Inlamningsuppgift 2 : Losningar

Q.1 The homogeneous equation is
20, — 9an_1 + 4a,_o = 0.
The characteristic equation for this is
20 — 9z 4+ 4 =0,
which factorises as
(22 —1)(z —4) =0,

and hence has the two roots x = 1/2, = 4. Hence the general solution to
the homogeneous equation is

1\™
aZ—C’]-<§> +Cg-4n.

Since 4™ is already a solution to the homogeneous equation, our guess for a
particular solution should have the form

al =A-n-4"+ Bn+C.
Substituting into the recurrence relation, the requirement on A is that
A- [2n4" —9(n — 1)4" " +4(n — 2)4”*2] e (1)

whereas the requirement on B and C is that

2[Bn+ C|] -9[B(nll) + C] +4[B(n —2) + C] = n. (2)
From (1) we deduce that A = 4/7. From (2) we deduce that B = —1/3,
C = —1/9. Hence the general solution to our recurrence relation is
\" n n 1
m =C1- | = Cy 4™+ — 4"+ =
an 1 <2> + Co + 7 3
It remains to insert the initial conditions :
1
n:0:>ag:1=C1+02*§a
16 1 1

1
1 =1=a=1==-C 4C _ = — —.
n aq 9 1+ 2+7 3 9



Solving, we obtain Cy = 74/49, Cy = —176/441. Hence the final answer is

T4 (1)77 176 n 7 gnir 71

2) 441 7 3 9

ap = E .
Q.2 Fix n > 0. We describe an explicit 1-1 mapping from the set of all Dyck
paths of length 2n to the set of Dyck paths of length 2n 4+ 2 which contain
no peaks of height two. Let P be a Dyck path of length 2n. We map P to
the path P* of length 2n 4 2 as follows :

STEP 1 : Let P; be the path of length 2n 4+ 2 whose first two steps are
up-down, and whose remaining 2n steps coincide with those of P.

STEP 2 : The path P; has at least one peak of height one, by construc-
tion. Let there be k peaks of height one. These divide the remainder of the
path into k pieces, one between each pair of consecutive height-one peaks,
and one after the last such peak. Note that some of the pieces could be
empty (happens if two height-one peaks immediately follow one another).
Call the pieces P11,....,P1 ;. Now replace each piece P;; by a path Pj,
which consists of an up-step, followed by the steps of P ;, followed by a
down-step. The path P* is now just the concatenation of the P;. Note
that, by definition, each segment P;; has no peaks at height one, hence no
segment P has any peaks at height two, and thus the same is true of the

path P*.

Q.3 We show that the F,, satisfy the same recurrence relation as the Catalan
numbers, namely that Fy = 1 and that,

n
Vn>1, E,=> Ep 1B, . (3)

m=1

That Ey = 1 is obvious, so it remains to prove (3). Call the 2n points
D1y --ey Pop, ordered from left to right. Suppose p; is joined to p;. That no
arcs can cross means that the points ps, ..., p;_1 have to be paired off amongst
themselves, and not with any of the points p;y1, ..., pa,. In particular, this
means that ¢ is even, hence t = 2m for some 1 < m < n.

Fix a choice of m. Then po, ..., po,,—1 constitute 2m — 2 points, which
must be paired off according to the same rules as at the outset so, by defi-
nition, there are E,, 1 ways to do this. Similarly, the points pomi1, ..., Pon
must be paired off, and this can be done in FE, ,, ways. Hence, by the



muliplication principle there are, for a fixed m, E,, 1 F,_,, possible config-
urations, and this proves (3).

Q.4 The given number has prime factorisation
97111014 =2 x 3 x 7 x 11 x 13 x 19 x 23 x 37.

The important point is that no prime factor is repeated. There are 8 of
them in total. Hence, the number of ways of writing 97111014 as a product
of four numbers greater than one is just the number of ways of grouping
these 8 primes into 4 groups. By definition, this is just the Stirling number
S(8,4) (the primes are ‘not identical’, as the way in which they’re grouped
determines what the 4 factors are, whereas the groups ARE ‘identical’, since
the ordering of the 4 factors is being ignored).

Stirling numbers can be computed by repeated use of the recurrence
relation for them, which you recall is

S(n,k)=Sn—-—1,k—1)+k-S(n—1,k), (4)

with initial condition S(1,1) = 1. Now one just needs to compute. If one
cheats a litle (!) one can look at Table 12.1.1 in Biggs, which gives the
seventh row of the Stirling triangle (n =7) as

1 63 301 350 140 21 1
By (4) we then have
S(8,4) = S(7,3) +4- S(7,4) = 301 + 4 - 350 = 1701,

Q.5 Konstatera att SGD(18,47) = 1 eftersom 47 ar ett primtal. Darfor vet
vi att det finns heltal zg, yo sa att

18z + 47y = 1. (5)

Vi hittar forst en 16sning till (5) genom att kora Euklides algoritm fram och
tillbaka. Framéat far vi

47 =218 + 11,
18=1-11+7,
11=1-7+4,

7=1-4+3,
4=1-3+1.



Bakat far vi da

1=4-3
=4 (7 4)
=2.4-7
=2.(11-7) -7
=2.11-3-7
=2.11-3-(18 = 11)
=5.11-3-18
—5.(47-2-18) - 3-18
=5-47 13- 18.

Darmed har vi hittat 16sningen g = —13, yo = 5. Genom att multiplicera
dessa med 3000 sa far vi en losning (z1,y) till

181 + 47y = 3000, (6)

namligen x; = —39000, y; = 15000. Den allména l6sningen till (6) ges da av
& = —39000 + 47n, (7)

y = 15000 — 18n (8)

dar n ar ett godtyckligt heltal. Vi ar nu intresserade av losningar for vilka
bade z > 0 och y > 0.

A ena sidan

x>0« —39000 +47n > 0 < 47n > 39000 < n > 830. (9)
A andra sidan

y >0 15000 — 18n > 0 < 18n < 15000 < n < 833. (10)

Fran (9) och (10) far vi fyra mojligheter for n, namligen n = 830, 831, 832, 833.
Till sist sétter vi in dessa fyra varden i (7) och (8) sa far vi fyra losningar :

r=10, y=60 =053, y=42 x=100, y=24, x=147, y=6.

Q.6 Fix n. Let d be a positive integer which divides both n! 4+ 1 and
(n + 1)! + 1. We must show that d = 1. Since d divides n! + 1, it also



divides (n + 1)-times this number, which is just (n + 1)! + (n + 1). Tt also
divides (n + 1)! + 1, so it divides the difference between these latter two,
namely n. But n! is a multiple of n, so d also divides n!. But now we have
that d divides both n! and n! + 1, from which it follows that it divides their
difference, namely 1. Thus d = 1, v.s.v.

Q.7 The point is that the expression n* +n2 4 1 can be factorised. Namely,
we have that

nt4n?+l=m"+2024+1)—n? =0+ 1) —n? =02 +1-n)(n>+1+n).

Hence if n* +n? + 1 is to be prime, then one of these factors must equal +1.
But both factors are positve for all n, the first one equals 1 for n = 0, £1
and the second one equals 1 only for n = 0. Thus n* + n? 4+ 1 is prime if
and only if n = +1.

Q.8 Let

— Q1 Ak
a_p] pk’

b=p 51_ pgk’

where each a; > 0 and §; > 0. In other words, we have factorised each of
a and b into its’ prime factors and added on to each factorisation the prime
factors of the other which do not already appear, but raised to the zeroeth
power so as not to change anything. For example, if a = 36 and b = 45 we
would write

a=2%.32.5% p=2.3%.5"

Then, with this notation, and by the Fundamental Theorem of Arithmetic,
we have that

a-b= Hpa +ﬁz
LCM(a, b) H paxdod il

GCD(a, b) H rintad bl



Hence the desired equality follows if we can just verify that, for any two
(real) numbers z and y,

x4+ y = max{z,y} + min{z, y}.

But this is obvious.

Q.9 An example which shows that the result need not hold if p is not a
prime is p = 4, i = 2. We have that C(4,2) = 6 which is not a multiple of 4.

So now let p be prime and fix i € {1,...,p — 1}. A priori, we know that
C(p,i) is an integer (since it is the number of ways to do something). Call
this integer m. Thus we have that

p!

ap )l

from which we deduce that
pl=m xil x (p—i)l

The prime p obviously divides the left-hand side, so it must also do so for
the right-hand side. But recall that Euklides lemma says that if a prime
divides a product of integers, then it must divide one of them. But both 4
and (p — 7)! are products of integers all less than p, hence none of these is
divisible by p. Thus m must be so, which is what we wanted to prove.

Q.10 Recall that if p(z) is any non-constant polynomial then p(z) — +oo
as © — oc. First choose any zg such that |p(zg)| > 1. Let p be any prime
divisor of p(xg). Now, by the usual rules for congruences, if [ is any integer,
then

p(zo + Ip) = p(zo) = 0 (mod p).

Thus p(zo + Ip) is a multiple of p for any I, so is either composite or equal
to p itself. But as [ — oo then so does p(xg + Ip), hence p(xzg + Ip) cannot
equal p for all sufficiently large I, and is therefore composite for all such I,
as required.



