> = 0,1 eller 4 (mod 8).

Nu ska man kontrollera att uttrycket z? — 5y? inte kan anta nigot virde
som dr = 2 (mod 8) (och inte heller 6 (mod 8) forresten). Det dr bara att
kolla alla mojligheterna, som vi gor i tabellen nedan :

z? (mod 8) | y? (mod 8) | z? — 5y? (mod 8)

0-5-0=0
1-5-0=1
4-5.0=4

0—-5-1=-5=3

1-5-1=-4=4

4-5-1=-1=7
0-5-4=-20=4
1-5:-4=-19=5
4—-5-4=-16=0
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4. Z is a domain : we all know that if the product of two integers is zero
then one of them must itself be zero. Zsg is not a domain since, for example,

9-4 =0 (mod 36),

but neither 9 nor 4 is itself a multiple of 36. On the other hand, Zs7 is a
domain, since 37 is a prime. More generally, the point is that the following
holds (see Theorems 14.7 and 14.8 in Grimaldi) :

Proposition Let R be a finite (i.e.: as a set, R contains finitely many
elements) commutative ring with unity. Then R is an integral domain if

and only if R is a field.

PrROOF : First suppose R is a field. Let a,b be two elements of R and



suppose a - b = 0. We must show that either ¢ = 0 or b = 0. Suppose a # 0.
Then a~! exists, since R is a field. Thus

a-b=0=a"'-(a-b)=a"'-0=0.

But, by associativity of multiplication in R, we have that a=' - (a -b) =
(a'-a)-b=1-b=b. Hence b= 0, as required.

Now suppose instead that R is an integral domain. Let a be any non-
zero element of R. We must show that there exists b € R such that a-b = 1.
Suppose that R has n+ 1 elements in total and list them as rg, 71, ..., 7, such
that rg = 0 and r; = a. Now, since R is a domain, each of the products

r-rj, J= 17 ey Ty

is a non-zero element of R. T claim further that all these products are distinct
elements of R. For suppose 1 - r; = 71 - 7j. Thus, by the distributive law,
O=ry-ri—r 15 =171" (ri — rj). But now, since R is a domain and since
r1 # 0, we must have that r; —r; = 0, hence ¢ = j.

This establishes our claim. Now the point is that we have n distinct
non-zero elements ry - r; of R, but that is just the total number of non-zero
elements of R, hence one of these products must equal 1, thus proving that
r1 = a has an inverse, v.s.v.
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2(ii) In Monday’s lecture, we already established the result when GCD(a,n) =
1, using Euler’s theorem. There are three remaining cases, depending on
whether GCD(a,n) = p,q or n itself. In fact, the first two of these are
identical by symmetry. The third is trivial, because then ¢ = 0 (mod n), so
the same is obviosuly true for any power of a.

So, without loss of generality, it remains to establish the result when
GCD(a,n) = p. We must show that a* = a (mod n), i.e.: that n divides
a* — a. Tt suffices to show that a* — a is divisible by both p and ¢, i.e.: to
show that

a® = a (mod p), (1)
a* = a (mod ¢). (2)



Now (1) is trivial, since by hypothesis p divides a, so that both sides are
congruent to zero modulo p. For (2) we use the fact that n = pg = ¢(n) =
(p — 1)(g — 1), hence g — 1 divides ¢(n), from which it follows that since
k=1 (mod ¢(n)) then k =1 (mod ¢ — 1) also. That is, k=1+m-(¢—1)
for some integer m. By Fermat’s theorem, since ¢ does not divide a, we have
that

a? ' =1 (mod q).
But then
aF=al (@Y™ =a-1"=a (mod q), v.s.v.

4. Suppose G is not connected, so that G contains at least two connected
components. Let v, w be any two vertices in G. We need to show that there
is a path from v to w in G. If v and w lie in different connected components
of G, then there is an EDGE between them in G, so that’s ok. If they’re in
the same component of G, then let z be any vertex in some other component.
There are edges from both v and w to z in G and hence a 2-edge path from
v to w via z.

This completes the proof. Note that we’ve shown that, not only is either
G or G connected but that if G is disconnected, then not only is G connected,
but each pair of vertices can be joined by a path of length at most two in it.



