
Lecture 1 : Tuesday 5/9

The first part of the course is an introduction to the subject of Enumerative
Combinatorics. While the second of these words is a bit hard to explain,
as it refers to a rather broad spectrum of mathematical problems and tech-
niques, the first clearly suggests that the subject has something to do with
counting/enumeration. Actually, the general set-up is the following :

You have a function f : N → N which you know a bit about. More precisely

(i) you have a precise, concrete description of the function as ”counting”
some collection of objects
(ii) usually, you know intuitively that f(n) is a “fast-growing” function of
n.

This is a bit informal, but the point is the following : since you have a
pretty concrete description of what the function is counting, you could in
principle evaluate f(n) by actually performing the count. But (ii) implies
that for all practical purposes, this is not feasible. Hence, what you need is
some more intelligent way of evaluating, or at least estimating f(n).

The following simple example illustrates many of the basic features of the
type of problem with which we will be concerned :

Example 1 : How may subsets are there of the set {1, 2, 3, ..., 2006}. Al-
ternatively, how many 2006-digit binary words are there ?

The first thing one should ask oneself here is why the two questions have
the same answer. Well, that’s because to any subset of {1, 2, ..., 2006} we
can associate a 2006-bit word in the following way : if the subset contains
1, then the first bit is a 1, and is 0 otherwise. If the subset contains 2, then
the second bit is a 1, and 0 otherwise. And so on

It should be clear that this establishes a one-to-one correspondence (math-
ematicians also use the word bijection) between the subsets of {1, 2, ..., 2006}
and 2006-bit words. Actually, this is a common feature of enumerative prob-
lems : that there may be several different “concrete” ways of describing the
problem, which are all equivalent to one another, but whose equivalence may
not necessarily be obvious. In fact, sometimes finding a clever way to enu-
merate depends on finding just the right concrete description of the problem.

1

The next step is to explain how this example fits into the general set-up.
The thing to notice here is that there is no reason to expect there is anything
special about the choice of 2006. I could choose any natural number I want
and ask the same question. I expect intuitively that, if there is a clever way
to enumerate the subsets/binary words, then it should work for any choice
of set size/word length.

So the function f : N → N which we are interested in here is described
explicitly by

Alt 1 : f(n) = number of subsets of {1, 2, ..., n}.
Alt 2 : f(n) = number of n-bit binary words.

So how to compute f(n) ? A good strategy is often to work out the first
few values and write out the full list of corresponding subsets/words in the
hope of finding a pattern. This works here !

First note that f(1) = 2 since if you have only one bit, then there are
two choices for it, either 0 or 1.

Next, f(2) = 4 since there are four 2-bit words, namely 00, 01, 10, 11.

Let’s go one step further. We have f(3) = 8 since there are the follow-
ing eight 3-bit words : 000,001,010,011,100,101,110,111.

So what comes next after 2,4,8,... ? A reasonable guess is 16, i.e.: that
we double the number of words each time. This turns out to be true, i.e.:
we have that

f(n + 1) = 2 · f(n) ∀ n ≥ 1. (1)

The proof is easy : If I want to write down an (n + 1)-bit word, I can first
write down an n-bit word, and then tag on either a 0 or a 1. In other words,
every n-bit word gives rise to exactly two (n + 1)-bit words.

Eq.(1) is an example of a so-called recurrence relation : it defines a re-
cursive procedure for computing the values f(n). In order to carry out the
computation, on a computer say, we also need a starting value, or so-called

2

initial condition. And we know that

f(1) = 2. (2)

From (1) and (2) we can compute all the values of f(n). But, even better,
we can write down a simple explicit formula for our function, namely

f(n) = 2n. (3)

Not only that, but this formula is sufficiently simple that it is easy to esti-
mate the rate of growth of f(n). For example

f(n) = 22006 = 102006·log10 2 = 10603.866...

hence a 604-digit decimal number.

To summarise, for this example our solution is about as satisfactory as it
can get : we get an explicit formula for f(n) which gives clear information
about the asymptotic behaviour of the function. Things aren’t always so
easy, as we shall see !

Multiplication principle

The above example in particular illustrates a simple but very general count-
ing principle which has many applications.

Proposition 1 (Multiplication Principle) If we have n1 balls of color
C1, n2 balls of color C2,...., nk balls of color Ck, then the number of ways
of choosing k balls, one of each color, is

∏k
i=1 ni.

Don’t confuse this (many students do !) with

Proposition 2 (Addition Principle) Under the same hypotheses as above,
the number of ways of choosing a single ball, in any color, is

∑k
i=1 ni.

Actually, as we shall see in due course, there are many situations where
one has to apply both principles (hence the reason for people getting con-
fused !). For the moment, though, only MP is of interest.

Example 2 : Give an upper bound on the number of cars in Sweden.

3

Solution : Every car has a unique licence plate, so it suffices to upper
bound the number of possible licence plates. A simple bound is given by
the total number of possible combinations xxx-ddd, where xxx is a 3-letter
combination, each letter being chosen freely from among A-Z, and ddd is a
3-digit combination, each digit being chosen freely from 0-9.

There are 26 possible choices for each letter, 10 possible choices for each
digit. By MP, the number of possible combinations is 26 ·26 ·26 ·10 ·10 ·10 =
263 · 1000 = 17, 576, 000. I guess there aren’t that many motor vechicles in
Sweden (yet)!

We now explore some special applications of the multiplication principle.

Notation/Terminology : Let n, k be two positive integers with k ≤ n.
Suppose we have n balls in n different colors. We want to choose k of them
and place them in a row : in other words, if we choose the balls one by one,
then the order in which we choose them is significant. We denote by P (n, k)
the number of ways of performing this choice.

If instead we are not interested in the order in which the balls are cho-
sen, but just which ones, then the number of ways of making this choice is

denoted C(n, k), or alternatively

(
n
k

)
.

The first method of choosing balls is called ordered choice without repiti-
tion/replacement, the second is called (naturally !) unordered choice without
repitition/replacement. The “without replacement” bit refers to the fact that
you can’t choose the same ball twice.

Proposition 3

P (n, k) =
n!

(n− k)!
(4)

and
C(n, k) =

P (n, k)
k!

=
n!

k! · (n− k)!
. (5)

Proof : (i) Think of choosing the balls one by one. There are n choices
for the first ball. Once that’s been removed, there are n− 1 choices for the
next one, then n − 2 choices for the one after that and so on. Hence, by
MP, we obtain that P (n, k) = n · (n− 1) · (n− 2) · · · (n−k +1). Multiplying
above and below by (n− k)! gives (4).

4

(ii) Once k balls have been chosen, there remain P (k, k) = k! possible ways
to order them. In other words, every unordered choice of k balls gives rise
to k! different ordered choices of the same balls. This means precisely that
P (n, k) = k! · C(n, k), which implies (5).

Note : In the special case n = k we have P (n, n) = n!. Here we are
just counting the number of ways of ordering/sorting all n balls. An order-
ing/sorting of a bunch of objects is called a permutation. Hence (4) implies
that there are n! possible permutations of n objects.

Example 3 : Eight guys compete in the Olympic 100-metre final. How
many possibilities are there for the medal winners if (i) we don’t care who
wins which medal (ii) we do care ?

Solution : (i) C(8, 3) = 56 (ii) P (8, 3) = 336.

5

Lecture 2 : 8/9

Remark : The formulae (4) and (5) for P (n, k) and C(n, k) both involve
the factorial function. For these formulae to be really satisfactory from the
point of view of efficient computation, we would like an efficient method
for estimating the size of the (super-exponentially fast growing) factorial
function. Such an estimate is provided by Stirling’s Formula. First some
notation : if f(x) and g(x) are functions of a real variable x, then one writes
f(x) ∼ g(x) to mean that limx→∞ f(x)/g(x) = 1. Now we can nicely for-
mulate the result :

Theorem 4 (Stirling’s Formula)

n! ∼ nne−n
√

2πn. (6)

Proof : Standard proof requires complex analysis and hence is beyond
the scope of this course. Note that (6) does indeed give a very quick means
to estimate n!, namely it reduces the problem to a computation with loga-
rithms.

Our next task is to prove a number of combinatorial properties of the num-
bers C(n, k) :

Proposition 5 The numbers C(n, k) satisfy the following identities :
(i)

C(n, 0) = 1, C(n, 1) = n for any n. (7)

(ii)
C(n, k) = C(n, n− k). (8)

(iii)
C(n, k) = C(n− 1, k) + C(n− 1, k − 1). (9)

Note : Eq. (9) is called Pascal’s identity.

Proof : All these identities could easily be proven ‘algebraically’ by just
using the formula (5). However, one doesn’t get much insight that way into
where the identities come from, for which instead one must argue combina-
torially. This we now do :

(i) C(n, 0) is the number of ways to choose no balls from some collection of

6

n balls, and obviously there is one way to do this no matter how many balls
you have to choose from. Similarly, C(n, 1) is the number of ways to choose
one ball from n, and obviously there are n ways to do this.

(ii) C(n, k) is the number of ways to choose k balls from n. Each choice
of k balls corresponds to a rejection of n − k balls. Hence C(n, k) is the
number of ways to reject n−k balls from n. And this must, of course, equal
the number of ways to instead choose n−k balls from n, namely C(n, n−k).

(iii) Isolate one of the n balls, call it B. When one chooses k balls from
n, two possibilities arise : either ball B is chosen or it is not. If B is chosen,
then it remains to choose k− 1 balls from n− 1, so there are C(n− 1, k− 1)
ways to choose the remaining balls. If ball B is not chosen, then it still
remains to choose k balls, but only from among n − 1 of them, so there
are C(n − 1, k) ways to perform the choice. By the AP, there are thus in
all C(n−1, k−1)+C(n−1, k) ways to choose k balls from n, which proves (9).

The numbers C(n, k) can be presented as a triangle, where n increases
downwards and k from left to right. For obvious reasons, this triangle is
called Pascal’s triangle. For a much nicer drawing of it than anything I
could concoct here, see for example

http://www.math.umass.edu/ mconnors/fractal/generate/pascal2.gif

Notice that each number in the triangle is the sum of the two numbers
directly above it (this even applies at the edges if we think of there being
zeroes outside the triangle). This is just Pascal’s identity.

The numbers

(
n
k

)
are sometimes called binomial coefficients. The reason

is their appearance in the so-called Binomial Theorem from algebra, which
says how to expand a power of a sum of two indeterminates :

Theorem 6 (Binomial Theorem) Given indeterminates x and y and
a non-negative integer n we have that

(x + y)n =
n∑

k=0

(
n
k

)
xkyn−k. (10)

Proof : Think of what one does when one actually expands (x+ y)n. One

7

has a product of n identical factors

(x + y)× (x + y)× · · · × (x + y) (n times).

Because of the distributive law, the result of the expansion is a sum of
terms obtained by choosing either x or y from each factor in all possible
ways and multiplying them together. (Note that, by MP, this will result in
a total of 2n terms to be added together). Clearly, each individual term is
of the form xkyn−k for some k with 0 ≤ k ≤ n. The question is, how many
times does such a term appear for a fixed k ? Well, from what we’ve just
said, it follows that the number of times such a term will appear equals the
number of ways of choosing k of the n factors from which one picks x in-

stead of y. But, by definition, this is just

(
n
k

)
, and the theorem is proved.

Example 4 : For any n ≥ 0 we have

2n =
n∑

k=0

(
n
k

)
. (11)

There are many ways to understand this. I more or less showed it in the last
proof : by MP, there are a total of 2n terms resulting from the expansion
of (x + y)n and for any k with 0 ≤ k ≤ n, the number of these terms which

have the form xkyn−k is just

(
n
k

)
. A particularly neat way of formulating

this argument is to substitute x = y = 1 in (10).
If one thinks instead in terms of n-bit binary strings, for example (see

last lecture), then

(
n
k

)
is the number of such strings containing exactly k

zeroes, since once one chooses the positions of the k zeroes the whole string
is uniquely determined.

Exercise : Insert x = 2, y = 1 alternatively x = 1, y = −1 in (10), and
interpret the resulting identities combinatorially (in terms of binary strings,
for example).

A generalisation of the Binomial Theorem is the Multinomial Theorem which,
as it name suggests, tells one the result of expanding a power of a sum of
an arbitrary number of indeterminates.

8

Notation : Let n be a non-negative integer and let (n1, ..., nr) be an ordered
r-tuple of non-negative integers with n1 + · · ·+ nr = n. We denote

C(n : n1, ..., nr) :=

(
n

n1, ..., nr

)
:=

n!∏r
i=1 ni!

.

The numbers C(n : n1, ..., nr) are called multinomial coefficients, for the
following reason :

Theorem 7 (Multinomial Theorem) Given indeterminates x1, ..., xr and
a non-negative integer n, we have that

(x1 + · · ·+ xr)n =
∑

(n1,...,nr):ni≥0 and
∑

ni=n

(
n

n1, ..., nr

)
xn1

1 xn2
2 · · ·xnr

r .

(12)
Proof : To be more explicit, the sum in (12) is taken over all ordered

r-tuples of non-negative integers which sum to n. Observe that in the case
r = 2 we recover the Binomial Theorem. Instead of writing out a proof
of (12) here, we leave it as an exercise to the reader to deduce it from the
following more concrete combinatorial interpretation of the multinomial co-
efficients :

Proposition 8 Suppose we have n balls in r different colors, with ni balls
in the i:th color. If we don’t distingush between balls of the same color, then
the number of possible permutations of the n balls is C(n : n1, ..., nr).

Proof : If all the balls were considered as distinguishable objects, then
there would of course be n! possible ways to permute them. Consider any
such permutation. If balls of the same color are now considered indistin-
guishable, it means we can permute balls of the same color amongst them-
selves without affecting the overall arrangment of the n balls. There are ni!
ways to permute the ni balls of color i amongst themselves. Hence, by MP,
there are

∏r
i=1 ni! inter-color permutations which don’t affect the overall ar-

rangement of the n balls. It follows that we must divide n! by this number
to get the number of possible mutually distinguishable arrangments of the
n balls, Q.E.D.

The last topic for today is unordered selction with repitition allowed. The
set-up is similar to before : we have n balls and wish to count the number

9

of possible ways to choose k balls, where the order of choice is unimportant.
The difference is that, this time, it is allowed to choose the same ball as
often as one likes. In particular, this means that k can be greater than n.
In fact, it is simpler to think of their being an unlimited supply of balls, but
in n different colors, and of balls in the same color being indistinguishable.

Warning ! (notational nightmare) There is no standard notation,
as far as I’m aware, for the number of ways of performing unordered choice
with repitition. Not only that, but it is standard procedure to reverse the
roles of n and k. Hence one talks of their being k different colors and one
wants to make a choice of n balls. Once you’ve got your head around this,
you’ll be ready for the main result :

Proposition 9 The number of ways to choose n balls from an unlimited
supply of balls in k different colors, where the order of choice is unimpor-
tant and balls in the same color are considered indistinguishable, is just(

n + k − 1
k − 1

)
.

Proof : The following ingenious idea I like to think of as the ‘dots and
dashes method’. Consider a collection of n + k − 1 symbols, of which n are
dots and k − 1 are dashes. The dots are considered indistinguishable from

one another, as are the dashes. Then

(
n + k − 1

k − 1

)
is just the number of

ways of arranging these symbols in a line, as the only choice one has to make
is which k − 1 of the n + k − 1 positions will hold dahses.

Now the idea is that there is a natural 1-1 correspondence between all
these possible arrangements of dots and dashes and all possible ways of
choosing n balls according to the present rules. Since balls of the same
color are indistinguishable, all that matters is how many balls of each color
are chosen. Given an arrangement of dots and dashes, we can interpret the
number of dots appearing before the first dash as the number of balls chosen
in color 1. Then the number of dots between the first and second dashes is
interpreted as the number of balls chosen in color 2. And so on, with the
number of dots after the last ((k − 1):st) dash representing the number of
balls chosen in color k.

It is pretty clear that this gives a 1-1 correspondence between all possible
ways of choosing the balls, and all possible arrangements of dots and dashes.
Hence the proposition is proved.

10

Example 5 : Let’s suppose there are 15 political parties taking part in
the Swedish parliamentary election (I don’t know the exact number). Let’s
also suppose exactly 5 million people vote. How many possible outcomes
are there, in terms of the number of votes cast for each party ?

Solution : Each vote can be considered as a ball, which can have one
of 15 possible colors. Hence we are in the situation of unordered choice with
repitition allowed (unordered since we are only interested in the number of
votes cast for each party, and not in the details of who actually votes for
whom). In the notation of the previous proposition we have n = 5, 000, 000

and k = 15. Hence the number of possible outcomes is

(
5, 000, 014

14

)
.

11

Lecture 3 : Tuesday 12/9

We start with a reformulation of Proposition 9 which is sometimes easier to
think about :

Proposition 10 Let n, k be positive integers. The number of solutions to
the equation

x1 + · · ·+ xk = n, (13)

in which each xi is a non-negative integer (i.e.: xi ≥ 0), is just

(
n + k − 1

k − 1

)
.

Proof : If, in choosing n balls in k different colors, we let xi denote the
number of balls chosen in color i, then we obtain an obvious 1-1 correspon-
dence between the possible ways of choosing the balls and the solutions to
(13). Thus Prop. 10 follows from Prop. 9.

This is a convenient point at which to introduce some terminology which
may reappear later on, and which appears amongst the exercises handed out
(see 10.2.16 and 10.2.17 for example) :

Definition 1 : A solution to (13) in which each xi is strictly positive
is called a composition of n with k parts.

Example : Take n = k = 3. By Prop. 10 there are

(
3 + 3− 1

3− 1

)
=

(
5
2

)
= 10 solutions in non-negative integers to x1 + x2 + x3 = 3. You can

write them all out, namely

3 + 0 + 0 2 + 1 + 0 1 + 1 + 1
0 + 3 + 0 2 + 0 + 1
0 + 3 + 0 1 + 2 + 0

1 + 0 + 2
0 + 2 + 1
0 + 1 + 2

But only one of these is a composition of 3 into 3 parts, namely 1 + 1 + 1.
There are two compositions into 2 parts, namely 2 + 1 and 1 + 2, and one

12

into a single part, namely 3 itself. Thus there are in all four compositions
of the number 3.

A formula for the number of compositions of n into k parts can be
deduced from Proposition 10 (how ?), and, summing over k, one gets a
formula for the total number of compositions of n, which can be simplified
to something very nice (see ex. 10.2.17). One should then try to interpret
this formula combinatorially, i.e.: explain it directly, as in Example 4.

Balls and Bins

A common tongue-in-cheek description of the subject of combinatorics
is that it is the science of throwing balls into bins. Jokes aside, there are
many combinatorial problems (often of practical concern), which can be for-
mulated in these terms. The basic question of interest is :

‘In how many ways can n balls be distributed among k bins ?’

By varying the conditions on how the balls may be distributed, and/or
the nature of the balls and bins, one gets a range of possible questions, and
it’s often not immediately obvious which questions will be easy, which will
be really hard and which lie in the middle range which mathematicians like
to describe as ‘interesting’.

We will be concerned with 4 variations of the basic question : we impose no
conditions (for the moment) on the ways to distribute the balls, but consider
the possibility that either the balls or the bins (or both) may be indistin-
guishable from one another : more concretely, they could be distinguished
by having different colors, and are considered indistinguishable if they all
have the same color. We have already developed the techniques to handle
two of the resulting four variations, which we present now. The remaining
two will be considered in subsequent lectures.

Variant 1 : In how many ways can n mutually distinguishable balls be
distributed among k mutually distinguishable bins ?

Solution : Since all objects are mutually distinguishable, in order to have
full information on the distribution of balls, one must know exactly in which
bin each individual ball is placed. There are k choices for where to place
each ball, hence, by MP, kn choices for the entire distribution.

13

Answer : kn.

Variant 2 : In how many ways can n mutually indistinguishable balls be
placed in k mutually distinguishable bins ?

Solution : If you think about it for a while, what is necessary to have
full information in this case is simply knowledge of how many balls are
placed in each individual bin. Which particular balls are placed in any bin
is unimportant, so long as their number is known. Let xi denote the number
of balls in the i:th bin. Then we see that the possible ways to distribute the
balls correspond naturally to the solutions of (13).

Answer :

(
n + k − 1

k − 1

)
.

Inclusion-Exclusion (a.k.a. Sieve) Principle

Now for something rather different. The I-E principle is a very general (and
occasionally useful) method for counting the elements in a finite union of
finite sets when these sets overlap. If there was no overlap, then of course one
would just count the elements in each set and add (the addition principle,
basically). Otherwise, this will lead to an overcount, with elements that
appear in two or more sets being overcounted.

Clearly, as the number of sets increases, so do the possibilities for over-
lapping and hence the complexity of handling this problem. Despite this, it
turns out that there is a clear pattern in how the count should be performed
in order to handle the overlaps.

To get a feeling for the problem, one can consider a small number of sets :

Notation : |X| denotes the cardinality of (i.e.: number of elements in)
the finite set X.

Two Sets : Call them A and B. If we compute |A|+ |B| then elements in
A ∩ B will have been counted twice. Hence, the I-E principle for two sets
reads

|A ∪B| = |A|+ |B| − |A ∩B|. (14)

Three sets : Call them A, B and C. We could start by computing |A| +
|B|+ |C|. Anything present in exactly two of the three sets will have been
counted twice. Hence we could continue by subtracting |A∩B|+ |A∩C|+

14

|B ∩ C|. But now consider an element present in all three sets : in the first
step it is counted three times, in the second step it is removed three times.
Hence it hasn’t been counted at all. Thus we should go one step further and
add back on |A ∪B ∪ C|.

So the I-E principle for three sets reads

|A∪B∪C| = (|A|+ |B|+ |C|)−(|A ∩B|+ |A ∩ C|+ |B ∩ C|)+ |A∩B∩C|.
(15)

Four Sets : Call them A,B, C and D. I’ll leave it to yourself to work
through the argument, and just state the result :

|A ∪B ∪ C ∪D| = |A|+ |B|+ |C|+ |D| (16)
− (|A ∩B|+ |A ∩ C|+ |A ∩D|+ |B ∩ C|+ |B ∩D|+ |C ∩D|)

+ (|A ∩B ∩ C|+ |A ∩B ∩D|+ |A ∩ C ∩D|+ |B ∩ C ∩D|)
−|A ∩B ∩ C ∩D|.

Hopefully the pattern is clear at this point, so we can state the general result :

Theorem 11 (I-E/Sieve Principle) Let A1, ..., An be finite sets. Then
∣∣∣∣∣

n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

i=1

|Ai| −
∑

i6=j

|Ai ∩Aj | (17)

+
∑

i6=j 6=k

|Ai ∩Aj ∩Ak| − · · ·+ (−1)n−1|A1 ∩A2 ∩ · · · ∩An|.

Sketch Proof : One needs to show that every element of the union is
counted exactly once on the right-hand side of (17), no matter how many of
the sets Ai it appears in. Take any element of the union, call it x. Suppose
x appears in k different sets, where 1 ≤ k ≤ n. Then it is counted (or
removed) once on the r.h.s. for each term of the form

Ai1 ∩ · · · ∩Ail ,

where 1 ≤ l ≤ k and the sets Ai1 , ..., Ail are among the k sets containing

x. The number of such terms, for a given l, is just

(
k
l

)
. Hence the total

number of times x is counted on the r.h.s. is

k∑

l=1

(−1)l

(
k
l

)
.

15

We want it to be counted exactly once, so this sum should equal 1. Noting
that C(k, 0) = 1, the resulting equation can be rewritten as

k∑

l=0

(−1)l

(
k
l

)
= 0. (18)

See the exercise on page 8 for why (18) holds, for any k ≥ 1.

We now proceed with some applications of the I-E principle.

Application I : The Euler phi-function

Definition 2 : Let n,m be two positive integers. The greatest common
divisor of n and m is the largest positive integer which evenly divides both
n and m. It is denoted GCD(n,m). If GCD(n,m) = 1 then we say that n
and m are relatively prime (to one another).

Example 6 : GCD(2, 3) = 1 but GCD(8, 12) = 4. Note that if p and q
are any two distinct primes, then they are relatively prime.

Definition 3 : We define a function φ : N → N, called the Euler phi-
function, as follows :

φ(n) := #{x : x ∈ N, 1 ≤ x ≤ n and GCD(x, n) = 1}. (19)

In words, φ(n) is the number of integers, between 1 and n inclusive, which
are relatively prime to n.

Example 7 : φ(6) = 2. For among the number between 1 and 6, only 1 and
5 are relatively prime to 6. For the other numbers we have GCD(2, 6) =
GCD(4, 6) = 2, GCD(3, 6) = 3 and GCD(6, 6) = 6.

The moral of the story which follows is that, with the help of the I-E prin-
ciple, computation of φ(n) can be reduced to the problem of factorising n.
Since, in general, no fast factorisation algorithms are known, this is in one
respect not very satisfactory. However, it is precisely for this reason that
the RSA cryptosystem is reasonably secure. Its security actually rests on
the difficulty of computing the Euler function.

By the way, it is not known in general if there is some other, faster way
to compute Euler-phi which avoids integer factorisation. It is generally be-
lieved, however, that there isn’t, and in the special case applicable to RSA

16

encryption (as we shall see later), it is quite easy to prove this.

We illustrate the method with an example, then state a general theorem.
The proof of the theorem will be left to the reader.

Example 8 : Compute φ(3000).

3000 is a pretty easy number to factorise, even by hand. We get that

3000 = 3 · 1000 = 3 · 103 = 3 · (2 · 5)3 = 3 · 23 · 53.

From this and what’s called the Fundamental Theorem of Arithmetic (some-
thing which everyone knows, but not many have seen a full proof of : we
will discuss it more later), a number is relatively prime to 3000 if and only
if it is not divisble by any of 2,3 and 5. This observation sets us up nicely
for applying I-E. Define three sets :

A := {x : 1 ≤ x ≤ 3000 and x is a multiple of 2},
B := {x : 1 ≤ x ≤ 3000 and x is a multiple of 3},
C := {x : 1 ≤ x ≤ 3000 and x is a multiple of 5}.

Then our observation above can be summarised as

φ(3000) = 3000− |A ∪B ∪ C|.
So if we compute the size of the union, we’re done. We use (15). Clearly,

|A| = 3000
2

, |B| = 3000
3

, |C| = 3000
5

.

What about A∩B for example ? Well, this set consists of numbers divisible
by both 2 and 3. Another consequence1 of the FTA is that this is precisely
the same thing as saying that the numbers are divisible by 2 · 3 = 6. Hence

|A ∩B| = 3000
2 · 3 ,

and similarly,

|A ∩ C| = 3000
2 · 5 , |B ∩ C| = 3000

3 · 5 .

1The precise statement is as follows : if GCD(n, m) = 1 then a number is divisible by
both n and m if and only if it is divisible by nm.

17

And applying the same reasoning to the intersection of all three sets, we get

|A ∩B ∩ C| = 3000
2 · 3 · 5 .

Putting everything together and tidying up, we obtain

φ(3000) = 3000×
[
1−

(
1
2

+
1
3

+
1
5

)
+

(
1

2 · 3 +
1

2 · 5 +
1

3 · 5
)
− 1

2 · 3 · 5
]
.

We can tidy up further and write

φ(3000) = 3000×
(

1− 1
2

) (
1− 1

3

) (
1− 1

5

)
= 3000× 1

2
× 2

3
× 4

5
= 800.

Now for the general result :

Theorem 12
φ(n) = n×

∏

p|n

(
1− 1

p

)
, (20)

where the product is taken over the DISTINCT primes dividing n.

Proof : Left as an exercise to the interested reader.

18

Lecture 4 : Friday 15/9

Application II of I-E : Derangements

Definition 4 : A derangement of the numbers 1, 2, ..., n is a permutation
of them in which no number retains its place.

The number of derangements of n integers is denoted dn. A priori, dn ≤ n!.
Clearly, d1 = 0 since you can’t move just one number and d2 = 1 since the
only thing you can do with two numbers is switch them. One easily sees that
the only derangements of 123 are the rotations 312 and 231, hence d3 = 2.

Exercise : Write out all derangements of 1234.

Amongst the demonstration exercises, we proved the following two recur-
sion formulas for dn :

dn = (n− 1)(dn−1 + dn−2), ∀ n > 2, (21)
dn = ndn−1 + (−1)n, ∀n > 1. (22)

Eq. (22) in particular suggests strongly that dn should be comparable in size
to n! : the only difference with the recursion formula for the factorial func-
tion is the (−1)n term, plus we have a different initial condition in d1 = 0
rather than 1. The following result is nevertheless satisfyingly precise :

Theorem 13
lim

n→∞
dn

n!
=

1
e
. (23)

Remark : Intuitively, this result might be surprising. One might think
that it should be very unlikely that a randomly chosen permutation of a
large number of objects would have the property that not a single object
retains its place. The theorem says that, on the contrary, the chances of this
happening are about 36,8 percent.

Actually, there is a very simple probabilistic heuristic as to why a ran-
dom permutation should have about a 1/e chance of being a derangement.
We will mention this later, in the section on Discrete Probability. Here we

19

give a rigorous proof of the theorem using Inclusion-Exclusion.

Proof of Theorem 13 : Fix n. Let X denote the set of all permuta-
tions of 1, 2, ..., n, i.e.: of 1-1 functions π : {1, 2, ..., n} → {1, 2, ..., n}. Hence
|X| = n!. Define subsets A1, ..., An of X by

Ai := {π ∈ X : π(i) = i}, i = 1, ..., n.

Then, by definition,

dn = n!−
∣∣∣∣∣

n⋃

i=1

Ai

∣∣∣∣∣ . (24)

To compute the size of the union we use (17). First consider any Ai. The
number i is left alone, and the remaining n− 1 numbers may be permuted
freely amongst themselves. Hence, |Ai| = (n − 1)!. Thus the first sum in
(17) becomes

n∑

i=1

|Ai| = n · (n− 1)! = n!

Next consider Ai ∩ Aj for any i 6= j. Both i and j are now left alone, and
the remaining n − 2 numbers can be permuted freely amongst themselves,
hence |Ai ∩Aj | = (n− 2)!. Thus the second sum in (17) becomes

∑

i6=j

|Ai ∩Aj | =
(

n
2

)
· (n− 2)! =

n!
2!(n− 2)!

· (n− 2)! =
n!
2!

.

Let’s do one more. For any i 6= j 6= k, Ai∩Aj∩Ak consists of all permutations
which leave i, j and k alone. Since the remaining n − 3 numbers can thus
be permuted freely amongst themselves, we have |Ai ∩Aj ∩Ak| = (n− 3)!.
So the third sum in (17) becomes

∑

i6=j

|Ai ∩Aj ∩Ak| =
(

n
3

)
· (n− 3)! =

n!
3!(n− 3)!

· (n− 3)! =
n!
3!

.

Clearly, this all leads to the conclusion that
∣∣∣∣∣

n⋃

i=1

Ai

∣∣∣∣∣ = n!×
(

n∑

k=1

(−1)k−1

k!

)
.

20

Substituting this into (24) and noting that 0! = 1 we find that

dn

n!
=

n∑

k=0

(−1)k

k!
.

Hence

lim
n→∞

dn

n!
=

∞∑

k=0

(−1)k

k!
,

provided the sum converges absolutely. But it does, and to e−1 as claimed,
since the Taylor series for the exponential function

ex =
∞∑

k=0

xk

k!

has infinite radius of convergence.

Discrete Probability Theory

When dealing with finite probability spaces (e.g: finitely many possible
outcomes of an experiment), questions of probability can always be recast
as combinatorial questions, i.e.: questions of counting. Let Ω be a finite
probability space and A a subset of Ω. Then

P (A) =
|A|
|Ω| .

So to compute the probability of an event described by A one has to count
the sizes of two finite sets, namely A and Ω, where the latter counts all pos-
sible outcomes, and the former counts those outcomes for which the desired
event occurs.

Basic counting principles like the multiplication, addition and sieve prin-
ciples can easily be recast in probabilistic terminology. Note, though, that
these reformulations will still apply in any probability space whatsoever, not
just a finite one.

Multiplication Principle For any two events A and B in a probability
space, we have that

P (A ∩B) = P (A) · P (B|A).

21

In particular, if A and B are independent events, then

P (A ∩B) = P (A) · P (B). (25)

Addition Principle For any two mutually exclusive events A and B in a
probability space, we have that

P (A ∪B) = P (A) + P (B).

The sieve principle is then just a generalisation of the addition principle to
overlapping events. So in the case of two events it would read

Sieve Principle If A and B are any two events in a probability space then

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Similarly, we obtain the probabilistic sieve principle for any finite number
of events by simply replacing | · | by P (·) everywhere in (17).

Example 9 : One can often get good insight into a combinatorial prob-
lem more quickly by thinking probabilistically. A good example of this is
with derangements. It is very easy to see intuitively why Theorem 13 should
hold. For consider a random permutation of the numbers 1, 2, ..., n. Let Ai

be the event that i gets moved. Clearly P (Ai) = 1 − 1
n . Now if the events

Ai were independent of one another, then by the multiplication principle
(25) we’d have that

P (A1 ∩ · · · ∩An) =
(

1− 1
n

)n

.

But A1 ∩ · · · ∩ An is just the event that a random permutation is a de-
rangement and (1 − 1

n)n → 1/e as n → ∞, by the very definition of the
exponential function.

The problem with this heuristic argument is, of course, that the events
Ai are not independent. If they were, then we’d have P (Aj |Ai) = 1 − 1

n .
But a short calculation (left as an exercise to explain !) shows that

P (Aj |Ai) =
n− 2
n− 1

× n− 2
n− 1

+
1

n− 1
× 1 =

n2 − 3n + 3
(n− 1)2

.

And another short calculation shows that this number is, in fact, slightly
bigger than 1 − 1

n . In other words, if a random permutation is known to

22

have moved one particular number, then it makes it slightly more likely that
any other particular number will be moved (is this counter-intuitive ?). It
is then very plausible indeed (but not yet proven !!) that the probability of
a random permutation being a derangement should be at least 1/e.

Balls and Bins II

We now return to the balls and bins problem and the remaining two vari-
ants of it. In each remaining case, the best we can do is get a fairly nice
recursion formula for what it is we want to count, but only after adding an
extra condition.

Variant 3 : In how many ways can n mutually distinguishable balls be
placed in k mutually indistinguishable bins ?

Solution : No nice formula, or even recusrion formula, for the number
of ways of doing this is known. Let’s add another restriction, though. We
set S(n, k) to be the number of ways of distributing the balls in such a way
that no bin is left empty. The numbers S(n, k) are called Stirling numbers
of the second kind2. We can obtain a nice recursion formula for them :

Theorem 14 For any n, k > 0 we have that

S(n, k) = k · S(n− 1, k) + S(n− 1, k − 1). (26)

Proof : In this variant of the balls and bins problem, what is necessary to
have full information is knowlegde of which balls are placed together : so it
doesn’t matter where a ball is placed as long as we know what other balls
(if any) it is placed with. Focus attention on one of the balls and call it B.
There are the following two alternative scenarios :

(i) B is placed alone in a bin
(ii) B has at least one binmate.

If (i) occurs then it doesn’t matter which bin B is placed in. One bin is
simply removed along with B, and it remains to place n − 1 balls in k − 1
bins, again under the restriction that no bin be left empty. By definition,
there are S(n− 1, k − 1) ways to carry out this placement.

2We ignore for the time being the obvious question as to what Stirling numbers of the
first kind are.

23

If (ii) occurs, then it does matter where B is placed since it will have
binmates. It is easier to think of first distributing the remaining balls, and
then placing B. The remaining n− 1 balls must be placed in k bins, and no
bin can be left empty, as otherwise B would have to be placed in an empty
bin and thus be alone. By definition, there are thus S(n − 1, k) ways to
distribute the remaining balls. Now we place B, and there are k distinguish-
able choices for which bin to put it in. By MP, there are thus k ·S(n− 1, k)
ways for the whole placement process, and the theorem is proved.

Variant 4 : In how many ways can n indistinguishable balls be placed
in k indistinguishable bins ?

Solution : As before there’s no nice answer to this, and instead we impose
a similar restriction. We set p(n, k) to be the number of ways to distribute
the balls so that no bin is left empty. The more common terminology is
that p(n, k) is the number of partitions of the integer n into k parts. This
means that we write n as an unordered sum n = x1 + · · ·+ xk of k positive
integers. We interpret xi as the number of balls received by the i:th bin,
and the indistinguishability of the bins is reflected in the fact that the sum
is unordered, which means that we may interchange the summands without
considering the partition of n as having beeen altered.

OBS! When writing partitions n = x1 + · · · + xk, it is conventional to
write the parts in decreasing order x1 ≥ x2 ≥ · · · ≥ xk.

Example 10 : n = 7, k = 3. We have p(7, 3) = 4 since there are the
following four partitions of 7 into 3 parts :

5 + 1 + 1 4 + 2 + 1 3 + 3 + 1 3 + 2 + 2.

As in the case of Stirling numbers, we can prove a nice recurrence for the
partition numbers :

Theorem 15 For any n, k > 0 we have

p(n, k) = p(n− 1, k − 1) + p(n− k, k). (27)

Proof : Exercise.

Remark A function which has been studied extensively by mathematicians

24

is the so-called partition function p : N → N given by

p(n) :=
∑

k

p(n, k).

In other words, p(n) is the total number of partitions of n into any number
of positive parts whatsoever.

Example 11 : p(5) = 7 as there are the following seven partitions
of 5 :

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

A really great theorem, proved after many, many years of trying, gives a
very precise estimate of the growth rate of this function :

Theorem 16 (Hardy, Ramanujan, Rademacher 1937)

p(n) ∼ ec1
√

n

c2n
, where c1 =

√
2
3π, c2 = 4

√
3. (28)

The proof of this theorem is way beyond the scope of this course.

Theorems 14 and 15 give example of recurrence relations which are very
useful for computations, but from which it is very difficult to extract nice
explicit formulas for, or even to estimate (without resort to computations)
the growth rates of, the functions they describe. In the next lecture we will
study a class of recurrence relations which are simple enough to be able to
extract explicit formulas from them by a methodical procedure, but still of
interest as they arise in fairly natural combinatorial settings.

25

Lecture 5 : Tuesday 19/9

We are going to study a class of 1-variable recurrence relations which are
sufficiently simple to be able to extract explicit formulas from them for the
number-sequences they describe, provided one can solve an algebraic equa-
tion. The general definition is as follows :

Definition 5 : Let u0, u1, ... be a sequence of (a priori complex, though
usually at worst rational) numbers. Let k be a positive integer. The se-
quence is said to satisfy a linear recurrence relation of degree k with constant
coefficients if there are (complex) numbers a0, ..., ak 6= 0, and a function
f : N → C such that, for all n ≥ k,

akun + ak−1un−1 + · · ·+ a0un−k = f(n). (29)

The recurrence (29) is said to be homogeneous if f is the zero function and
non-homogeneous otherwise.

Observe that, since ak 6= 0, if (29) is known to hold then un can be de-
termined once un−1, ..., un−k are all known. In particular, (29) determines
the entire sequence of numbers (un) completely once one knows the values of
u0, u1, ..., uk−1. These starting values are referred to as the initial conditions
attached to the recurrence relation.

We first concentrate on the homogeneous case. The basic theoretical re-
sult says two things :

I. One can write down a general formula for any sequence of numbers sat-
isfying (29) with f ≡ 0, in terms of the roots of the degree k polynomial
equation

akx
k + ak−1x

k−1 + · · ·+ a1x + a0 = 0. (30)

Eq. (30) is called the characteristic equation of the recurrence relation (29).

II. This formula will contain k free parameters. If one inserts the intial
conditions into the formula then one obtains k linear equations for these k
parameters. This linear system is guaranteed to have a unique solution.

26

Hence I and II imply that, so long as one has the starting values to hand
and can solve an algebraic equation, one can write down an explicit for-
mula for the entire sequence of numbers. Of course, there is a catch here,
namely that algebraic equations like (30) are not easy to solve for any degree
higher than 2. But solutions are easy to approximate very well, hence one
can get ‘approximate’ explicit formulas. As such formulas typically involve
exponentially growing terms, one is normally just interested in the rate of
exponential growth (i.e.: the exponent), and this is obtained directly from
the roots of the characteristic equation.

Rather than stating the general theorem, which is only likely to get one
totally confused, partly because of all the notation, and partly because the
exact formulation is a bit complicated to write down, let us illustrate the
ideas in cases where we actually can solve the characteristic equation exactly,
namely when the degree is at most 2. For the moment we remain in the
homogeneous setting. Later we will also discuss non-homogeneou relations.

Degree one

Actually we didn’t talk about this today, but will do so on Friday. It’s
natural to present the stuff here.

When k = 1, (29) can be rewritten in the form

un = c · un−1 (31)

where c is some constant. In particular, u1 = cu0. Then u2 = cu1 =
c(cu0) = c2u0. Clearly, the general relation is that

un = cnu0, for all n ≥ 0. (32)

This is an explicit formula for un involving one free parameter, namely u0.
If we know u0 then we have an exact formula for un. Note that c is the
unique root of the degree-1 characteristic equation, which is x− c = 0.

Example 11 : The example we’ve all seen before is getting interest on
a bank investment. Suppose you deposit 100 crowns and get 5 percent com-
pound interest per year. How much money have you got after 20 years ?

27

Solution : Let un be the amount of dosh you’ve got after n years. Given
is that u0 = 100 and that

un = (1, 05)un−1 for any n ≥ 1.

So c = 1, 05 here and the general formula reads un = (1, 05)nu0 = 100 ·
(1, 05)n. In particular, after 20 years we’ve got u20 = 100 · (1, 05)20 ≈ 265, 3
crowns.

Degree two

The degree one case was too easy to really see what’s going on, but the
essential features of the theory already become apparent in the degree two
setting. Eq. (29) can now be rewritten as

un = aun−1 + bun−2, for all n ≥ 2. (33)

The characteristic equation is

x2 = ax + b. (34)

This quadratic equation will have either one or two complex roots. Let α
be any root of (34). The first essential observation is that if we set

un := αn for all n ≥ 0,

then (33) will be satisfied. Indeed the requirement is that

αn = aαn−1 + bαn−2, for all n ≥ 2.

Dividing across by αn−2, this reduces to α2 = aα + b. But this just means
that α should be a root of (34), which is precisely our assumption.

The second essential observation is that, if (un) and (vn) are two sequences
of numbers each satisfying (33), then the sequences (wn) and (zn) given by
wn := Cun for some fixed constant C and zn := un + vn also satisfy (33).
This one readily checks. Speaking more formally, it means that any linear
combination of solutions to (33) is also a solution. This is what is meant by
the recurrence relation being ‘linear’.

Let us now suppose first of all that the characteristic equation (34) has two

28

distinct complex roots, which we call α and β. From our first observation,
we see that both the sequences un := αn and un := βn satisfy (33). From
our second observation, we deduce that for any choice of complex numbers
C1 and C2, the sequence

un := C1α
n + C2β

n

will still satisfy (33). But this is the most general possible form of a solution.
For C1 and C2 are free parameters. If we insert the inital conditions u0 and
u1, then we get a system of two linear equations for these parameters, which
can be written in matrix form as

(
1 1
α β

) (
C1

C2

)
=

(
u0

u1

)
.

The coefficient matrix has determinant α − β 6= 0 hence there is always
a unique solution for C1 and C2. Thus we get an explicit formula for the
numbers un.

In the case when the characteristic equation has a single root α, one may
check that not only un := αn but also un := nαn satisfies (33)3. Thus the
most general possible solution in this case is

un := (C1 + C2n)αn.

Insertion of the initial conditions determines C1 and C2 and thus gives a
fully explicit formula for un.

Example 12 : We only did one example in class, the classical one of the
so-called Fibonacci numbers.

First, returning to Example 11, observe that the compound interest model
of investment growth can equally well be applied to other growth (c > 1)
or decay (c < 1) processes, for example population growth (c > 1) or de-
preciation of an asset (c < 1). In this simplest of growth/decay models,
which for obvious reasons is called the model of natural growth/decay, the
quantity being studied grows or decays by a certain fixed factor c in each
interval of time. This leads to exponential growth/decay at rate c. The

3Basically this corresponds to the fact that a polynomial p(x) has a double root in
x = a if and only if its derivative p′(x) also has a root in x = a.

29

continuous version of this model, which some of you may be more familiar
with, is described by the differential equation

du

dt
= c1u,

whose solution is un = u0e
c1t, giving exponential growth resp. decay at rate

ec1 when c1 > 0 (resp. c1 < 0).

Fibonacci was an Italian mathematician who lived in the 12th-13th cen-
turies, and is one of the first important mathematicians of the modern
West. His model for population growth, which also leads to exponential
growth but is a bit more complicated than the basic natural growth model,
is apparently based on his observations of populations of rabbits. The model
contains a lot of simplifying assumptions, some of which are downright silly,
but nevertheless the sequence of numbers which arises from it, the so-called
Fibonacci numbers, have turned out to actually arise both in nature and in
many combinatorial manifestations4. Let us now describe Fibonacci’s
model :

1. Rabbits come in male-female pairs.
2. Rabbits breed exactly one month after birth.
3. Rabbit pregnancy lasts excatly one month.
4. Each adult male rabbit mates with one adult female rabbit each month
and they give birth to one male-female pair of twins.
5. Rabbits are immortal.

The last assumption is the most obviously ridiculous one (the others become
less ridiculous if one thinks of them as statements of ‘average’ behaviour and
demography in large rabbit populations, though admittedly the coincidence
of the time frames in 2 and 3 seems somewhat arbitrary), but is the one
which yields long-term exponential growth. Let’s just accept the model and
see what it gives.

So suppose you start off at time t = 0 with one pair of newborn rabbits. The
basic question is : how many pairs of rabbits will you ave after n months ?
Denote this number by Fn. So we’re assuming F0 = 1. Also F1 = 1 since
after one month we’ll still have one pair, which are now fully grown. Then

4There is, in fact, an entire mainstream mathematical research journal dedicated to
Fibonacci, called the Fibonacci Quarterly.

30

F2 = 2 since that pair will now have given birth to a new pair. And so on.
The important observation is that, for any n > 1,

Fn = Fn−1 + Fn−2. (35)

To see this, rewrite it as Fn−Fn−1 = Fn−2. The left-hand side is the number
of newborn pairs at the end of the n:th month. Each such pair was conceived
by an adult pair at the end of the previous month. Thus the LHS equals the
number of adult pairs at the end of the (n − 1):st month. But this in turn
equals the total number of rabbit pairs at the end of the (n− 2):nd month,
which is just by definition Fn−2. This proves (35).

Eq. (35) is a standard 2nd order linear recurrence with constant coefficients.
The characteristic equation is x2 = x+1, which has roots (1±√5)/2. Hence,
the most general possible solution to (35) is

Fn = C1

(
1 +

√
5

2

)n

+ C2

(
1−√5

2

)n

.

Inserting the initial conditions F0 = F1 = 1 and doing the linear algebra,
we find that

C1 =
1√
5

(
1 +

√
5

2

)
, C2 = − 1√

5

(
1−√5

2

)
,

and hence

Fn =
1√
5

(
1 +

√
5

2

)n+1

−
(

1−√5
2

)n+1

 . (36)

Some worthwhile remarks :

1. Despite the presence of the irrational number
√

5 in this formula, it
must yield an integer value for every value of n. I leave it as an exercise for
you to explain this purely algebraically.
2. Since

∣∣∣1−√5
2

∣∣∣ < 1, the second exponential term in (36) will go to zero as
n →∞. Thus, we have that

Fn ∼ 1√
5

(
1 +

√
5

2

)n+1

.

31

In particular, this implies that

Fn

Fn−1
∼ 1 +

√
5

2
,

i.e.: the Fibonacci numbers grow at an exponential rate given by the so-
called golden ratio. The ubiquity of the golden ratio in nature, and its
aesthetic significance, is undoubtedly somehow tied up with the ubiquity of
the Fibonacci numbers.
3. The sequence of Fibonacci numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 134, 223,

is one with which more or less every mathematician is familiar. If you want
to get some idea of its ubiquity in combinatorics, go to

http://www.research.att.com/∼njas/sequences/

and type in the first few numbers of the sequence. For an application to
which I am particularly partial, see

http://www.chlond.demon.co.uk/Queen.html

The problem there is to figure out from what starting positions on an in-
finitely large board the computer can always beat you. The Fibonacci num-
bers make an unexpected appearance somewhere !

32

Lecture 6 : Friday 29/9

We turn to inhomogeneous linear recurrences (29). The general result is the
following :

Theorem 17 Let up = (up
n) be any solution of (29) and let uh = (uh

n)
be the general form of the solution to the homogenized equation obtained by
setting f ≡ 0. Then the general form of the solution to (29) is

un = uh
n + up

n.

Proof : This follows from the linearity of the equation,which implies that
if u = (un) and v = (vn) are any two solutions of (29) then u-v = (un− vn)
will satisfy the homogenized equation. The theorem follows.

We already know that solving homogeneous equations reduces to finding
the roots of a polynomial. According to Theorem 17, in the inhomogeneous
case, we have the extra task of finding any particular solution to the whole
equation. For most functions f(n) this will be a messy process. However, in
two cases there will be such a particular solution of a standard form. For-
tunately, these cases are also the most natural and interesting ones. They
are

Case I : f(n) is a polynomial.
Case II : f(n) = an, an exponential function.

In Case I, the generic choice for up
n is a polynomial of the same degree

as f . The correct choice of coefficients is determined by insertion into (29).
In Case II the generic choice is up

n := C ·an, with the same exponent a and
a constant C which is determined by insertion into (29).

In either case, the only catch is that the generic choice for up
n may already be

a solution of the homogenized equation, making (29) unsatisfiable if f 6≡ 0. If
so, then the second choice is n× (first choice). If this is still a solution of the
homogenized equation (which can only happen if the characteristic equation
has a repeated root), then the third choice is n× (second choice). And so on
... at some point you will be picking as your choice for up

n something which
is not a solution of the homogenized equation, and then things will work out.

Finally, note that we can combine Cases I and II. If f(n) is of the form

33

p(n)an + q(n), where p, q are polynomials, then the generic choice for up is
up

n := P (n)an + Q(n) where P, Q are polynomials of the same degree as p, q
respectively, with coefficients to be determined by insertion into (29).

Example 13 (see 25.6.2 in Biggs) : Suppose you have a 4-letter al-
phabet, say {a, b, c, d}. Let qn be the number of words of length n in this
alphabet which contain an odd number of a:s. We want to find and solve a
recurrence relation for qn.

Solution : Clearly, q1 = 1 since the only such word of length 1 is a it-
self. And, for example, q2 = 6 since exactly one of the two letters must be
a, and then there are three choices for the other letter, thus giving the six
words : ab, ac, ad, ba, ca, da.

Let n > 1. We divide the admissable words of length n into two
types :

Type I : Those that begin with an a. Then amongst the remaining n − 1
letters there must NOT be an odd number of a:s. Since there are 4n−1 pos-
sible words of length n− 1 in all, exactly 4n−1 − qn−1 of these will not have
an odd number of a:s. Thus there are this many words of Type I.

Type II : Those beginning with another letter. There are thus three choices
for the first letter. Amonst the remaining n − 1 letters, there must still be
an odd numebr of a:s. Thus there are qn−1 choices for the remaining letters.
By MP, there are 3qn−1 words of Type II.

Adding up, we find that

qn = (4n−1 − qn−1) + 3qn−1 = 2qn−1 + 4n−1 ∀ n > 1. (37)

This recurrence is of the form (29). The characteristic equation for the
homogenized version is x = 2, so in this case

qh
n = C1 · 2n.

By the discussion above, the particular solution to (37) should have the form
qp
n = C2 · 4n. Inserting into (37) we get

C2 · 4n = 2C2 · 4n−1 + 4n−1,

34

and dividing across by 4n−1 yields C2 = 1/2. Hence the general form of the
solution to (37) is

qn = qh
n + qp

n = C1 · 2n +
1
2
· 4n.

Inserting the initial condition q1 = 1 yields C1 = −1/2, hence the explicit
solution

qn =
1
2

(4n − 2n) .

Btw, note that this says that slightly less than half of all words of length n
(for large n) contain an odd number of a:s. It would be interesting to have
a simple intuitive ‘combinatorial’ explanation for this.

Examples of second degree inhomogeneous recurrences like (29) appear amongst
the demonstration exercises.

Graph Theory

We change tack now for the second part of the course, and study a whole
new topic, though still with a strong combinatorial flavour. Though graph
theory has its origins in the work of famous mathematicians like Euler (mid
18th century) and Hamilton (mid 19th century), like other areas of dis-
crete mathematics, it only began to be taken really seriously from WWII
onwards, in parallel with the rapid development of computer technology.
Many ‘practical’ problems can be modelled with graphs, though finding
practically useful solutions usually involves finding some efficient algorithm
for some procedure. With the development of computers, what counts as
‘efficient’ is constantly evolving, which in turn has spurred the constant
search for new applications. Graph theory has also evolved as a sophisti-
cated discipline within pure mathematics, and the range of research activity
is now so varied that it is no longer really considered as just a subfield of
combinatorics, though combinatorial methods still dominate.

We will have time for only a short introduction, emphasising some basic
problems of both historical and practical significance.

Today we present the problem which is considered the historical origin of
graph theory, and which gave rise to the first real ‘theorem’ in the field (Ex-
ample 15 below). First, some formal definitions :

35

Definition 6 : A graph G consists of the following data :
(i) a finite set V , whose elements are called the vertices/nodes of G.
(ii) a collection E of 2-element subsets of V . The members of E are

called the edges of G.

A graph is easy to visualise. Think of the vertices as being points in space
and the edges as joining pairs of points.

Example 14 : Let G = (V, E) be the following graph :

V = {1, 2, 3, 4, 5, 6},
E = {{1, 2}, {1, 5}, {2, 3}, {3, 4}, {4, 5}, {4, 6}}.

Pictorially, it’s the graph on the right of the page at

http://en.wikipedia.org/wiki/Graph theory

Definition 7 : A multigraph is the same as a graph, except that in the
edge-set E we allow repititions of the same 2-element subset of V . Visually,
this just means that we allow a single pair of vertices to be joined by more
than one edge. Note that this choice of terminology is not the universally
accepted one. In some books, the word ‘graph’ includes what we have re-
ferred to as multigraphs. In such cases, what we have called graphs are
referred to as simple graphs. It is crucial, therefore, when reading a text, to
first be certain about what terminology they are using.

Example 15 : This example is considered the historical origin of graph
theory, and is commonly referred to as the Königsberg bridge problem. For
pictures, see

http://mathworld.wolfram.com/KoenigsbergBridgeProblem.html

The drawing on the left of Fig. 98 there refers to a system of bridges and
islands in the city of Königsberg, East Prussia, around the middle of the
18th century. There is a river flowing through the city center, in which are
two islands. The islands are connected by a bridge. The larger island is also
connected to the mainland by two bridges on each side, and the smaller one
by a single bridge on each side. The problem is the following :

36

Is it possible to take a walk around the city and islands in such a way
that one walks across every bridge exactly once ?

The essential features of the Königsberg bridge problem can be abstracted
as a graph like that on the right of Fig. 98. Now the question becomes
whether one can draw this graph without lifting one’s pen from the paper.
Let’s state the question more formally :

Definition 8 : A path in a (multi)graph is a sequence of edges such that
the endpoint of any edge in the sequence coincides with the starting point
of the next one. A path which begins and ends at the same vertex is called
a cycle/circuit.

Definition 9 : An Euler path (resp. cycle) in a (multi)graph is a path
(resp. cycle) which includes every edge of the graph exactly once.

So, formally, the Königsberg bridge problem asks whether the graph on
the right of Fig. 98 contains an Euler path or maybe even an Euler cycle.
The answer is an emphatic NO. It is quite easy to give a simple character-
isation of those (multi)graphs which contain such a path or cycle : Euler
gets the credit for being the first person to formulate the criterion explicitly.
Before stating the result, we need one further piece of terminology :

Definition 10 : Let G be a (multi)graph and v a vertex in G. The degree
of v, denoted deg(v), is the number of edges passing through v.

So the degrees of the vertices in the graph of Example 14 are, in numer-
ical order, 2,3,2,2,3 and 1. The degrees in Example 15 are, in alphabetical
order, 5,3,3 and 3.

Theorem 18 (Euler) (i) A multigraph has an Euler cycle if and only
if every vertex has even degree.

(ii) A multigraph has an Euler path which is not a cycle if and only if
exactly two of the vertices have odd degree. In this case, any Euler path must
start at one of these two vertices and finish at the other one.

Remark 1 : Note, in particular, that the theorem implies that a (multi)graph
cannot possess both an Euler cycle and an Euler path which is not a cycle.

37

Remark 2 : Theorem 18 is nowadays also referred to as the Postman The-
orem. A postman’s route can be abstracted as a graph in which the vertices
are street junctions and the edges streets. The postman would be delighted
if the graph of his/her route had an Euler cycle as this would minimise the
amount of walking he/she would have to do.

Proof of Theorem 18 (Part One) : It’s very easy to prove the ne-
cessity of the conditions of the theorem. For if every edge is to appear in a
path exactly once, then any time such a path enters a vertex which is neither
a starting nor finishing point, then it must leave it again along a different
edge. Thus every visit to a vertex, other than at the very start or very end
of the path, will use up two of the edges through it.

It remains to show that a graph which satisfies the conditions of part (i),
resp. (ii) of the theorem possesses an Euler cycle, resp. path. We will return
to this issue next day. Note that one would ideally like a proof of these facts
to be constructive, i.e.: it should not just show that an Euler cycle (resp.
path) exists, but should indicate how to go about finding one. This is the al-
gorithmic side of the Königsberg problem : to be wholly satisfied, one seeks
an efficient algorithm for finding Euler cycles/paths in graphs which fulfill
the requirements of Theorem 18. Note that the statement of Theorem 18
already gives an efficient algorithm for testing whether an Euler cycle/path
exists : one just has to compute the degrees of all the vertices.

It turns out that a very simple-minded algorithm for finding Euler cy-
cles/paths works.

38

Lecture 7 : Tuesday 27/9

A very simple kind of Depth First Search algorithm finds an Euler cycle in
a graph in which every vertex has even degree. The same algorithm, with
minor modifications, works in finding an Euler path in a graph with two
vertices of odd degree. We describe the algorithm in the former case, then
indicate the necessary modifications for the latter case.

Step 1 : Start anywhere and proceed along edges chosen at random un-
til you reach a vertex where you’re stuck and there’s no way out. Now the
point is that, since every vertex has even degree, the only place you can get
stuck is back at the starting point. Thus you’ll have traversed a cycle, which
we’ll call C1.

Step 2 : When you get stuck, return along the path you came (the algo-
rithm will thus require some memory) until you reach a vertex from which
there remains an unused edge. If you find no such vertex, it means you’ve
already covered all the edges and C1 is an Euler cycle. Otherwise, starting
at this vertex, which we’ll call v, proceed at random along so far unused
edges, until you get stuck again. Once again the point is that you can only
get stuck back at v. Call the cycle traversed at this step C2. Put C1 and C2

together as follows : first follow C1 as far as v, then insert C2 as a detour,
before continuing along C1 to the end. Update by calling this big cycle C1

instead.

Step 3 : Repeat Step 2 as often as necessary until your cycle C1 includes all
the edges of G and hence is an Euler cycle.

In the case of a graph with two vertices of odd degree, the starting point
in Step 1 must be one of these two vertices. Then the first time you get
stuck will have to be at the other such vertex. The remaining steps of the
algorithm, involving the insertion of detours, are as above.

Hamilton Cycles

Definition 11 : A Hamilton path (resp. cycle) in a graph5 is a path (resp.
5There is no loss of generality in discussing this problem only for graphs and not

multigraphs, as any multigraph possessing a Hamilton cycle/path has a simple subgraph
doing likewise. This need not be the case for Euler cycles/paths : give an example !

39

cycle) which visits every vertex excatly once (resp. visits every vertex ex-
actly once before returning to its starting point).

At a first glance, the problem of deciding which graphs have Hamilton paths
or cycles, and finding them when they exist, may look just as innocuous as
the corresponding problem for Euler paths or cycles. Indeed, the former
also has its origins in a single famous example, due to Hamilton (hence the
name). In one of his lighter moments, when writing an article for a recre-
ational mathematics journal (or something like that), he asked his readers
to find a Hamilton cycle in the graph of a dodecahedron6

http://mathworld.wolfram.com/DodecahedralGraph.html

It’s easy to find such a cycle by a bit of trial and error. However, for general
graphs, one obviously wants something better than trial and error. Too bad !

Theorem 19 (1970s) The problem of deciding whether an arbitrary graph
has a Hamilton cycle or path is NP-complete.

In a later lecture, we may or may not try to explain what this actually
means7. In practice, though, what it means is that, unless some famous
mathematical conjecture, the so-called P 6= NP conjecture8, turns out to
be false, it is a hopeless task to find an efficient algorithmic procedure which
can take an arbitrary graph as input, and output whether or not it con-
tains a Hamilton cycle or path, never mind actually locate one. The precise
statement is that no so-called polynomial-time algorithm for finding Hamil-
ton paths/cycles exists if P 6= NP . This is a problem, because while it
started off life as a toy problem, the Hamilton cycle problem is a special
case of the important

Travelling Salesman Problem (TSP) Given a connected, weighted graph,
6The dodecahedron is one of the five Platonic solids or regular polyhedra, that is,

polyhedra each of whose faces is a regular polygon with the same number of sides, and
all of whose angles, both within any face and between any two faces, are equal. Later, we
might show how the theory of planar graphs can be used to prove that there are only five
such bodies (though the Greeks already could do it, obviously by other methods). For
pictures of the Platonic solids, see http://en.wikipedia.org/wiki/Platonic solid

7But you should take a CS course on ‘Algorithms’ or ‘Complexity Theory’ if you really
want to understand.

8For more information, see http://www.claymath.org/millennium/

40

i.e.: a graph in which every edge has a non-negative real weight, find a path
or cycle which visits every vertex at least once and whose total weight is as
small as possible.

The basic Hamilton path/cycle problem is part of the special case where
all the edges have the same weight. So noone knows of any general efficient
procedure to solve TSP and there probably isn’t any. A practically minded
person could of course at this point say : well, ok, I can’t usually find an
optimal tour through a wieghted graph, but suppose I’m willing to live with
something which I know is not far from optimal. Can I always find such a
tour efficiently ? Here things get pretty interesting, it turns out. For gen-
eral graphs, the answer is still no. For any fixed constant c > 1 there is no
general polynomial-time algorithm (assuming P 6= NP) for finding a tour
whose total weight is at most c times the minimum. However, if the graph
lives in a real Euclidean space, and the weights represent distances between
points (as in the case of a real-life travelling salesman, for example), then
the situation is completely different : such polynomial-time algorithms do
exist for ANY c > 1. There are also a bunch of results in between these
two extremes, but apart from anything else, I don’t know enough about the
matter myself to go into them here.

Graph Colouring

Now for another innocuously playful problem which turns out to be very
hard.

Definition 12 : A (vertex) colouring of a graph9 is an assignment of a
colour to each vertex in such a way that whenever two vertices are joined by
an edge, they must get different colours. The chromatic number of a graph
G, denoted χ(G), is the smallest number of colours needed to vertex-colour
G.

Theorem 20 (1970s) The problem of computing the chromatic number
of a graph, and hence that of exhibiting an optimal vertex colouring of a
graph, is NP-complete.

As in the case of the Hamilton cycle problem, noone but a bunch of math
weirdos and philosophers might care about this if it wasn’t for the fact that

9Again, there’s no loss of generality in only considering simple graphs here.

41

the coloring problem has a simple concretisation, namely to the problem
of making timetables. Suppose, for example, someone (whom I’ll call X to
avoid any gender bias !) wanted to construct an examination timetable for
all the students in TMA 055. X would first need a list of all the courses being
taken by one or more students in the class. Then the basic requirements are
(i) do not schedule two exams at the same time if there’s at least one student
taking both those courses (ii) minimise the total number of exam sessions,
in order to minimise costs. The problem can be easily reformulated as a
graph coloring problem : Let G = (V, E) be the graph whose vertices are all
the courses being taken by TMA 055 students, and whose edges join pairs
of courses which have at least one student in common. Then the scheduler
is interested in computing χ(G).

Definition 13 : The complete graph on n vertices, denoted Kn, is the
graph on n vertices in which every pair are joined by a single edge. For
some pictures, see http://mathworld.wolfram.com/CompleteGraph.html

For each n ≥ 3, the n-cycle, or cycle of length n, denoted Cn, is the
unique connected graph on n vertices in which every vertex has degree two.
See http://mathworld.wolfram.com/CycleGraph.html

Note that K3 and C3 are the same graph, sometimes called the triangle.

Here are some simple observations about chromatic numbers, which are
sometimes useful :

Proposition 21 (i) If H is a subgraph of G, then χ(G) ≥ χ(H).
(ii) χ(G) ≥ 2 if G contains any edges whatsoever.
(iii) χ(Cn) = 2 if n is even and χ(Cn) = 3 if n is odd.
(iv) χ(Kn) = n.

Definition 14 : A graph with chromatic number 2 is called bipartite. The
name is very suggestive, since if χ(G) = 2 then it means that the vertices
can be divided into two groups, such that there are no edges within either
group, and all the edges cross from one group to the other.

Bipartite graphs arise in many situations and will be studied separately
later on in the problem of matchings. For the moment, note that Prop.
21(iii) implies that a bipartite graph can have no cycles of odd length (this
can also be deduced directly from the fact that all the edges cross between
two disjoint groups of vertices). In fact, the converse is also true. This will

42

be proven tomorrow.

Lecture 8 : 29/9

We conclude our discussion of graph colouring with a couple more easy re-
sults. The first is the promised converse to a corollary of Prop. 21(iii).

Proposition 22 If the graph G has no cycles of odd length, then it is bi-
partite.

Proof : We describe an algorithm for an explicit 2-colouring of G. We
call the colours ‘red’ and ‘blue’.

Step 1 : Let v ∈ V (G) be a randomly chosen vertex. Set V1 := {v}. Colour
v red.

Step 2 : Let V2 be the set of neighbours of v. Colour all these vertices
blue. Note that we can do this as if any two vertices a, b of V2 were neigh-
bours, then v → a → b → v would be a cycle of length 3 in G.

Step 3 : Let V3 denote the set of all neighbours of all vertices in V2, other
than v. Colour all the vertices of V3 red. Again this is ok. For if two vertices
a, b ∈ V3 were neighbours then either

(i) both are neighbours of the same vertex w in V2, in which case w →
a → b → w would be a cycle of length 3 in G,

(ii) a and b are neighbours of distinct vertices w1 and w2 respectively in
V2. In this case, v → w1 → a → b → w2 → v would be a cycle of length 5
in G.

Step 4 : I think it is now obvious how the algorithm will proceed and hence
will not bother to describe any further steps.

For the second result, note that Proposition 21 essentially gives a variety
of ways of obtaining lower bounds on the chromatic number of a graph. A
simple upper bound is given by

Proposition 23 For any graph G,

χ(G) ≤ 1 + ∆(G), (38)

43

where

∆(G) := max
v∈V (G)

{deg(v)} .

Proof : Apply the following greedy algorithm to colouring the vertics of G :

(i) order the vertices arbitrarily as v1, ..., vn.
(ii) order available colours (assume there’s an unlimited number of them)
arbitrarily as C1, C2,
(iii) colour the vertices in order. At each vertex use the first colour which
has not already been used to colour one of its neighbours.

It is clear that rule (iii) gurantees that no more than 1 + ∆(G) colours
will be used in this procedure, which completes the proof of the proposition.

The problem with the greedy graph-colouring algorithm is, as we have shown
in the demonstrations, that different numbers of colours may be used de-
pending on how the vertices are ordered. It is quite easy to show (exercise !)
that there is always SOME ordering of the vertices for which the algorithm
uses exactly χ(G) colours. But a priori there are n! different orderings of n
vertices, so this isn’t going to lead to any generally efficient graph-colouring
procedure.

Remark The girth of a graph G is the smallest length of a cycle in G,
or +∞ if G contains no cycles. It seems intuitively very reasonable that
graphs of high girth should have low chromatic number, because one avoids
dense clusters of vertices which might require many colours. In fact, for
several decades in the middle of the last century a well-known conjecture
asserted that there should be a universal upper bound on the chromatic
number of graphs with sufficiently large girth. This conjecture was disproven
by Erdős10 in 1959. Using probabilistic methods, he proved the existence
of graphs with arbitrarily large girth and chromatic number. In fact, he
showed that in some sense it is quite normal for graphs of large girth to also
have large chromatic number, even if it’s atrociously difficult to give explicit
examples. For a discussion of his result, see for example my lecture notes
on Probabilistic Combinatorics, which I’ve posted on the course homepage.

10This Hungarian was the 20th century’s most prolific mathematician, with over 1400
published research papers.

44

On the other hand, there is one famous large class of graphs all of which
have low chromatic number : see Theorem 26 below.

Trees

Definition 15 : A tree is a connected graph without cycles11.

Depending on which book you look in, you might see at least two alter-
native definitions of a tree. Of course, all definitions must be equivalent :

Proposition 24 The following are equivalent for a graph G :
(i) G is a tree, as defined above.
(ii) G is connected and, given any two vertices in G, there exists a unique

path between them.
(iii) G is connected and the number of vertices in G is one more than

the number of edges.

Proof : (i) ⇒ (ii) since if there were two distinct paths between the same
pair of vertices, then the graph would have to contain a cycle. Running the
argument backwards, (ii) ⇒ (i).

The intuitively easiest way to see that (i) ⇔ (iii) is to think of growing
the tree one edge at a time. We start off with a single vertex and no edge.
As there are to be no cycles, for every edge added, we must also add a new
vertex.

We will be discussing two applications of trees :
(A) So-called Decision Trees or Branching Processes
(B) A variety of problems involving the search for a spanning tree in a

weighted (di)graph which is optimal in some specified sense.

First, though, motivated by Prop.24(iii), I wish to make a detour into the
world of

Planar Graphs

Definition 16 : A graph G is said to be planar if it can be drawn in a plane
11Note that, in particular, a tree can have no multiple edges.

45

without any two edges crossing. Any such drawing of a graph is called, by
a small abuse of terminology, a plane graph. Thus a plane graph is not a
graph, but rather a particular drawing of a planar graph. If you know what
I mean

Example 16 : The drawing of K4 at Mathworld (see Definition 13) is
not plane, but can easily be made so by moving one of the diagonal edges
to the outside. Thus K4 is planar. On the other hand, one can check that
K5 is not. For another example of a non-planar graph we need

Definition 17 : Let m,n be two positive integers. The m × n complete
bipartite graph is the bipartite graph with m red and n blue vertices in which
every red vertex is joined to every blue vertex. It is denoted Km,n. Observe
that Km,n has mn edges.

Example 16 (ctd.) K3,3 can be checked to be not planar.

The first big result on planar graphs is

Theorem 25 (Kuratowski’s Theorem, 1930s) The graph G is not pla-
nar if and only if it contains either K5 or K3,3 as a minor.

Here we are using a previously undefined word, namely graph minor. The
precise definition of this term is a bit technical, but basically a graph H is
a minor of a graph G if H is a subgraph of G, or can be obtained from such
a subgraph by contracting one or more edges. Contracting an edge means
identifying the two vertices at its ends, and letting all edges protruding from
either vertex be common to the newly identified vertex.

The second major result about planar graphs is

Theorem 26 (Four Colour Theorem, 1976) If G is a planar graph,
then χ(G) ≤ 4.

Theorem 26 is generally regarded as the first major mathematical result
proven with significant help from computers. The authors of the proof had
an argument which reduced it to verifying the four-colourability of a large,
but finite number of specific graphs. They got a computer to do this. Note
that since there are no generally efficient graph colouring algorithms, one

46

can imagine that this was a considerable task for the computer, especially
back in the Dark Ages of 1976 !!

Prop. 24(iii) above is a special case of a very old result about plane graphs.
Any plane graph divides the plane into a finite number of disjoint regions,
namely the infinite region surrounding the outside of the graph, plus a num-
ber of enclosed regions.

Theorem 27 (Euler) Let G be a plane graph. Let V, E, R denote respec-
tively the number of vertices of G, the number of edges of G and the number
of regions into which G divides the plane. Then

V − E + R = 2. (39)

Note : (39) is called Euler’s formula for plane graphs. In more modern
terminology, the alternating sum on the left-hand side is called an Euler
characteristic and one says that the Euler characteristic of the plane is 212.

Proof of Theorem 27 : Note that Prop. 24(iii) is a special case, since
for a tree R = 1 (no cycles means no enclosed regions), and the proposition
says that V − E = 1. The proof of the general theorem is the same as in
this special case, namely we think of growing the plane graph one edge at a
time. At the outset we have V = R = 1, E = 0, so (39) holds. Suppose k
edges have been grown and that (39) holds. When the next edge is added,
there are two possibilities :

(i) a new vertex is also grown. In this case, both V and E increase by
one, but R is unchanged. Thus (39) still holds.

(ii) no new vertex is added, i.e.: the new edge goes between two existing
vertices. It will thus create a new enclosed region, but since it cannot cross
any other existing edges, it will create precisely one new region. Thus E and
R both increase by one in this case, with V unchanged, so (39) still holds.
This completes the proof.

A very nice application of Euler’s formula is to prove that there are no
12The general modern result states that for any graph drawn on a surface in such a way

that it divides it into simply connected regions, the Euler characteristic will always be
the same number. Which number depends on the surface, more precisely on how far the
surface itself deviates from being simply connected. Remember that a surface is said to
be simply connected if any closed curve drawn in it can be contracted to a point without
leaving the surface. So, for example, an annulus or doughnut is not simply connected.

47

more Platonic solids than the known five. Let S denote a Platonic solid
and let GS be the canonical representation of it by a plane graph : intu-
itively, this is obtained by punching a hole in one face of the solid, and
drawing that face out so as to flatten the solid into the plane, in which case
the destroyed face becomes the infinite region external to the graph. Let
V, E,R have their usual meaning for this graph. We make two observations :

(i) First, the regularity of the solid means all vertices will have the same
degree, say d. For any graph G,we have the relation

∑

v∈V (G)

deg(v) = 2 · |E(G)|, (40)

since every edge is counted twice in the sum on the left. For GS this implies
that

dV = 2E ⇒ V =
2
d
E. (41)

(ii) Suppose the faces of S are n-gons. Consider the following sum, which we
denote by Σ : for each region of GS , including the infinite region, count the
surrounding edges, and then add. By assumption, Σ = nR. On the other
hand, in this sum each edge of GS will be counted twice, as it is shared
between exactly two regions (because of planeness and the absence of edges
‘sticking out’ into the infinite region). Thus Σ = 2E. It follows that

R =
2
n

E. (42)

Now (39), (41) and (42) imply that

2 = E ·
(

2
d
− 1 +

2
n

)
. (43)

In particular,

2
d
− 1 +

2
n

> 0. (44)

But d ≥ 3 a priori, since you won’t ba able to get a closed solid otherwise.
Thus for n ≥ 6 there are no possible solutions to (44). If n = 5 then the
only solution is d = 3, and substituting back into (43), (42) and (41) yields
V = 20, E = 30, R = 12. This is the dodecahedron. Similarly, if n = 4 then
d = 3 is still the only possibility for (44), and substituting backwards yields
V = 8, E = 12, R = 6. This is the cube.

48

If n = 3 then (44) is satisfied for d = 3, 4 or 5. Substituting backwards
yields respectively

V = 4, E = 6, R = 4. This is the tetrahedron.
V = 6, E = 12, R = 8. This is the octahedron.
V = 12, E = 30, R = 20. This is the icosahedron.

Branching Processes

Definition 18 : A rooted tree is a tree in which some specific vertex has
been designated as the root of the tree. Thus one imagines the tree as grow-
ing outwards from this root.

Definition 19 : A leaf in a tree is a vertex of degree one.

Visually, it is pretty clear that any tree must have at least two leaves. Note
that this also follows rigorously from Prop. 24(iii) and eq.(40), since for a
tree the latter reads

∑

v∈V (G)

deg(v) = 2E = 2(V − 1) = 2V − 2,

and since the sum contains V terms, each a positive integer, at least two of
these terms must equal one.

By Prop. 24(ii), in any tree it makes sense to talk about the distance be-
tween two vertices, as this is unambiguously defined as the length of the
unique path between them13. In a rooted tree, let dv denote the distance
of a vertex from the root. Thus dv = 0 if v is itself the root and dv > 0
otherwise.

13For general graphs, one usually defines the distance between two vertices as the small-
est length of a path between them. If there is no such path, i.e.: if the two vertices belong
to different components of a disconnected graph, then one sets the distance between them
to be +∞. One writes d(v, w) for the distance between vertices v and w. Note that the
function d : V (G)× V (G) → Z≥0 is a metric, i.e.: it satisfies the following properties :

(i) d(v, w) = 0 if and only if v = w.
(ii) d(v, w) = d(w, v).
(iii) For any three vertices v, w, x we have

d(v, x) ≤ d(v, w) + d(w, x). (45)

Relation (45) is called the triangle inequality.

49

Proposition 28 Let G be a rooted tree and let v be any non-root vertex.
Then

(i) there is a single vertex w among the neighbours of v such that dw =
dv − 1.

(ii) all other neighbours w′ of v will satisfy dw′ = dv + 1.

Proof : Exercise.

The vertex w in the above proposition is called the parent of the vertex
v and the vertices w′ are called the children of v. Note that v has no chil-
dren if and only if it is a leaf.

The terminology is obviously suggestive of the branching process de-
scribed by the usual family tree. Such branching processes are obviously
central to population studies in biology and are evidently modelled by rooted
trees. In the theory of algorithms, the sequence of steps in an algorithm can
often be modelled by a rooted tree : the root represents the first step and,
in general, the children of any node describe the possible outcomes of a par-
ticular step, which determine what the next step will be. In this context
one usually speaks of decision trees.

I don’t intend to spend much time studying applications of rooted trees
as this runs into whole new fields and it is more useful to undertake the
study within the context of a course in the particular field. Plus we don’t
have time. I will however, present one particularly cute toy example of
an application of decision trees. Though we started with this today, I will
present the material along with the notes for the next lecture.

50

Lecture 9 : Tuesday 3/10

Definition 20 : The height of a rooted tree is the greatest distance of a
vertex from the root.

Definition 21 : Let n be a positive integer. An n-ary rooted tree is a
rooted tree in which every vertex which is not a leaf has exactly n children.

Proposition 29 Let n, l be positive integers. If G is an n-ary rooted tree
with l leaves, then the height of G is at least dlogn le.

Example 17 (Defective Coin Problem) : Suppose we have N coins,
all of which look identical, but one of which is known to be defective, either
being slightly lighter or heavier than the others. We want to find the defec-
tive coin by a sequence of weighings on a balance scale. Any procedure for
doing this can be represented as a ternary rooted tree. The non-leaf nodes
represent the weighings performed, and the three children of each such node
represent the three possible outcomes of this weighing : left side heavy, right
side heavy, both sides equal. Each leaf node represents a possible outcome
of the procedure, though there may be extra leaves corresponding to impos-
sible chains of events. Since there are 2N possible outcomes - which coin
is defective and whether it is light or heavy - the tree must have at least
2N leaves. By Prop. 29, the height of the tree is at least dlog3 2Ne, and
this is thus a lower bound for the number of weighings required in a general
procedure for revealing the defective coin.

For example, if N = 12 then dlog3 24e = 3. One of the homework
exercises was to construct a decision tree for 12 coins. Note that the lower
bound above is not always achieved : for example, I think (not 100 procent
sure) there is no procedure for 13 coins which always requires at most three
weighings. You can check for yourself if you’re interested : this is a classical
problem which I believe has been solved in full and also generalised. There
are many references available online, but I am not familiar with them.

Some optimisation problems in weighted graphs

We will discuss the following three optimisation problems in weighted
graphs :

(i) minimal spanning tree (MST) problem

51

(ii) shortest path problem
(iii) maximal flow problem in networks.

Minimal spanning trees

Definition 22 : A spanning tree in a connected graph is a subgraph which
is a tree and which includes all the vertices of the graph.

A spanning tree of minimal total weight in a connected, weighted graph
is called a minimal spanning tree.

There are two well-known algorithms for finding MST:s in weighted graphs :

Kruskal’s Algorithm Start anywhere. At each step choose the cheapest
edge among those which go between a vertex already reached and one not yet
reached. Choose arbitrarily whenever a choice is available. Continue until
all vertices reached.

Prim’s Algorithm At each step choose the cheapest remaining edge among
those whose inclusion does not create a cycle. Choose arbitrarily whenever
a choice is available. Continue until the number of edges chosen is one less
than the number of vertices in the graph.

Clearly, the algorithms are quite different : in particular, the first one grows
a tree step-by-step, whereas the second grows a forest which becomes a sin-
gle tree by the end. This must be proven of course, along with the fact that
both algorithms are guaranteed to produce a MST. We omit these proofs
however. Note that it can be shown that both algorithms have approxi-
mately the same time complexity. It is probably the case that they are
essentially optimal in this regard, though I do not know if such facts have
been proved.

Example 18 : The algorithms are best illustrated by doing examples. One
was done in class : details omitted here.

Shortest path

It is pretty obvious what is meant by a shortest path between two vertices in
a weighted graph. The standard algorithm for finding one is described be-
low : note that it works even for digraphs, i.e.: graphs in which each edge is

52

assigned a direction (hence can be thought of as an ORDERED pair of ver-
tices), and movement along the edge is only allowed in the assigned direction.

Dijkstra’s Algorithm Suppose v and w are two nodes in a (di)graph G
and we want to find a shortest path from v to w. Starting at v, at each step
choose amongst those edges going from a node already reached to one not
yet reached, that which minimises the total distance of the target node from
v. Choose arbitrarily whenever a choice is available. Update the distance of
the target node from v with this value. Continue until w becomes the target.
Since the sequence of edges chosen form a tree, there is a unique path in this
tree from v to w, which can be found by a simple depth-first search.

Example 19 : Again we omit a proof that Dijkstra’s algorithm works and
concentrate on illustrating the procedure with examples. The details of the
example presented in class are omitted.

Maximal flow

Definition 23 : A network is a connected digraph without directed cycles.

It is easy to see that in a network, there must exist at least one node for
which all the vertices through it are directed outwards, and at least one node
for which all the vertices through it are directed inwards. For otherwise, we
could simply wander around the network and would eventually have to come
back to a node already visited.

A node of the former type is called a source and one of the latter type is
called a sink. For simplicity, we’ll assume all our networks contain exactly
one source and one sink. The Ford-Fulkerson algorithm, described below,
can be generalised to networks with multiple sources and/or sinks, by iden-
tifying all the sources (resp. sinks) into a single so-called supersource (resp.
supersink).

Definition 24 : In a network, the weight of an edge is usually referred
to as its capacity. The capacity of an edge e is usually denoted c(e).

Definition 25 : A flow in a network G is a function f : E(G) → [0,∞)
from the edge set of G to the non-negative reals satisfying the following two
properties :

53

(i) (Admissability) For every edge e, f(e) ≤ c(e). In words, the flow
along any edge cannot exceed its capacity.

(ii) (Mass conservation) For any vertex v which is neither the source nor
the sink, the sum of the flows along the incoming edges must equal the sum
of the flows along the outgoing edges.

Definition 26 : The strength of a flow f , denoted |f |, is the total flow
out from the source, which, by mass conservation, equals the total flow into
the sink. A flow whose strength is as large as possible is called a maximal
flow.

Definition 27 : A cut in a network, with source s and sink t, is a partition
of the vertices of the network into disjoint sets S and T such that s ∈ S and
t ∈ T . Cuts are denoted (S, T).

Definition 28 : Let (S, T) be a cut in a network. The capacity of the
cut, denoted c(S, T), is the sum of the capacities of the edges e ∈ E(G),
such that e is directed from a vertex in S to a vertex in T . A cut of smallest
possible capacity is called a minimal cut.

Theorem 30 (Ford-Fulkerson, 1950s) In any network, the maximum
possible strength of a flow equals the minimum possible capacity of a cut.

Remark : Philosophically, this is an example of a so-called Max-Min the-
orem, which says that the maximum of one particular quantity equals the
minimum of another. Such theorems are ubiquitous in many areas of opti-
misation, for example in linear programming and game theory. In fact, the
Ford-Fulkerson theorem is a special case of a result in linear programming.

Proof of Theorem 30 : One half of the theorem is trivial : mass conser-
vation implies immediately that the strength of any flow cannot exceed the
capacity of any cut. For our purposes, what is interesting about the rest of
the proof of the theorem is that it is constructive, i.e.: it gives an efficient
algorithm for constructing an explicit flow and cut such that the strength
of the former equals the capacity of the latter. The essential idea in this
construction is that of an augmenting path :

Definition 29 : Let f be a flow in a network. An f-augmenting path is
a path between the source and the sink in the underlying undirected graph

54

such that, for every edge e on this path :
(i) if in the network, e is directed in the same direction as the path, then
f(e) < c(e),
(ii) if in the network, e is directed in the opposite direction to the path, then
f(e) > 0.

An edge of the first type is said to be directed forwards and one of the
second type directed backwards. All of this is relative to a given path, of
course : the same edge could be directed forwards and backwards along dif-
ferent paths. For a forward-directed edge e along an augmenting path, set
εe := c(e)− f(e). For a backwards-directed edge, set εe := f(e). Then set ε
to be the minimum of the εe. Thus, for any f -augmenting path, ε > 0.

Now the point is the following : Given a flow f , suppose we can find an
f -augmenting path, with corresponding ε > 0. Then f can be replaced by
a stronger flow, by

(a) increasing the flow along every forward-directed edge of the augment-
ing path by ε

(b) removing entirely the flow along every backward-directed edge of the
augmenting path

(c) leaving the flow unchanged along all remaining edges of the network.

The Ford-Fulkerson algorithm for finding a maximal flow in a network pro-
ceeds as follows :

Start with an entirely empty flow. At each step, search for an augmenting
path by a usual search procedure (as in Kruskal’s algorithm, for example).
If you find such a path, then increase the flow as described above and repeat
the procedure. The algorithm stops when no augmenting path can be found.
When this happens, the vertices of the network will be partitioned into two
subsets S and T by the failed search for an augmenting path : S will consist
of all those vertices which could be reached by the search procedure via an
augmenting path, and T will consist of the remaining vertices. Obviously,
(S, T) is thus a cut.

What needs to be proven is that the strength of the final flow f equals
the capacity of this cut (S, T). By mass conservation, |f | equals the total
flow along edges crossing from S to T minus that along edges crossing from
T back into S. If there was any positive flow along an edge of the latter

55

type, then this could be considered as a backward-directed edge along a
path extending into T , and we’d have an augmenting path extending into T
- contradiction. Similarly, if along any edge of the former type, the flow was
less than the capacity, then we could consider this as a forward-directed edge
along an augmenting path extending into T . Thus neither situation arises
which, by the various definitions, means that |f | = c(S, T). This completes
the proof of the theorem.

Example 20 : An example will be done in the exercise session on Thursday.

56

Lecture 10 : Friday 6/10

The subject of today’s lecture is matchings in graphs, in particular bipartite
graphs. Though it may not be immediately obvious, we will show that there
is a close connection between this material and the network flows discussed
previously.

Definition 30 : A matching in a graph G is a subset M of E(G) such
that no two edges in M have a vertex in common. If {v, w} ∈ M , then v
and w are said to be matched by M .

The size of a matching M is the number of edges in it, and is denoted
|M |. A matching is said to be perfect if every vertex of G appears in some
edge of the matching. Obviously, in this case, G has an even number of
vertices and |M | = 1

2 |V (G)|.

Definition 31 : Let B = (X, Y,E) be a bipartite graph. A matching
M is said to be perfect for X (resp. Y) if every vertex of X (resp. Y) is
matched. Clearly, a necessary condition for there to exist such a matching
is that |X| ≤ |Y | (resp. |Y | ≤ |X|). Thus a necessary condition for the
existence of a perfect matching for the whole graph is that |X| = |Y |.

The general problem we wish to study is :

‘Given a graph G, find a matching of maximum possible size in G’.

The matching problem is most natural in the bipartite setting.

Example 21 : Let B = (X, Y,E) where X is a set of men, Y a set of
women and {x, y} ∈ E(B) if and only if man x is a compatible marriage
partner for woman y. The marriage problem (yes, this is the official
name !) asks to find a maximum size matching in such a bipartite graph.

For a less contraversial example, take B = (X,Y, E) where X is a set
of job seekers, Y a set of available jobs, and {x, y} ∈ E(B) if and only if
person x is qualified to do job y. The government would certainly appreciate
having an efficient procedure for finding a maximum size matching in such
a graph.

It turns out that there is a general, efficient procedure for finding maxi-

57

mum size matchings in graphs. We shall proceed as follows :

(i) we state and prove a necessary and sufficient criterion (Theorem 31)
for the existence of a perfect matching for one side of a bipartite graph. The
proof is constructive, i.e.: it describes an efficient algorithm for locating a
perfect matching in a bipartite graph which satisfies the criterion.

(ii) we recast the above algorithm in terms of the Ford-Fulkerson algorithm
for network flows.

(iii) we show how the algorithm can be extended to work in any graph,
not just bipartite graphs, even if the interpretation in terms of network
flows no longer makes sense.

Before stating the theorem, we need some more notation :

Notation : Let B = (X,Y,E) be a bipartite graph and let A be a subset
of X. We define

Γ(A) := {y ∈ Y : {a, y} ∈ E(B) for some a ∈ A}.
In words, Γ(A) is the set of vertices in Y which are neighbours to one or
more vertices in A.

Theorem 31 (Hall’s Marriage Theorem) Let B = (X, Y, E) be a bipar-
tite graph. There exists a perfect matching for X if and only if |Γ(A)| ≥ |A|
for all subsets A of X.

Proof : Hall’s condition is obviously necessary since a vertex in X can only
be matched to one of its neighbours, so if every vertex is to be matched,
every subset of vertices in X must have at least as many neighbours in all
as there are vertices in the subset.

Now suppose Hall’s condition is satisfied. Let M be any matching which
is not perfect for X. We show how to construct a matching M∗ such that
|M∗| = |M |+ 1.

Let x0 be any vertex in X left unmatched by M . By Hall’s criterion,
|Γ({x0})| ≥ 1, thus x0 has at least one neighbour in Y . Pick any such neigh-
bour y0. If y0 is also left unmatched by M , then just add the edge {x0, y0}
to M to obtain M∗. Otherwise, we may assume y0 is already matched, to

58

a vertex which we call x1. Applying Hall’s criterion again, we have that
|Γ({x0, x1})| ≥ 2. Thus there is at least one more vertex y1 ∈ Y which is a
neighbour to either x0 or x1. Two cases now arise :

Case I : y1 is left unmatched by M . If y1 is a neighbour of x0 then add
the edge {x0, y1} to M to obtain M∗. If y1 is a neighbour of x1 then con-
sider the following path in B from y1 back to x0 :

y1 → x1 → y0 → x0.

The first and last edges of the path lie outside M , whereas the middle edge
is in M . We now convert M into M∗ by removing the edge {x1, y0} from
the matching and adding on the edges {y1, x1} and {y0, x0}.

Case II : y1 is already matched. The previous assumptions imply that it is
matched to a new vertex x2. The argument now proceeds as before. Hall’s
criterion applied to the 3-element set {x0, x1, x2} gives a new neighbour y2

for one of them. If we are in Case I, with y2 unmatched by M , then there
will be a path from y2 back to x0 such that

(i) the path has odd length
(ii) the edges alternate between being in M and outside M
(iii) the first and last edges are outside M , since the endpoints of the

path are unmatched by M .
Then M∗ is obtained from M by replacing the edges along this path inside
of M with those outside of M .

If we are in Case II then y2 is matched to a vertex x3 which, by the same
reasoning as before, must be different from the previous vertices. Then we
keep going. Each round of this procedure ends up locating a new vertex in
X and, since X is a finite set, the procedure must end. When it does, we are
in Case I, and there will be a path back to x0 satisfying conditions (i)-(iii)
above. M∗ is then obtained by exchanging edges along this path as before.
This completes the proof of Hall’s theorem.

Definition 32 : Let M be a matching in any graph G. A path in G
is said to be M -alternating or M -augmenting if conditions (i)-(iii) above are
satisfied by it.

The idea of the above proof is thus that, given a non-perfect matching

59

M for X, we can find an M -alternating path and obtain a bigger matching
by exchanging edges along this path. Since any standard search procedure
can be used to locate an M -alternating path, the proof yields an efficient
recursive algorithm for constructing a perfect matching in a bipartite graph
satisfying Hall’s condition.

The cool thing is that the same idea works to find a matching of maxi-
mum size in any graph whatsoever :

Theorem 32 Let G be any graph and M any matching in G which is not
maximal in size. Then there exists an M -alternating path in G.

Proof : Omitted. See Theorem 17.5.2 in Biggs. Note that Biggs only
talks about bipartite graphs, but the exact same proof works for any graph.

This theorem has two consequences :

(A) Call a matching M in a graph maximal if there is no matching M∗

which properly contains M as a subset. Trivially, every matching of max-
imum size is maximal, but the converse is not obvious, not to me at least.
Theorem 32 tells us it is so.

(B) We can complete part (iii) of the program outlined above, i.e.: we
can describe an efficient procedure for constructing a matching of maximum
size in any graph whatsoever. Such a method proceeds recursively by taking
a matching M as input and searching (via any standard search algorithm)
for an M -alternating path. If no such path is located, then M is already
of maximum size, by Theorem 32. Otherwise, we replace M by the larger
matching M∗ obtained by exchanging edges along the alternating path, and
repeat the procedure.

Finally, we complete part (ii) of our plan by showing how the theory of
matchings for bipartite graphs can be recast in terms of network flows. So
let B = (X,Y,E) be a bipartite graph. We construct a corresponding net-
work NB as follows :

(a) The vertices of NB are those of B along with two additional vertices
s and t.
(b) the edges of NB are those of B plus : one edge from s to each vertex of
X, and one edge from each vertex of Y to t.

60

(c) the edges of NB are directed as follows : all edges from s are directed
outwards, all edges in B are directed from X to Y , and all edges to t are
directed inwards.
(d) every edge in the network gets capacity one.

It is now pretty simple to observe that a maximal flow for this network corre-
sponds to a maximal matching in B. Note that the way the Ford-Fulkerson
algorithm works implies that, for any maximal flow, the flow along each edge
will be either 0 or 1. Clearly, then, the edges in B which are saturated by
such a flow determine a maximal matching for B. In fact, it is not hard to
see that the F-F algorithm for this network is just a reformulation of the
alternating path procedure described in the proof of Hall’s theorem.

As a last remark, Theorem 30 obviously must yield a corresponding state-
ment for bipartite graphs. To state this nicely, we need one further piece of
terminology :

Definition 33 : Let G = (V, E) be any graph. A subset W of V is said to
cover G if every edge of G has at least one of its endpoints in W .

Theorem 33 (König’s Theorem) In a bipartite graph, the maximum
size of a matching equals the minimum size of a covering set of vetices.

Proof : This is a recasting of Theorem 30 in the language of bipartite
graphs, though I don’t think it is immediately obvious that a minimal cut
in the network corresponds to a minimal covering set of vertices in the graph.
The proof of this is left as an exercise to the reader. An interesting historical
fact is that König’s theorem is considerably older than either Hall’s theorem
or Theorem 30.

Edge-Coloring of Graphs

Definition 34 : An edge-coloring of a graph is an assignment of a color
to each edge of the graph such that whenever two edges have a vertex in
common, they get different colors. The edge chromatic number of a graph
is the minimum number of colors needed to edge-color it.

Notation : I am not aware of any standard notation for edge chromatic
numbers, so I will use my own notation : Φ(G) will denote the edge chro-
matic number of a graph G.

61

Proposition 34 For any graph G,

Φ(G) ≥ ∆(G), (46)

where ∆(G) is as defined in Proposition 23.

Proof : This is obvious.

Far less obvious is the following big result :

Theorem 35 (Vizing 1964, Gupta 1966) For any graph G, Φ(G) equals
either ∆(G) or ∆(G) + 1.

I find this theorem very surprising. On the other hand, since any edge-
coloring problem can be formally recast as a vertex-coloring problem (for
some other graph, whose vertices are the edges of the original graph), it is
not at all surprising that

Theorem 36 In general, the problem of deciding whether Φ(G) equals ∆(G)
or ∆(G) + 1 is NP-complete.

But this leads in turn to another suprise, namely that for bipartite graphs
the situation is much simpler :

Theorem 37 If B is a bipartite graph, then Φ(B) = ∆(B).

Proof : The really satisfying thing about the proof of this theorem is
that, not only is it constructive, but it uses the same kind of idea as in the
matching problem discussed above.

So let B = (X, Y, E) be a bipartite graph. Suppose we have already colored
some number k < |E(B)| of its edges with ∆(B) colors. We show how to
replace this with a coloring of k + 1 edges, consisting of the old edges plus
one more, without using any additional colors.

Since some edge is assumed to be as yet uncolored, pick any such edge
{x0, y0}. We shall extend the coloring to this edge.

At least one of our ∆(G) colors is not already used on an edge through

62

x0 : let C1 be any such color. Similarly, at least one color is not yet used on
an edge through y0 : let C2 be such a color.

If C1 = C2 then we can simply color the edge {x0, y0} in this color and
we’re done. Otherwise, we may assume that C1 6= C2. In particular, we may
assume that C1 has already been used to color some edge through y0. Let
x1 be the other endpoint of this edge. Two cases now arise :

Case I : C2 hasn’t yet been used to color an edge through x1. Then re-
color the edge {x1, y0} with C2 and use C1 to color {x0, y0}.

Case II : C2 already used on an edge through x1. Let y1 denote the other
endpoint of this edge. Note that our previous assumptions imply that y1 is
different from y0. Now identify two cases again :

(a) If C1 hasn’t yet been used on an edge through y1, then consider the
path

y1
C2→ x1

C1→ y0 → x0.

We can replace this coloring with

y1
C1→ x1

C2→ y0
C1→ x0,

and are done.
(b) If C1 is already used on an edge through y1, let x2 denote the other

endpoint of that edge. Previous assumptions imply that x2 is a different
vertex from both x0 and x1. Now just repeat the whole procedure.

Since the graph is finite, the procedure must terminate, at which point
we will have a path leading back to y0 of previously colored edges such that
colors C1 and C2 have been used alternately on these edges, and whichever
one of these colors is used on the first edge of the path, the other is not yet
used on any other edge through the starting vertex. Then we can extend
our coloring to the edge {x0, y0} by switching colors along this path as far
as y0 and then using C1 to color {x0, y0}. This completes the proof of the
theorem.

63

Lecture 11 : Tuesday 10/10

We now begin the final part of the course, which is a (very) short introduc-
tion to the algebra and arithmetic of discrete structures, a field which has
found significant applications in recent times, most notably in the construc-
tion of (i) public key cryptosystems for use in secure communication (ii)
error-correcting codes for digital transmission over noisy channels. We will
just about have the time to develop enough theory to be able to describe one
classic application, namely the RSA public key cryptosystem. The reader
interested in seeing further applications will need to take more courses !

Let’s start off with something very concrete, namely the integers Z. Two
so-called binary operations14 can be performed on integers, namely addition
(+) and multiplication (×). The following properties are then satisfied :

(I) Addition is associative, i.e.: for all a, b, c ∈ Z we have

(a + b) + c = a + (b + c).

(II) There is an additive identity or zero element, denoted 0, such that, for
any a ∈ Z,

a + 0 = 0 + a = a.

(III) There exist additive inverses, i.e.: for every a ∈ Z there exists b ∈ Z
such that

a + b = b + a = 0.

Obviously, one usually writes b = −a.

(IV) Addition is commutative, i.e.: for all a, b ∈ Z we have

a + b = b + a.

(V) Multiplication is associative, i.e.: for all a, b, c ∈ Z we have

a× (b× c) = (a× b)× c.

14Formally, a binary operation on a set S is a function from S×S → S. In other words,
it assigns to each ordered pair of elements of S a third element of S.

64

(VI) There is a multiplicative identity or unit element, denoted 1, such that,
for any a ∈ Z,

a× 1 = 1× a = a.

(VII) Multiplication is commutative, i.e.: for all a, b ∈ Z,

a× b = b× a.

(VIII) Multiplication is distributive over addition, i.e.: for all a, b, c ∈ Z we
have

a× (b + c) = (a× b) + (a× c).

Definition 35 : Let S be any set on which a binary operation, denoted
+, has been defined. If (I)-(III) above are satisfied (with Z replaced by S
naturally), we say that (S, +) is a group. If in addition (IV) is satisfied, we
say that the group is commutative or abelian.

Definition 36 : Let S be any set on which two binary operations, de-
noted + and ×, have been defined. If (I)-(VI), together with (VIII), are
satisfied, we say that (S, +,×) is a ring15. If in addition (VII) is satisfied,
the ring is said to be commutative.

One thing you can’t do within the set of integers is divide, so that the
analog of (III) for multiplication doesn’t hold. But this problem is solved
by just extending Z to Q. In Q we thus have

(IX) There exist multiplicative inverses, i.e.: for any nonzero element a ∈ Q,
there exists a nonzero b ∈ Q such that

a× b = b× a = 1.

One usually writes b = a−1 or b = 1/a.

Definition 37 : If the triple (S, +,×) satisfies all of (I)-(XI), other than
perhaps (VII), then it is called a division ring. If (VII) is also satisfied, it is
called a field.

15In some books, the term ring will be used so long as only (I)-(V), plus (VIII), are
satisfied. If then (VI) is also satisfied, it will be stated that the ring has a unity.

65

So Z is the simplest and most natural example of a commutative ring and
Q is the simplest example of a field. However both these sets are infinite.
For the applications we have in mind we will be interested in finite groups,
rings and fields.

Example 22 : The simplest non-trivial example of a finite field is a set
consisting of just two elements, denoted 0 and 1, in which addition is de-
fined as XOR addition, i.e.:

0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1,

and multiplication is defined as the AND operation, i.e.:

0× 0 = 0× 1 = 1× 0 = 0, 1× 1 = 1.

One readily checks that all of properties (I)-(IX) are satisfied. This field is
denoted Z2.

Example 23 : In any ring (S, +,×) it holds that s× 0 = 0 for all s ∈ S.

Proof : Let y := s × 0. Axiom (II) implies in particular that 0 + 0 = 0.
Thus, by Axiom (VIII),

y = s× 0 = s× (0 + 0) = (s× 0) + (s× 0) = y + y,

i.e.:
y = y + y. (47)

Next, Axiom (III) says that there exists an element z ∈ S such that y+z = 0.
Add z to both sides of (47) and we get that

0 = y + z = (y + y) + z.

But by Axiom (I) the right-hand side can be rewritten as y + (y + z) =
y + 0 = y, by Axiom (II). Thus 0 = y as claimed.

Now we shall present a generalisation of Example 22. Several definitions
are necessary :

Notation : If x and y are integers, we write x|y to denote that y is a

66

multiple of x.

Definition 38 : Let n be a positive integer, and let a, b be any two in-
tegers. We say that a is congruent to b modulo n, and write a ≡ b (mod n),
if n|(a− b).

Proposition 38 Given a positive integer n, the following properties are
satisfied by the relation on Z of congruence modulo n :

(i) Reflexivity : a ≡ a (mod n) for any a.

(ii) Symmetry : If a ≡ b (mod n) then b ≡ a (mod n).

(iii) Transitivity : If a ≡ b (mod n) and b ≡ c (mod n) then a ≡ c (mod n).

Proof : Exercise.

Definition 39 : A relation on a set S which is reflexive, symmetric and
transitive is called an equivalence relation. If two elements are related, they
are said to be equivalent. Given an element s ∈ S, the equivalence class of
S is the subset of S consisting of all elements equivalent to s.

Proposition 39 (i) Given an equivalence relation on a set S, any two
equivalence classes are either identical or disjoint subsets of S. Hence the
equivalence classes partition S.

(ii) Given a positive integer n, the relation of congruence modulo n par-
titions the integers into n equivalence classes. Each integer is equivalent to
exactly one of the numbers 0, 1, 2, ..., n− 1.

Proof : (i) Exercise. (ii) Each integer is congruent modulo n to its own
remainder upon division by n.

Part (ii) of the proposition suggests natural addition ⊕ and multiplication
⊗ operations on the set {0, 1, ..., n− 1}, namely

a⊕ b := the unique c ∈ {0, 1, ..., n− 1} such that a + b ≡ c (mod n),
a⊗ b := the unique c ∈ {0, 1, ..., n− 1} such that a · b ≡ c (mod n).

Our claim is that these definitions make the set {0, 1, ..., n− 1} into a ring.
This ring is denoted Zn, which one should note coincides with the definition

67

in Example 22 when n = 2. To verify the claim, the only thing one really
needs to check is that the addition and multiplication operations are well-
defined, by which one means the following :

Proposition 40 Let n be a positive integer and a, b, c, d arbitrary integers.
Suppose a ≡ b (mod n) and c ≡ d (mod n). Then a + c ≡ b + d (mod n) and
a · c ≡ b · d (mod n).

Proof : Exercise.

Example 24 : If today is Tuesday, what day of the week will it be in
10100 days from now ?

Solution : We are interested in the remainder when 10100 is divided by
7. Repeated application of Prop. 40 justifies the following sequence of com-
putations, in which all congruences are modulo 7 :

10 ≡ 3 ⇒ 103 ≡ 33 = 27 ≡ −1.

Thus

10100 = (103)33 · 10 ≡ (−1)33 · 3 = −3 ≡ 4.

In other words, 10100 leaves a remainder of 4 when divided by 7 and so in
10100 days time it will be a Saturday.

The question which will lead us to somewhat deeper results is :

‘For which n is Zn a field ?’

The next lecture will be occupied with proving the following two theorems :

Theorem 41 (i) Let n be a positive integer and a ∈ Zn. Then a has a
multiplicative inverse if and only if SGD(a, n) = 1.

(ii) In particular, Zn is a field if and only if n is a prime.

Theorem 42 (Fermat/Euler) (i) Let n be a positive integer and a any
integer such that SGD(a, n) = 1. Then

aφ(n) ≡ 1 (mod n). (48)

68

(ii) In particular, if n is a prime and a is any integer which is not a multiple
of n, then

an−1 ≡ 1 (mod n). (49)

Lecture 12 : Friday 13/10

Proof of Theorem 41 : Part (ii) obviously follows from part (i), so we
just need to prove the latter. Let a ∈ Zn. Then a is invertible if and only if
there exists an integer b such that

ab ≡ 1 (mod n).

This means that n evenly divides ab− 1, hence that there exists an integer
k such that

ab− 1 = kn.

Let’s change notation a bit : b → x, n → b, k → −y. Then a is invertible if
and only if there exist integers x, y such that

ax + by = 1.

Theorem 41 is thus a special case of part (i) of the following more general
result :

Theorem 43 (Euclid’s Lemma) (i) Let a, b, c be integers. Then the equa-
tion

ax + by = c (50)

has an integer solution (x, y) if and only if SGD(a, b) divides c.

(ii) Let d := SGD(a, b) and let x0, y0 be any integers satisfying

ax0 + by0 = d. (51)

Suppose c = md. Then the most general integer solution to (50) is

x = mx0 + n

(
b

d

)
, (52)

y = my0 − n

(
a

d

)
, (53)

69

where n is an arbitrary integer. In particular, whenever (50) has at least
one integer solution, then it has infinitely many of them.

Proof of Theorem 43, part I : If d = SGD(a, b) does not divide c
then clearly (50) can have no integer solutions, as the left-hand side is a
multiple of d for any choice of x and y. Now suppose d divides c. Clearly
it suffices to show that (50) has a solution when c = d. The proof that this
is the case is constructive, i.e.: we can describe an efficient procedure for
locating a solution to (51). The procedure is called Euclid’s algorithm and
is perhaps best illustrated by an example :

Example 25 : Find an integer solution to

101x + 37y = 1. (54)

Solution : Observe that SGD(101, 37) = 1 since both numbers are prime.
Thus (54) should have a solution. Euclid’s algorithm consists of two steps.
The first step performs a sequence of divisions which produces the number
1 = SGD(101, 37), as follows :

101 = 2 · 37 + 27,
37 = 1 · 27 + 10,
27 = 2 · 10 + 7,

10 = 1 · 7 + 3,
7 = 2 · 3 + 1,
3 = 3 · 1 + 0.

The procedure terminates once a zero remainder is obtained and the last
non-zero remainder is the SGD of the two input numbers. The second step
of the algorithm proceeds backwards through the above equations as
follows :

1 = 7− 2 · 3
= 7− 2 · (10− 7)

= 3 · 7− 2 · 10
= 3 · (27− 2 · 10)− 2 · 10

= 3 · 27− 8 · 10
= 3 · 27− 8 · (37− 27)

70

= 11 · 27− 8 · 37
= 11 · (101− 2 · 37)− 8 · 37

= 11 · 101− 30 · 37.

This implies that a solution to (54) is given by x0 = 11, y0 = −30.

Assuming that Euclid’s algorithm always works, this completes the proof
of part (i) of Theorem 53, and thus also the proof of Theorem 51. Let us
thus briefly explain why the algorithm works :

The first step is the important one. One needs to know that the last non-
zero remainder is always the SGD of the two input numbers. This follows
from the following two observations :

(a) Let d = SGD(a, b) as usual. Then d divides both a and b, so will also
divide any integer which can be expressed as an integer-linear combination
of a and b. The remainder upon dividing b into a is such an integer. Call this
remainder r1. Thus d divides both b and r1. The algorithm then proceeds
to divide r1 into b and produce a remainder r2. By the same reasoning, d
divides r2. And so on ... If the last non-zero remainder is rk, then we’ve
shown that rk must be divisible by d.

(b) It thus suffices to show that rk itself divides both a and b. To see
this, one goes backwards through the steps of the algorithm, applying the
same reasoning as before, only in reverse. That the (k + 1):st remainder is
zero means that rk divides rk−1 evenly. But rk was the result of dividing
rk−1 into rk−2. Thus rk divides rk−2 evenly. And so on ... we finally arrive
at the desired conclusion that rk divides both b and a evenly.

Proof of Theorem 43, part II : It is clear that, for any n ∈ Z, if x
and y are given by (52) and (53) resp., then (50) is satisfied. It remains to
show there are no further solutions. This involves showing the following :
given any two solutions (x1, y1) and (x2, y2) to (50), there exists an integer
n such that

x2 = x1 + n

(
b

d

)
, (55)

y2 = y1 − n

(
a

d

)
. (56)

71

OK, well we’re assuming that

ax1 + by1 = c, (57)
ax2 + by2 = c. (58)

Subtract (57) from (58) to get

a(x2 − x1) = b(y1 − y2).

The number d is a common divisor of both sides of this equation. Dividing
it out, we get (

a

d

)
(x2 − x1) =

(
b

d

)
(y1 − y2). (59)

Now the integer b/d divides the left-hand side of (59), but by definition of
d, we have SGD(a/d, b/d) = 1. The conclusion we wish to draw from this
is that b/d already divides x2 − x1. Note that if this is so, then (55) follows
immediately, and then (56) follows in turn from (59). That our conclusion
is indeed valid is a consequence of the following general fact :

Proposition 44 Let n1, n2, n3 be integers. Suppose that n1|n2n3 and that
SGD(n1, n2) = 1. Then n1|n3.

To prove this proposition we need in fact a much deeper result, which for
good reason is referred to as

Theorem 45 (Fundamental Theorem of Arithmetic) Every positive
integer can be expressed in EXACTLY ONE WAY as a product of primes.

Theorem 45 is something which probably all of you know, but most of you
do not appreciate, due to the abominable way arithmeitc is usually taught
in schools !! Anyway, I’m not going to prove it here - the proof is non-trivial,
though not hard.

I will just comment on how it immediately implies Prop. 44. That n1

divdes n2n3 means that the entire prime factorisation of the former appears
amongst the factorisation of the latter. That SGD(n1, n2) = 1 means, on
the other hand, that none of the prime factors of n1 appear amongst the
factors of n2. But the factorsation of n2n3 is just the composition of the fac-
torisations of n2 and n3. This means that the entire factorisation of n1 must
appear amongst the factors of n3, hence that n1 divides n3, as required.

72

This completes the proof of Prop. 44, and with it that of Theorem 43(ii).

Proof of Theorem 42 : When n is a prime, then SGD(a, n) = 1 if
and only if SGD(a, n) 6= n, i.e.: if and only if a is not a multiple of n. In
addition, φ(n) = n−1 when n is prime. Thus part (ii) of the theorem follows
from part (i), and it remains to prove the latter.

Theorem 41 says that SGD(a, n) = 1 if and only if a is invertible, when
viewed as an element of Zn, i.e.: if and only if there exists an integer b
such that ab ≡ 1 (mod n). Note that this implies that if SGD(x, n) =
SGD(y, n) = 1 then SGD(xy, n) = 1, since if xx′ ≡ yy′ ≡ 1 (mod n), then
(xy)(x′y′) ≡ (xx′)(yy′) ≡ 1 (mod n) so xy is also invertible in Zn

16.
Now let x1, ..., xφ(n) be all the invertible elements in Zn. By the above

observation, for each i = 1, ..., φ(n), axi is also invertible mod n, hence
the numbers ax1, ..., axφ(n) are just a permutation, mod n, of the numbers
x1, ..., xφ(n). In particular,

φ(n)∏

i=1

xi ≡
φ(n)∏

i=1

axi ≡ aφ(n) ·

φ(n)∏

i=1

xi

 (mod n). (60)

Let X denote the prodct on both sides of (60). Since X is a product of
invertible elements in Zn the same is true, by our observation above, of X
itself. Let Y be its inverse mod n. Multiplying both sides of (60) by Y
yields (48) and proves Theorem 41.

16The same conclusion can be drawn from the Fundamental Theorem of Arithmetic.

73

