
Inl�amningsuppgift 2 : L�osningarQ.1 The homogeneous equation is2an � 9an�1 + 4an�2 = 0:The 
hara
teristi
 equation for this is2x2 � 9x+ 4 = 0;whi
h fa
torises as (2x� 1)(x� 4) = 0;and hen
e has the two roots x = 1=2, x = 4. Hen
e the general solution tothe homogeneous equation isahn = C1 � �12�n + C2 � 4n:Sin
e 4n is already a solution to the homogeneous equation, our guess for aparti
ular solution should have the formapn = A � n � 4n +Bn+ C:Substituting into the re
urren
e relation, the requirement on A is thatA � h2n4n � 9(n� 1)4n�1 + 4(n� 2)4n�2i = 4n; (1)whereas the requirement on B and C is that2[Bn+ C℄� 9[B(n11) + C℄ + 4[B(n� 2) + C℄ = n: (2)From (1) we dedu
e that A = 4=7. From (2) we dedu
e that B = �1=3,C = �1=9. Hen
e the general solution to our re
urren
e relation isan = C1 � �12�n + C2 � 4n + n7 � 4n+1 � n3 � 19 :It remains to insert the initial 
onditions :n = 0) a0 = 1 = C1 + C2 � 19 ;n = 1) a1 = 1 = 12C1 + 4C2 + 167 � 13 � 19 :1



Solving, we obtain C1 = 74=49, C2 = �176=441. Hen
e the �nal answer isan = 7449 � �12�n � 176441 � 4n + n7 � 4n+1 � n3 � 19 :Q.2 Fix n � 0. We des
ribe an expli
it 1-1 mapping from the set of all Dy
kpaths of length 2n to the set of Dy
k paths of length 2n+ 2 whi
h 
ontainno peaks of height two. Let P be a Dy
k path of length 2n. We map P tothe path P� of length 2n+ 2 as follows :Step 1 : Let P1 be the path of length 2n + 2 whose �rst two steps areup-down, and whose remaining 2n steps 
oin
ide with those of P.Step 2 : The path P1 has at least one peak of height one, by 
onstru
-tion. Let there be k peaks of height one. These divide the remainder of thepath into k pie
es, one between ea
h pair of 
onse
utive height-one peaks,and one after the last su
h peak. Note that some of the pie
es 
ould beempty (happens if two height-one peaks immediately follow one another).Call the pie
es P1;1; :::;P1;k . Now repla
e ea
h pie
e P1;i by a path P�i ,whi
h 
onsists of an up-step, followed by the steps of P1;i, followed by adown-step. The path P� is now just the 
on
atenation of the P�i . Notethat, by de�nition, ea
h segment P1;i has no peaks at height one, hen
e nosegment P�i has any peaks at height two, and thus the same is true of thepath P�.Q.3We show that the En satisfy the same re
urren
e relation as the Catalannumbers, namely that E0 = 1 and that,8 n � 1; En = nXm=1Em�1En�m: (3)That E0 = 1 is obvious, so it remains to prove (3). Call the 2n pointsp1; :::; p2n, ordered from left to right. Suppose p1 is joined to pt. That noar
s 
an 
ross means that the points p2; :::; pt�1 have to be paired o� amongstthemselves, and not with any of the points pt+1; :::; p2n. In parti
ular, thismeans that t is even, hen
e t = 2m for some 1 � m � n.Fix a 
hoi
e of m. Then p2; :::; p2m�1 
onstitute 2m � 2 points, whi
hmust be paired o� a

ording to the same rules as at the outset so, by de�-nition, there are Em�1 ways to do this. Similarly, the points p2m+1; :::; p2nmust be paired o�, and this 
an be done in En�m ways. Hen
e, by the2



mulipli
ation prin
iple there are, for a �xed m, Em�1En�m possible 
on�g-urations, and this proves (3).Q.4 The given number has prime fa
torisation97111014 = 2� 3� 7� 11� 13� 19� 23� 37:The important point is that no prime fa
tor is repeated. There are 8 ofthem in total. Hen
e, the number of ways of writing 97111014 as a produ
tof four numbers greater than one is just the number of ways of groupingthese 8 primes into 4 groups. By de�nition, this is just the Stirling numberS(8; 4) (the primes are `not identi
al', as the way in whi
h they're groupeddetermines what the 4 fa
tors are, whereas the groups ARE `identi
al', sin
ethe ordering of the 4 fa
tors is being ignored).Stirling numbers 
an be 
omputed by repeated use of the re
urren
erelation for them, whi
h you re
all isS(n; k) = S(n� 1; k � 1) + k � S(n� 1; k); (4)with initial 
ondition S(1; 1) = 1. Now one just needs to 
ompute. If one
heats a litle (!) one 
an look at Table 12.1.1 in Biggs, whi
h gives theseventh row of the Stirling triangle (n = 7) as1 63 301 350 140 21 1By (4) we then haveS(8; 4) = S(7; 3) + 4 � S(7; 4) = 301 + 4 � 350 = 1701:Q.5 Konstatera att SGD(18; 47) = 1 eftersom 47 �ar ett primtal. D�arf�or vetvi att det �nns heltal x0; y0 s�a att18x0 + 47y0 = 1: (5)Vi hittar f�orst en l�osning till (5) genom att k�ora Euklides algoritm fram o
htillbaka. Fram�at f�ar vi 47 = 2 � 18 + 11;18 = 1 � 11 + 7;11 = 1 � 7 + 4;7 = 1 � 4 + 3;4 = 1 � 3 + 1:3



Bak�at f�ar vi d�a 1 = 4� 3= 4� (7� 4)= 2 � 4� 7= 2 � (11 � 7)� 7= 2 � 11� 3 � 7= 2 � 11� 3 � (18 � 11)= 5 � 11� 3 � 18= 5 � (47� 2 � 18) � 3 � 18= 5 � 47� 13 � 18:D�armed har vi hittat l�osningen x0 = �13, y0 = 5. Genom att multipli
eradessa med 3000 s�a f�ar vi en l�osning (x1; y1) till18x+ 47y = 3000; (6)n�amligen x1 = �39000, y1 = 15000. Den allm�ana l�osningen till (6) ges d�a avx = �39000 + 47n; (7)y = 15000 � 18n (8)d�ar n �ar ett godty
kligt heltal. Vi �ar nu intresserade av l�osningar f�or vilkab�ade x > 0 o
h y > 0.�A ena sidanx > 0, �39000 + 47n > 0, 47n > 39000 , n � 830: (9)�A andra sidany > 0, 15000 � 18n > 0, 18n < 15000, n � 833: (10)Fr�an (9) o
h (10) f�ar vi fyra m�ojligheter f�or n, n�amligen n = 830; 831; 832; 833.Till sist s�atter vi in dessa fyra v�arden i (7) o
h (8) s�a f�ar vi fyra l�osningar :x = 10; y = 60 x = 53; y = 42 x = 100; y = 24; x = 147; y = 6:Q.6 Fix n. Let d be a positive integer whi
h divides both n! + 1 and(n + 1)! + 1. We must show that d = 1. Sin
e d divides n! + 1, it also4



divides (n + 1)-times this number, whi
h is just (n + 1)! + (n + 1). It alsodivides (n + 1)! + 1, so it divides the di�eren
e between these latter two,namely n. But n! is a multiple of n, so d also divides n!. But now we havethat d divides both n! and n! + 1, from whi
h it follows that it divides theirdi�eren
e, namely 1. Thus d = 1, v.s.v.Q.7 The point is that the expression n4+n2+1 
an be fa
torised. Namely,we have thatn4 + n2 + 1 = (n4 + 2n2 + 1)� n2 = (n2 + 1)2 � n2 = (n2 + 1� n)(n2 + 1 + n):Hen
e if n4+n2+1 is to be prime, then one of these fa
tors must equal �1.But both fa
tors are positve for all n, the �rst one equals 1 for n = 0;�1and the se
ond one equals 1 only for n = 0. Thus n4 + n2 + 1 is prime ifand only if n = �1.Q.8 Let a = p�11 � � � p�kk ;b = p�11 � � � p�kk ;where ea
h �i � 0 and �i � 0. In other words, we have fa
torised ea
h ofa and b into its' prime fa
tors and added on to ea
h fa
torisation the primefa
tors of the other whi
h do not already appear, but raised to the zeroethpower so as not to 
hange anything. For example, if a = 36 and b = 45 wewould write a = 22 � 32 � 50; b = 20 � 32 � 51:Then, with this notation, and by the Fundamental Theorem of Arithmeti
,we have that a � b = kYi=1 p�i+�ii ;LCM(a; b) = kYi=1 pmaxf�i;�igi ;GCD(a; b) = kYi=1 pminf�i;�igi :5



Hen
e the desired equality follows if we 
an just verify that, for any two(real) numbers x and y,x+ y = maxfx; yg +minfx; yg:But this is obvious.Q.9 An example whi
h shows that the result need not hold if p is not aprime is p = 4, i = 2. We have that C(4; 2) = 6 whi
h is not a multiple of 4.So now let p be prime and �x i 2 f1; :::; p � 1g. A priori, we know thatC(p; i) is an integer (sin
e it is the number of ways to do something). Callthis integer m. Thus we have thatp!i!(p� i)! = m;from whi
h we dedu
e thatp! = m� i!� (p� i)!:The prime p obviously divides the left-hand side, so it must also do so forthe right-hand side. But re
all that Euklides lemma says that if a primedivides a produ
t of integers, then it must divide one of them. But both iand (p � i)! are produ
ts of integers all less than p, hen
e none of these isdivisible by p. Thus m must be so, whi
h is what we wanted to prove.Q.10 Re
all that if p(x) is any non-
onstant polynomial then p(x) ! �1as x ! 1. First 
hoose any x0 su
h that jp(x0)j > 1. Let p be any primedivisor of p(x0). Now, by the usual rules for 
ongruen
es, if l is any integer,then p(x0 + lp) � p(x0) � 0 (mod p):Thus p(x0 + lp) is a multiple of p for any l, so is either 
omposite or equalto p itself. But as l ! 1 then so does p(x0 + lp), hen
e p(x0 + lp) 
annotequal p for all suÆ
iently large l, and is therefore 
omposite for all su
h l,as required.
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