
Homework 3 : Solutions

1 (i) This is not planar. There is a K3,3 obstruction. For example, remove
the four corner vertices, contracting the edges through them, e.g.: removing
a means that the edges {a, b} and {a, e} are replaced by the single edge
{b, e}. The remaining graph has 6 vertices b, c, e, f, h, i and is a K3,3, with
b, h, f as the red group and c, e, i as the blue group.

(ii) This is planar. Here is an attempt to describe a plane redrawing of
it :

(a) drag the edge {a, e} outside f , the edge {a, c} outside b, and the edge
{e, c} outside d.

(b) then drag the edge {e, b} outside f , the edge {a, d} outside b and the
edge {c, f} outside d.

(iii) This is not planar. There is a K3,3 obstruction. Remove f so that
each of the paths e − f − b and g − f − b is contracted into a single edge.
Then remove a and all its adjacent edges. The remaining graph has 6 ver-
tices b, c, d, e, g, h and is a K3,3, with b, d, h as the red group and c, e, g as
the blue group.

2. Let V, E, R denote the number of vertices, edges and regions for G.
Euler’s formula states that

V − E + R = 2. (1)

Consider the sum
∑

regions r
nr,

where nr is the number of edges along the boundary of the region r. We are
told that nr ≥ 5 for every region, hence the sum is at least 5R = 5·53 = 265.
On the other hand, since the graph is plane, every edge is counted twice in
the sum, so the sum is 2E. It follows that 2E ≥ 265 ⇒ E ≥ 133. Thus from
(1) we obtain that V = 2 + E −R ≥ 2 + 133− 53 = 82, v.s.v.

3 (i) It is clear that there is no matching of size greater than |X| − δG,
as for any subset A of X, at most Γ(A) of its vertices can be matched.
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Conversely, let G = (X, Y,E) be bipartite with deficiency δG ≥ 0. Define
a new bipartite graph G∗ = (X∗, Y ∗, E∗) as follows :

(a) X∗ = X,
(b) Y ∗ = Y t Z, where |Z| = δG,
(c) E∗ = E t {{x, z} : x ∈ X, z ∈ Z}.

In words, we add δG vertices to Y and join each of these new vertices to
every vertex in X. The point is that the resulting graph has deficiency zero,
so by Hall’s theorem it has a perfect matching for X. But in this matching,
at most |Z| = δG of the vertices of X will be matched to a vertex in Z. The
rest of the matching thus constitutes a matching of size at least |X| − δG in
the original graph G. So we’re done !

(ii) Hmmm ... the following proof seems to work for |X| ≤ 14.

Suppose δG ≥ 3. This implies the existence of a subset A of X such that

|A| ≥ |Γ(A)|+ 3. (2)

On the other hand, we have the following sequence of inequalities :

4|A| ≤
∑

x∈A

deg(x) ≤
∑

y∈Γ(A)

deg(y) ≤ 5|Γ(A)|. (3)

I’ll explain the three inequalities in turn :
- The first one follows from assumption (a).
- The second one follows from the fact that the right-hand sum counts

all edges protruding from the vertices of Γ(A) whereas the left-hand sum
only counts those among these edges which have their other endpoint in A.

- The third one follows from assumption (b).

So from (3) we have that

4|A| ≤ 5|Γ(A)|.
Substituting this into (2) yields that |A| ≥ 15. Thus we obtain a contradic-
tion whenever |X| ≤ 14, as A is a subset of X.

4. The only prime triplet is p = 3. For let n, n + 2, n + 4 be three con-
secutive odd numbers. Modulo 3 these are congruent to n, n + 2, n + 1
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respectively, i.e.: three consecutive numbers (after reordering). But among
three consecutive numbers, we always have a multiple of 3, and 3 itself is
the only such number which is also a prime.

5. Det är lätt att se att SGD(18, 29) = 1 eftersom 29 är ett primtal. Därför
vet vi att det finns heltal x0, y0 s̊a att

18x0 + 29y0 = 1. (4)

Vi hittar först en lösning till (4) genom att köra Euklides algoritm fram och
tillbaka. Fram̊at f̊ar vi

29 = 1 · 18 + 11,
18 = 1 · 11 + 7,

11 = 1 · 7 + 4,

7 = 1 · 4 + 3,

4 = 1 · 3 + 1,

3 = 3 · 1 + 0.

Bak̊at f̊ar vi d̊a

1 = 4− 3
= 4− (7− 4)

= 2 · 4− 7
= 2 · (11− 7)− 7

= 2 · 11− 3 · 7
= 2 · 11− 3 · (18− 11)

= 5 · 11− 3 · 18
= 5 · (29− 18)− 3 · 18

= 5 · 29− 8 · 18.

Därmed har vi hittat lösningen x0 = −8, y0 = 5. Genom att multiplicera
dessa med 2500 s̊a f̊ar vi en lösning (x1, y1) till

18x + 29y = 2500, (5)

nämligen x1 = −20000, y1 = 12500. Den allmäna lösningen till (5) ges d̊a av

x = −20000 + 29n, (6)
y = 12500− 18n (7)
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där n är ett godtyckligt heltal. Vi är nu intresserade av lösningar för vilka
b̊ade x > 0 och y > 0.

Å ena sidan

x > 0 ⇔ −20000 + 29n > 0 ⇔ 29n > 20000 ⇔ n ≥ 690. (8)

Å andra sidan

y > 0 ⇔ 12500− 18n > 0 ⇔ 18n < 12500 ⇔ n ≤ 694. (9)

Fr̊an (8) och (9) f̊ar vi fem möjligheter för n, nämligen n = 690, 691, 692, 693, 694.
Till sist sätter vi in dessa åtta värden i (6) och (7) s̊a f̊ar vi fem lösningar :

x = 10, y = 80 x = 39, y = 62 x = 68, y = 44, x = 97, y = 26 x = 126, y = 8.

6. 108 = 22 · 33 so φ(108) = 108 ·
(
1− 1

2

)
·
(
1− 1

3

)
= 36. Hence, Euler’s

Theorem states that, if a is an integer relatively prime to 108, then

a36 ≡ 1 (mod 108).

Note that both 5 and 7 are relatively prime to 108. Hence (all congruences
are modulo 98)

574 = (536)2 · 52 ≡ 12 · 25 ≡ 25,

and

7111 = (736)3 · 73 ≡ 13 · 343 ≡ 19.

Thus,

(574 + 7111 + 3)35 ≡ (25 + 19 + 3)35 = 4735.

Since 47 is a prime, it is also relatively prime to 108, so we can apply Euler’s
theorem again. Thus

4735 ≡ 4736 · 47−1 ≡ 1 · 47−1 ≡ 47−1.

So it remains to compute the inverse of 47 modulo 108. To do this, we run
Euclid back and forth, just as in the previous exercise. Forwards, we get

108 = 2 · 47 + 14,
47 = 3 · 14 + 5,

14 = 2 · 5 + 4,
5 = 1 · 4 + 1,
4 = 4 · 1 + 0.
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Backwards, we then obtain

1 = 5− 4
= 5− (14− 2 · 5)

= 3 · 5− 14
= 3 · (47− 3 · 14)− 14

= 3 · 47− 10 · 14
= 3 · 47− 10 · (108− 2 · 47)

= 23 · 47− 10 · 108.

From this we can read off that 23 ≡ 47−1 (mod 108). So the final answer is
23.

7 (i) Every positive integer n has a unique expression as 2f(n) ·u, where f(n)
is a non-negative integer and u is an odd number. The following 3-coloring
now works :

‘Color n red if f(n) ≡ 0 (mod 3), color n blue if f(n) ≡ 1 (mod 3), and
color n green if f(n) ≡ 2 (mod 3).’

I’ll show there are no red solutions to x + 2y = 4z - the proof is similar for
the other colours. So suppose (x, y, z) was a red solution. Since x, y, z are
all red, there exist non-negative integers a, b, c and odd numbers u1, u2, u3

such that

x = 23au1, y = 23bu2, z = 23cu3,

and hence the assumption is that

23au1 + 2 · 23bu2 = 4 · 23cu3,

in other words that

23au1 + 23b+1u2 = 23c+2u3. (10)

Now the number on the right of (10) is green. I claim that that on the left
must be red or blue : if so, then the two sides can’t be equal - contradiction
and we’re done !

There are two cases to consider. If b ≥ a, then write the left side as 23au4

where u4 = u1+23b−3a+1u2. Since u4 must be odd, we have a red number. If
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b < a then instead write the left side as 23b+1u5 where u5 = 23a−3b−1u1 +u2.
Since u5 is odd, we have a blue number, thus establishing our claim.

(ii) Whether or not such a 3-colouring of R exists is independent of the
Zermelo-Fraenkel axioms of set theory1. If you have no idea what that
means, well don’t worry about it for the exam at least !

1This was only proven very recently, like in the last couple of years.
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