Homework 2 : Solutions

1. The homogeneous equation is
2uy, — g1 + 12u,,_o = 0.
The characteristic equation for this is
222 — 11z + 12 =0,
which factorises as
2z —3)(z—4) =0,

and hence has the roots z = 3/2,z = 4. Hence the general solution to the
homogeneous equation is

h 3\" n
un:Cl- 5 + Cy - 4.

Since 4" is already a solution to the homogeneous equation, our guess for a
particular solution should have the form

ub =A-n-4"+ Bn+ C.
Substituting into the recurrence relation, the requirement on A is that
A 204" —11(n — 14" 412(n — 2)477] =47, (1)
whereas the requirement on B and C' is that
2Bn+c]-11[B(n—-1)+C]+12[B(n —2)+ C]=n+1. (2)
From (1) we deduce that A = 4/5 and from (2) that B = 1/3, C = 16/9.

Hence the general solution to our recurrence relation is

3\" 4n n n 16
un_Cl.(E) +(CQ+?>'4 +(§+3>

It remains to insert the initial conditions :

7
n:0:>u0:1:01+02+§,

3C, 4 1 16
:1 :2:— 4 — _ - .
n = uq 5 + (02+5)+<3+9)

1



Solving, we obtain C; = 2/25, Cy = —193/225. Hence the final answer is

_ 2 (§)"+(4_"_@> 4n+(ﬁ+§)
Un =95 \2 5 225 3779 )"

2. I label the nodes of the graph as follows : s to the left, ¢ to the right
as in the diagram ; reading downwards in each column of four from left to
right : a,b,c,d,, then e, f, g, h, then 1,5, k, [, then m,n, o, p.

(i) Use BFS, starting, say, from the vertex s, to build up the following
sequence of edges in a MST :

{s,0},{b, '}, {f> 0}, {f5 4}, {é;m}, {a, e}, {s, ¢}, {e, g}, { [ 5}
{40}, {0, t}, {0, k},{k, h}, {h, d}, {h, 1}, {t,n}, {t, p}.

The total weight of this treeis 1 +2+2+3+24+4+4+2+4+5+2+
3+2+1+3+4+5=49.

(ii) Anvind BFS for att bygga upp ett trad med foljande sekvens av
kanter :

{s,6},{b, f} {s, e}, {f,a}, {f,i}. {c, 9}, {s,d},{d, h}, {f, 7},
{i,m},{a,e},{h,k},{h,1},{k, o0} eller {j,0},{o,t} eller {m,t}.
If {o,t} is the last edge chosen, then the unique path back to s is ¢t — o —
k —h —d — s. If instead {m,t} is chosen last, then the unique path back to
sist—m—i—f—b—s.
Both these paths have total length 14.

(iii) Starting with the null flow f = 0, one can find the following sequence
of f-augmenting paths from s to ¢ :

s—a—e—t—m-—1, €=2,

s=b—f—-j—-n—-t, e=1,

s—c—g—k—o0o—t, €e€=2,

s—d—h—-1l—p—t, e=1,

s—a—f—j—m—t, e=2,

s—c—h—-1l—-p—t, e=1.

This yields the following maximal flow with |f| = 10



Edge | Flow | Edge | Flow

{s,a} | 4 | {eji} | 2 | {ko} |2
{s,b} | 1 {fii} | 0 | {to} |0
{s,c} | 4 [ {fi} | 3 | {Lp} |3
{s,d} | 1 | {95} | 0 |{m,t}|2
{a,e} 2 {g,k} 2 {n,t} | 3
{a, f} 2 {h,k} 0 {o,t} | 2
o, fy | 1 [ {ht} | 3 | {pt} |3
{o.9y | 0 | {im} | 2

{9t | 2 [{im}| O

{fc,h} | 2 | {jn} | 3

{d,p} | 1 | {jo} | O

The corresponding minimal cut is S = {s,a,d,e,i}, T = rest of them. Its’
capacity is given by

c(S,T) = c(s,b) +c(s,c) +cla, f) +c(d,h) +c(i,m)=1+44+24+1+2=10, v.s.v.

3 (i) Let A,, denote the number of ways of writing n as a sum of 1:s and
2:s. Clearly A4g = Ay = 1. So assume n > 2 and we must verify that
A, = A, 1+ A, 2. Divide the ways of writing n as a sum of 1:s and 2:s
into two types :

TYPE I : Those in which the first summand is a 1. Then the remaining
summands sum to n — 1, and there are A,_1 choices for them.

TvYOE II : The first summand is a 2. Then the remaining summands sum
to n — 2 so there are A,,_o choices for them.

The addition principle yields the desired result.

(ii) Any expression of n as a sum of 1:s and 2:s can include at most [n/2]
twos. We claim that, for each k € {0,1,..., |3 ]}, the number of such expres-
sions including exactly k& twos is ( n—k . But this is clear. For if there

k

are k twos, then there are n — k summands in all, and we just have to choose
which k of these are the twos.

4 (i) First suppose nodes 0 and 2 get the same colour. Ignore node 1
and identify nodes 0 and 2. This leaves us with the cycle C,,_g, which is to



be coloured with k colours. By definition, there are f,,_2(k) ways to do this.
Once this colouring has been chosen, there remain k — 1 ways to colour the
reinserted node 1 (it must get a different colour from its two neighbours).
Thus, by MP, there are (k — 1) f,—2(k) possible colourings in which nodes 0
and 2 get the same colour.

Next suppose nodes 0 and 2 get different colours. First ignore node 1 again.
The remaining nodes form a C,_; and, since nodes 0 and 2 are assumed to
get different colours, this remaining cycle is to be coloured under exactly
the same rules as at the outset. Thus there are f,_1(k) possible colourings
of all the nodes except node 1. Reinserting node 1, it can then be coloured
in k — 2 ways, as it must get a different colour from both 0 and 2. By MP,
there are in total (k — 2) fn—1(k) possible colourings in which nodes 0 and 2
get different colours.

The above two paragraphs, plus the addition principle, suffice to prove the
result.

(ii) In fact the formula holds for all n > 2 if we interpret Cy as mean-
ing a single edge. A single edge can be coloured with k colours in k(k — 1)
ways, as the two vertices must get different colours. Observe that the for-
mula also gives fo(k) = (k — 1)[(k — 1) + 1] = k(k — 1).

For n = 3 the formula states that
fa(k) = (k= D)[(k = 1)> = 1] = (k — 1)[k* — 2k] = k(k — 1)(k — 2),

which is also true, since all the vertices in a C5 must get different colours.
Now we proceed by induction on n to show that the formula holds for all
n > 2. Since we've already established the initial cases n = 2,3, all that
remains is to insert the formulas for f,_5(k) and f,—1(k) and verify that

(k= D[k = )"+ (=1)"] = (k = D[(k = )" + (=1)" ] + (k = D[(k - )" + (~=1)" 7).

This is a straightforward algebra exercise and is left to the reader to check.

5 (i) The complete bipartite graph K, , has 2n vertices and n? edges.
Being bipartite, it has no odd cycles whatsoever, never mind triangles.

(ii) For n = 1 the claim is vacuous, as a graph on two vertices can’t have



more than one edge anyway. For n = 2, if a graph on 4 vertices contains
more than 4 edges, then it is either K4 or K; minus a single edge. One
readily checks that removing a single edge from K, inevitably leaves some
remaining triangles (two of them, in fact).

Now to the induction step. Suppose the result holds for some 7, and con-
sider a graph on 2n + 2 vertices. We can assume there’s at least one edge in
G. Isolate two vertices, call them v and w, which are joined by an edge in
G. Let H denote the subgraph spanned by the remaining 2n vertices. The
induction hypothesis implies that H contains no more than n? edges. But
now, since {v,w} is an edge in G, if v and w had a common neighbour z
in H then {v,w,z} would be a triangle in G. Thus every vertex in H is a
neighbour of at most one of v and w, and thus G contains no more than 2n
edges between H and these two vertices. All in all, we thus have

(a) no more than n? edges within H,

(b) no more than 2n edges between H and v, w,

(c) one edge {v,w}.
So the total number of edges in G is at most n? +2n +1 = (n + 1)%, v.s.v.

6 (i) Let G have 3 vertices a,b,c and two edges {a,b} and {b,c}. Then
check that x(G) = x(G) = 2, so x(G)x(G) = 4 > 3.

(ii) The proof is by induction on n. The theorem is easily checked to be true
for n = 2. Suppose it’s true for n and let G be a graph on n + 1 vertices.
Let v be any vertex and G, the graph on n vertices got by removing v and

all edges through it. By the induction hypothesis,
X(G) + x(Gy) <m+1. (3)

We must prove that

x(G) +x(G) <n+2. (4)

First, since G contains only one more vertex than G,, we have that x(G) <
X(Gy) + 1. Similarly for the complements. Hence (4) will certainly be
satisfied if we have strict inequality in (3). Hence we may assume that we
have equality in (3). In this case it suffices to prove that either x(G) = x(G»)
or x(G) = x(G,). Call this condition (*).

Pick any n + 1 colors which suffice to color both G, and G,, and color
both using these colors, such that no color is used on both graphs. Now the

n vertices of G, can be partitioned into 2 subsets X and Y, namely those



joined to v in G and G respectively. Now at least one of our n + 1 colors,
call it C, is neither used among the vertices of X in the coloring of G,, nor
among the vertices of Y in the coloring of G,. Hence we obtain colorings of
both G and G if we extend the colorings of G, and G, by coloring v with
color C. Since all n + 1 colors were used to color G, and G,, the color C
will already have appeared in the coloring of one of them. This implies that
condition (*) is satisfied.

7 (i) The vertices of P in the pentagonal representation were given to you
as follows : 1,2,3,4,5 on the outer pentagon, starting at the top and moving
clockwise. 6,7,8,9,10 on the inside attached to 1,2,3,4,5 respectively.

One can now label the vertices in the hexagonal representation as follows,
for example (there are many possible isomorphisms) : 1,2,3,4,9,6 on the outer
hexagon, starting top left; 7,5,8 on the three diagonals (2,9), (1,4) and (3, 6)
respectively; 10 in the middle.

With these labellings, the two graphs are isomorphic.

(ii) In the pentagonal representation, with the same labelling as in (i),
(1,2,3,4,5,1) is a simple Cs, (1,2, 3,8,10,5,1) is a simple Cg, (1,2, 3,8,6,9,4,5,1)
is a simple Cg and (1,2,3,8,6,9,7,10,5,1) is a simple Cy.

(iii) Let G be such a graph. Since every vertex of G has degree 3 and
the sum of the degrees of all the vertices must be an even number (eq.(40)
in lecture notes), it follows that G has an even number of vertices. Let C
be a Hamilton cycle in G. Then C contains an even number of edges and
hence can be colored using only 2 colors. Then, since every vertex in G has
degree 3, the remaining edges (i.e.: those not on this cycle) must form a
complete matching of G, and hence can all be colored with the same third
color. Hence G is 3-edge-colorable, v.s.v.

(iv) Let’s try to color P with three colors A,B,C, using the pentagonal
representation. Because of P’s rotational symmetry, there is no loss of gen-
erality in assuming that the outer pentagon is colored as

Aon {1,2} and {3,4},
B on {2,3} and {4, 5},
C on {5,1}.

Then the colors to be assigned to the 5 inward edges are uniquely deter-



mined, namely : {2,7}, {3,8} and {4,9} must all get C, {5,10} must get A
and {1,6} must get B.
But then both {6,8} and {6,9} must get A, so we’re screwed !

8. No time to draw the decision tree, so instead I'll describe it. Label the
coins 1,...,12. The notations E,L,R will denote that the result of a weighing
was, respectively, ‘equal’, ‘left side heavy’, ‘right side heavy’.

STEP 1 : (1,2,3,4) v. (5,6,7,8).

- If E, go to Step 2E.

- If L, go to Step 2L.

- If R, follow the same chain as if L, just interchange (1,2,3,4) and
(5,6,7.8).

SteP 2E : (1,2,3) v. (9,10,11).

- If E, go to Step 3EE.
- If L, go to Step 3EL.
- If R, go to Step 3ER.

STEP 2L : (1,2,5,9) v. (3,6,10,11).

- If E, go to Step 3LE.
- If L, go to Step 3LL.
- If R, go to Step 3LR.

STEP 3EE : 1 v. 12. E is impossible. If L, then 12 is light. If R, then
12 is heavy.

Step 3EL : 9 v. 10. If E, then 11 is light. If L, then 10 is light. If R,
then 9 is light.

STtep 3ER : 9 v. 10. If E, then 11 is heavy. If L, then 9 is heavy. If
R, then 10 is heavy.

STeEP 3LE : 7 v. 8. If E, then 4 is heavy. If L, then 8 is light. If R,
then 7 is light.



STEP 3LL : 1 v. 2. If E, then 6 is light. If L, then 1 is heavy. If R,
then 2 is heavy.

STeEp 3LR : 5 v. 9. If E, then 3 is heavy. L is impossible. If R, then
5 is light.



