Homework 3 : Solutions

1 (i) This is not planar. There is a $K_{3,3}$ obstruction. For example, remove the four corner vertices, contracting the edges through them, e.g.: removing *a* means that the edges $\{a, b\}$ and $\{a, e\}$ are replaced by the single edge $\{b, e\}$. The remaining graph has 6 vertices b, c, e, f, h, i and is a $K_{3,3}$, with b, h, f as the red group and c, e, i as the blue group.

(ii) This is planar. Here is an attempt to describe a plane redrawing of it :

(a) drag the edge $\{a, e\}$ outside f, the edge $\{a, c\}$ outside b, and the edge $\{e, c\}$ outside d.

(b) then drag the edge $\{e, b\}$ outside f, the edge $\{a, d\}$ outside b and the edge $\{c, f\}$ outside d.

(iii) This is not planar. There is a $K_{3,3}$ obstruction. Remove f so that each of the paths e - f - b and g - f - b is contracted into a single edge. Then remove a and all its adjacent edges. The remaining graph has 6 vertices b, c, d, e, g, h and is a $K_{3,3}$, with b, d, h as the red group and c, e, g as the blue group.

2. Let V, E, R denote the number of vertices, edges and regions for G. Euler's formula states that

$$V - E + R = 2. \tag{1}$$

Consider the sum

$$\sum_{\text{regions r}} n_r,$$

where n_r is the number of edges along the boundary of the region r. We are told that $n_r \ge 5$ for every region, hence the sum is at least $5R = 5 \cdot 53 = 265$. On the other hand, since the graph is plane, every edge is counted twice in the sum, so the sum is 2E. It follows that $2E \ge 265 \Rightarrow E \ge 133$. Thus from (1) we obtain that $V = 2 + E - R \ge 2 + 133 - 53 = 82$, v.s.v.

3 (i) It is clear that there is no matching of size greater than $|X| - \delta_G$, as for any subset A of X, at most $\Gamma(A)$ of its vertices can be matched.

Conversely, let G = (X, Y, E) be bipartite with deficiency $\delta_G \ge 0$. Define a new bipartite graph $G^* = (X^*, Y^*, E^*)$ as follows :

(a) $X^* = X$, (b) $Y^* = Y \sqcup Z$, where $|Z| = \delta_G$, (c) $E^* = E \sqcup \{\{x, z\} : x \in X, z \in Z\}$.

In words, we add δ_G vertices to Y and join each of these new vertices to every vertex in X. The point is that the resulting graph has deficiency zero, so by Hall's theorem it has a perfect matching for X. But in this matching, at most $|Z| = \delta_G$ of the vertices of X will be matched to a vertex in Z. The rest of the matching thus constitutes a matching of size at least $|X| - \delta_G$ in the original graph G. So we're done !

(ii) Hmmm ... the following proof seems to work for $|X| \leq 14$.

Suppose $\delta_G \geq 3$. This implies the existence of a subset A of X such that

$$|A| \ge |\Gamma(A)| + 3. \tag{2}$$

On the other hand, we have the following sequence of inequalities :

$$4|A| \le \sum_{x \in A} \deg(x) \le \sum_{y \in \Gamma(A)} \deg(y) \le 5|\Gamma(A)|.$$
(3)

I'll explain the three inequalities in turn :

- The first one follows from assumption (a).

- The second one follows from the fact that the right-hand sum counts all edges protruding from the vertices of $\Gamma(A)$ whereas the left-hand sum only counts those among these edges which have their other endpoint in A.

- The third one follows from assumption (b).

So from (3) we have that

$$4|A| \le 5|\Gamma(A)|.$$

Substituting this into (2) yields that $|A| \ge 15$. Thus we obtain a contradiction whenever $|X| \le 14$, as A is a subset of X.

4. The only prime triplet is p = 3. For let n, n + 2, n + 4 be three consecutive odd numbers. Modulo 3 these are congruent to n, n + 2, n + 1

respectively, i.e.: three consecutive numbers (after reordering). But among three consecutive numbers, we always have a multiple of 3, and 3 itself is the only such number which is also a prime.

5. Det är lätt att se att SGD(18, 29) = 1 eftersom 29 är ett primtal. Därför vet vi att det finns heltal x_0, y_0 så att

$$18x_0 + 29y_0 = 1. (4)$$

Vi hittar först en lösning till (4) genom att köra Euklides algoritm fram och tillbaka. Framåt får vi

$$29 = 1 \cdot 18 + 11,$$

$$18 = 1 \cdot 11 + 7,$$

$$11 = 1 \cdot 7 + 4,$$

$$7 = 1 \cdot 4 + 3,$$

$$4 = 1 \cdot 3 + 1,$$

$$3 = 3 \cdot 1 + 0.$$

Bakåt får vi då

$$1 = 4 - 3$$

= 4 - (7 - 4)
= 2 \cdot 4 - 7
= 2 \cdot (11 - 7) - 7
= 2 \cdot 11 - 3 \cdot 7
= 2 \cdot 11 - 3 \cdot (18 - 11)
= 5 \cdot 11 - 3 \cdot 18
= 5 \cdot (29 - 18) - 3 \cdot 18
= 5 \cdot 29 - 8 \cdot 18.

Därmed har vi hittat lösningen $x_0 = -8, y_0 = 5$. Genom att multiplicera dessa med 2500 så får vi en lösning (x_1, y_1) till

$$18x + 29y = 2500, (5)$$

nämligen $x_1 = -20000, y_1 = 12500$. Den allmäna lösningen till (5) ges då av

$$x = -20000 + 29n, (6)$$

$$y = 12500 - 18n \tag{7}$$

där n är ett godtyckligt heltal. Vi är nu intresserade av lösningar för vilka både x > 0 och y > 0.

Å ena sidan

$$x > 0 \Leftrightarrow -20000 + 29n > 0 \Leftrightarrow 29n > 20000 \Leftrightarrow n \ge 690.$$
(8)

Å andra sidan

$$y > 0 \Leftrightarrow 12500 - 18n > 0 \Leftrightarrow 18n < 12500 \Leftrightarrow n \le 694.$$

$$\tag{9}$$

Från (8) och (9) får vi fem möjligheter för n, nämligen n = 690, 691, 692, 693, 694. Till sist sätter vi in dessa åtta värden i (6) och (7) så får vi fem lösningar :

x = 10, y = 80 x = 39, y = 62 x = 68, y = 44, x = 97, y = 26 x = 126, y = 8.**6.** $108 = 2^2 \cdot 3^3$ so $\phi(108) = 108 \cdot \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{3}\right) = 36$. Hence, Euler's Theorem states that, if *a* is an integer relatively prime to 108, then

$$a^{36} \equiv 1 \pmod{108}.$$

Note that both 5 and 7 are relatively prime to 108. Hence (all congruences are modulo 98)

$$5^{74} = (5^{36})^2 \cdot 5^2 \equiv 1^2 \cdot 25 \equiv 25,$$

and

$$7^{111} = (7^{36})^3 \cdot 7^3 \equiv 1^3 \cdot 343 \equiv 19.$$

Thus,

$$(5^{74} + 7^{111} + 3)^{35} \equiv (25 + 19 + 3)^{35} = 47^{35}.$$

Since 47 is a prime, it is also relatively prime to 108, so we can apply Euler's theorem again. Thus

$$47^{35} \equiv 47^{36} \cdot 47^{-1} \equiv 1 \cdot 47^{-1} \equiv 47^{-1}.$$

So it remains to compute the inverse of 47 modulo 108. To do this, we run Euclid back and forth, just as in the previous exercise. Forwards, we get

$$108 = 2 \cdot 47 + 14,$$

$$47 = 3 \cdot 14 + 5,$$

$$14 = 2 \cdot 5 + 4,$$

$$5 = 1 \cdot 4 + 1,$$

$$4 = 4 \cdot 1 + 0.$$

Backwards, we then obtain

$$1 = 5 - 4$$

= 5 - (14 - 2 \cdot 5)
= 3 \cdot 5 - 14
= 3 \cdot (47 - 3 \cdot 14) - 14
= 3 \cdot 47 - 10 \cdot 14
= 3 \cdot 47 - 10 \cdot (108 - 2 \cdot 47)
= 23 \cdot 47 - 10 \cdot 108.

From this we can read off that $23 \equiv 47^{-1} \pmod{108}$. So the final answer is 23.

7 (i) Every positive integer n has a unique expression as $2^{f(n)} \cdot u$, where f(n) is a non-negative integer and u is an odd number. The following 3-coloring now works :

'Color n red if $f(n) \equiv 0 \pmod{3}$, color n blue if $f(n) \equiv 1 \pmod{3}$, and color n green if $f(n) \equiv 2 \pmod{3}$.'

I'll show there are no red solutions to x + 2y = 4z - the proof is similar for the other colours. So suppose (x, y, z) was a red solution. Since x, y, z are all red, there exist non-negative integers a, b, c and odd numbers u_1, u_2, u_3 such that

$$x = 2^{3a}u_1, \quad y = 2^{3b}u_2, \quad z = 2^{3c}u_3,$$

and hence the assumption is that

$$2^{3a}u_1 + 2 \cdot 2^{3b}u_2 = 4 \cdot 2^{3c}u_3,$$

in other words that

$$2^{3a}u_1 + 2^{3b+1}u_2 = 2^{3c+2}u_3. (10)$$

Now the number on the right of (10) is green. I claim that that on the left must be red or blue : if so, then the two sides can't be equal - contradiction and we're done !

There are two cases to consider. If $b \ge a$, then write the left side as $2^{3a}u_4$ where $u_4 = u_1 + 2^{3b-3a+1}u_2$. Since u_4 must be odd, we have a red number. If b < a then instead write the left side as $2^{3b+1}u_5$ where $u_5 = 2^{3a-3b-1}u_1 + u_2$. Since u_5 is odd, we have a blue number, thus establishing our claim.

(ii) Whether or not such a 3-colouring of \mathbf{R} exists is independent of the Zermelo-Fraenkel axioms of set theory¹. If you have no idea what that means, well don't worry about it for the exam at least !

¹This was only proven very recently, like in the last couple of years.