Torsdag 1/2

Before solving the exercises in Section 1.7, it is worth noting the following
fact. Recall that in class we defined linear independence of vectors vy, ..., vy
as meaning that every vector that can be expressed as a linear combination
of them can be done so in only one way. Now we have :

Proposition Let A be an m x n matriz. The following statements are all
equivalent to the columns of A being linearly independent vectors in R™ :

(i) the linear transformation x — Ax from R™ to R™ is injective
(ii) for each b € R™ the equation Az =b has at most one solution
(i) the only solution to Az =0 isz =0

(iv) every column of an echelon form of A contains a pivot.

PROOF : The equivalence of our definition and (ii) follows from the fact
that the matrix equation Az = b expresses b as a linear combination of the
columns of A. Statements (i) and (ii) are equivalent by definition. That (ii)
is equivalent to (iii) follows from Theorem 6, p.53. One then just needs to
observe that (iii) is equivalent to (iv).

1.7.6 The following sequence of row operations

R3 — 4R3 + Ry,
Ry +— 4R4 + 5Ry,
R3 — R3 — 3Ry,
Ry — R4 + Ry,
Rs < Ry

reduces the matrix to the echelon form

-4 -3 0
0 -1 4
0 0 28
0O 0 0

Since every column contains a pivot, we deduce that the columns of the
original matrix are linearly independent in this case.

1.7.8 This is a 3 x 4 matrix. As shown in class, since 3 < 4, this means



that the corresponding linear transformation from R* to R? cannot be in-
jective. By part (i) of the above Proposition, it follows that the columns of
the matrix are not linearly independent.

If one wants, one can go further and by the usual Gauss elimination
process, find numbers z1, 2, 3, T4, not all zero, such that

1 -3 3 -2 0
z1| -3 | +x2 7 +z3| -1 | +x4 2 =10
0 1 —4 3 0

1.7.22 (a) True.
(b) False. For example take

1 2
v = 2 , V2 4
3 6

We have two vectors with three entries each, but v9 = 2v; so the two vectors
are not linearly independent.

(¢) True. What is stated is that there are some constants ¢; and co such
that z = ¢z + coy. To put it another way, the vector v := (c1,c2,1)T solves
Av = 0 where A is the matrix with columns z,y and z.

(d) False. This is just a reformulation of (b).

1.7.34 This is true. For any constant ¢, the vector (0,0,¢,0)” solves Az = 0
where A is the 4 X 4 matrix whose columns are vy, v9,v3 and v4.

1.7.36 False. This could be true, but doesn’t have to be, since the set
{v1,v2,v4} could already be linearly dependent. What IS always true is
that a finite set of vectors is linearly independent if none of them can be
expressed as a linear combination of the others.

1.7.38 True. In general, any subset of a linearly independent set of vectors
is still linearly independent.

1.8.13 T is a reflection in the origin. Tu = ( :g ) and Tv = ( _24 )

1.8.14 T is a contraction by a factor of 2. We have Tu = ( 5/2 ) and

ne (7). |



1.8.15 T is a projection onto the y-axis. Tu = ( (2) ) and Tv = ( 2 )

1.8.16 T is a reflection in the line y = z. We have Tu = ( 2 ) and

e (%) 5

1.8.20 If you think about it for a minute, you’ll see that this is just another

way of saying that the columns of A are v; and vq, i.e.: A = ( _72 _53 )
1.8.21 (a) True.

(b) False. Rather R? is the codomain.

(c) False, unless A is surjective. Note the subtle difference in the meaning
of the terms range and codomain : see p.73-4 for the definitions.

(d) True : this is Theorem 10, p.83. Note that there is a very confusing
sentence on p.77 which reads

"Every matriz transformation is a linear transformation. Important ex-
amples of linear transformations that are not matriz transformations will be
discussed in Chapters 4 and 5.

This text suggests that the answer to the present exercise should be FALSE.
However, the text is rubbish in the context of linear transformations from
R” to R™ or, more generally (in the language of Chapter 4), in the context
of finite-dimensional vector spaces.

Since infinite-dimensional vector spaces are not discussed at all in this
course (in which context the text above becomes valid), please ignore this
text completely.

1.8.32 The point here is that the map f(z) = |z| is not a linear map from
R to R. Namely, it is not true for arbitrary real numbers z and y that

|z +y| = |z| + |yl-

Indeed, this equality holds if and only if z and y have the same sign.

For the present exercise, we get a counterexample to T being linear by
choosing input vectors (1, z2) and (y1,¥2) in which z2 and y2 have opposite
signs.



1.9.6 It is already given that
1 1 0 3
r(0)-(o) 2(3)-(1)

Thus the matrix of 1" is ( (1) i’ )
1.9.8 The first reflection takes a point (z,y) to (—z,y) and the second

then takes this to (y, —z). Thus T ( ; ) = ( .y ) In particular,

(o) =(5) war(s

So the matrix of T is ( _01 é >

<

1.6.6 Write the reaction as
3)1(N&.3PO4) + $2(Ba(NO3)2) — x3(Ba3(PO4)2) + :v4(NaN03).

Equating the number of atoms of, respectively, Na, P, Ba, N and O gives
the following system of 5 equations in the 4 unknowns z1,x2, T3, %4 :

3z1 = 34,
T1 = 273,
To = 33,
2x9 = 14,
4x1 + 629 = 8x3 + 3x4.

This is a pretty easy system to solve (use Gauss elimination if you like). The
general solution has x4 as a free parameter and is given by

il 1/3
Z9 . 1/2
zs | T 1/6
T4 1

Thus, since we are only interested in solutions in which each z; is an integer,
the simplest way to balance the equation is to set

.T1=2, :L‘2=3, $3=1, .’13426.



1.6.12 (a) Equating the inward and outward traffic flows in each of the 4
junctions A,B,C and D gives respectively the following four equations in the
unknowns z1, ..., z5 :

1 =40 4 x4 + 23,
200 = z1 + z9,

z9 + 3 = 100 + x5,
x4 + x5 = 60.

The augmented matrix for this system is

10 -1 -1 0 40
11 0 0 0 200
01 1 0 -1 100
00 0 1 1 60

The sequence of row operations
Ry~ Ro— Ry, R3+— R3— Ry, Ry+— Ry+ R3, R3+— —Rj3

produces the echelon form

10 -1 -1 0 40
01 1 1 0 160
00 0 1 1 60
00 0 0 0 O

We can choose 3 and x5 as free parameters, and the general solution is then

1 -1 100
-1 1 100

Span 1 , 0 + 0
0 -1 60

0 1 0

(b,c) If that road is closed then z4 = 0. Then z5 = 60 and the general
solution now involves only one free parameter and can be written as

1 40
-1 160
Span 1 + 0
0 0
0 60



Here z3 is the free parameter. Assuming z3 must be non-negative (a one-way
road system), the minimum value of 21 equals 40, and is achieved by taking
x3 = 0. In that case, the unique full solution is

1 =40, o =160, 3 =1x4 =0, x5 = 60.
Tillagg

I wish to finish the discussion of the three facts I wrote on the board at the
end of the last lecture. Recall what these were :

If A is an m X n matrix, then the corresponding linear transformation from
R™ to R™

(i) cannot be surjective if n < m,
(ii) cannot be injective if n > m,
(iii) is injective if and only if it is surjective, when n = m.

Already (i) was discussed in class. Note that (iii) follows from the argument
I used in solving exercise 1.4.34 on Tuesday, since this argument applies to
any number of dimensions, not just three.

Part (ii) is explained by similar arguments. Multiplication by A is injective
if and only if (see the Proposition at the beginning of this document) the
equation Az = 0 has only the trivial solution £ = 0. But if n < m then the
matrix A has more columns than rows, so the RREF form of A must have
free parameters. Thus there will unavoidably be infinitely many solutions to
Az = 0.

Intuitively, what part (ii) says is that you can’t map a higher dimensional
space in a 1-1 manner onto a lower dimensional space, by a rigid mapping
like a linear transformation. Some of the dimensions have to get ‘squashed
to a point’, and then you’re not 1-1. If you want a picture, think of mapping
a plane onto a line.
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4.5.22 Standardbasen till P3 ar
e =1, ey =1, 63:t2, ey = t3.
I termer av standardbasen ges de fyra Laguerre polynomen av

e;, ey —ey, 2e; —4ey+e3, 6e; — 18es + 9e3 — ey4.

Dessa representeras alltsd med koordinatvektorerna

1 1 2 6
0 -1 —4 —18
0|’ 0 ’ 1 ’ 9
0 0 0 -1

Laguerre polynomen utgoér alltsa en bas for P3 om och endast om dessa
fyra vektorer spianner upp R*, dvs om och endast om 4 x 4 matrisen A vars
kolonner dr dessa vektorer dr inverterbar. Vi har att

1 1 2 6

0 -1 -4 -18
A= 0 0 1 9

0O 0 0 -1

Matrisen &r triangulir och ddrmed inverterbar (med determinant
1-(-1)-1-(-1)=1).

4.6.4 Echelonformen B har tre rader skilda fran nollvektorn sa rank(B) =
rank(A) = 3. A har 6 rader och dérfér dr dim Nul(4) = 6— rank(A) =
6 — 3 = 3. De tre forsta raderna i antingen B eller A utgdr en bas for
Row(A). Kolonner nr. 1,2 och 4 innehaller pivotelementen, och dessa kolon-
ner i A utgor en bas for Col(A). Vi hittar en bas till Nul(A4) genom att 16sa
Bz = 0 via baksubstitution. Hir ir x = (z1, 29, ..., z¢)? och z3, x5, z¢ dr de
fria variablerna. Vi kollar att

T4 = T5 + 2z,
r9 = X3 — 7.’E5 — 3$6,

Ir1 — 21‘3 - 9.T5 - 2:136,



och didrmed ges den allménna l6sningen till Bz = 0 av

( 2 -9 -2 )
1 -7 -3
1 0 0
QI3 0 + x5 - 1 + zg - 9 123,25, € R
0 1 0
k 0 0 1 )

De tre vektorerna ovan utgdr da en bas for Nul(A).

4.6.15/16 For en m x n matris giller 4 ena sidan att (Sats 14, s.265)
rank A + dim Nul A = n,
och 4 andra sidan att
rank A < min{m,n}.

Dessa medfor att den minsta méjliga dimensionen av Nul(A) &r n—min{m, n},
dvs nollom n < m och n —m om n > m.
Svaren till dessa tva uppgifter dr ddrmed 2 resp. 0.

4.6.18 (a) Sant.

(b) Det ar lite otydligt vad som menas hir. Men vad som ar SANT éar fol-
jande : om en viss grupp av rader i matrisen dr linjirt oberoende (resp.
beroende) och vi utfér radoperationer pa dessa, som inte blandar in andra
rader, sa forblir dessa rader linjért oberoende (resp. beroende) i den fram-
tagna matrisen.

(¢) Sant.

(d) Sant (per definition).

(e) Sant : detta ar en omformulering av vad jag sa pa forelasningen, att nir
man utfor radoperationer pa en matris sa dndras inte dess radrum.
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5.1.18 The eigenvalues are 4,0 and -3, i.e.: the entries on the main diagonal
of the matrix. This is the case for any triangular matrix (Theorem 1, p.306),
a fact which is well worth knowing. Note that it is a consequence (see the
proof of the theorem) of the fact that the determinant of a triangular matrix
is the product of the diagonal entries (Theorem 2, p.189).

5.1.22 (a) False. ¢ could be the zero vector. Otherwise, the claim is true.
(b) False. A single eigenspace can have dimension greater than one.

(¢) Ignore, we haven’t discussed stochastic matrices.

(d) False. The claim is true for certain matrices, for example triangular ones.
(e) True. For an eigenvalue A, the corresponding eigenspace is the nullspace
of the matrix A — A\I,.

5.1.27 (see also 5.2.20) A is an eigenvalue of A if and only if
det(A — A\I,) = 0. Any matrix has the same determinant as its transpose
(Theorem 5, p.196). Now (A — AI,)T = AT — (\I,)T = AT — \I,,, since I,
is a diagonal, and hence symmetric, matrix.

Thus det(A — AI,;) = 0 if and only if det(A” — AI,) = 0. In other words,
) is an eigenvalue of A if and only if it is an eigenvalue of AT, v.s.v.

5.2.14 I'll do more than what is asked, i.e.: I'll find all eigenvalues and
eigenvectors, and hence diagonalise the matrix. This is the kind of basic
thing you need to be able to do.

We have

5—A =2 3
A—- A3 = 0 1—X 0
6 7 —2-X

The characteristic polynomial p(\) for A is the determinant of this matrix.

This is most easily computed by a cofactor expansion along the second row.
Thus we find that

=N P

A=N[6-A)(=2-2)—6-3] =1 -A)A2—3x—28) = (1= X)(A=T)(A+4).



The eigenvalues of A are the solutions of p(A) = 0, i.e.: there are three distin-
ct eigenvalues Ay = 1, Ay = 7, A3 = —4. Let us now find the corresponding
eigenvectors :
A1 = 1 : We must compute the nullspace of
4
A-I3=1 0 0
6 7 -3

The row operations Ry <> R3, Ro — 2Ry — 3Ry, Ry — %Rg take the matrix
to the echelon form

4
0 4 -3 |,
0 0

from which we deduce that the Aj-eigenspace is spanned by the vector
vy := (-3,6,8)T.

Ao = 7 : We must compute the nullspace of

-2 -2 3
A—-TI3 = 0 -6 0
6 7 -9

The row operations Ry <> R3, Ro — Ry +3R1, R3+— R3 — 6Ro, Ry — —R»
take the matrix to the echelon form

2 -2 3
o 1 0|,
0 0 0

from which we deduce that the A,-eigenspace is spanned by the vector
vy 1= (3,0,2)7.

A3 = —4 : We must compute the nullspace of
9 -2 3

A+4I3=| 0 5 0

6 7 2

10



The row operations Ry <> R3, Ry — 3Ry —2R1, R3 — 5R3— Ry, Ry — %Rg
take the matrix to the echelon form

9 —2 3
0o 1 0|,
0 0 0

from which we deduce that the As-eigenspace is spanned by the vector
vy := (—1,0,3)T.

Finally, we can now diagonalise A. We have that

Pl'AP=D
where
(R A 000
P = V1 V2 V3 , D= 0 )\2 0
R 0 0 As
Thus in this exercise,
-3 3 -1 10 0
P= 6 0 O , D= 0 7 0
8 2 3 0 0 —4

5.3.14 Since there are only two eigenvalues, we’ll be able to diagonalise if
and only if one of the eigenspaces is 2-dimensional. So let’s see :

A1 = 4 : We must compute the nullspace of

00 -2
A-4;=| 2 1 4
00 1

The row operations Ry <> Ry, R3 — 2R3+ Ro, Ry — —%RQ take the matrix
to the echelon form

2 1 4
00 1],
000

from which we deduce that the \j-eigenspace is one-dimensional and span-
ned by the vector v := (1,-2,0)7.

11



Ao =5 : We must compute the nullspace of

-1 0 -2
A—5I3 = 2 0 4
0 0 O

The row operations Re — Ry + 2R;, R; — —R; take the matrix to the
echelon form

1
0
0

o O O

2
01,
0

from which we deduce that the As-eigenspace is two-dimensional and span-
ned by the vectors vo := (0,1,0)” and v3 = (=2,0,1)T.

Since we have a two-dimensional eigenspace, we can diagonalise A. Thus
PlAP=D

where

1 -2 0 400
Pp=| -2 0 1|, p=[050
0 1 0 005

5.3.21 (a) False. The word diagonal should be inserted between ‘some’ and
‘matrix’ for the right definition of diagonalisability.

(b) True. One can take P to be the matrix whose columns are such a basis
of eigenvectors.

(c) False. If all the eigenvalues are distinct then A is definitely diagonali-
sable. This is sometimes true even when there are multiple eigenvalues, but
not always. Note that, counting multiplicities, there are always n complex
eigenvalues for an n X n matrix.

(d) False. A matrix is invertible if and only if zero is not an eigenvalue. A
simple example of a diagonalisable matrix with zero as one of its eigenvalues

is any diagonal matrix with a zero on the diagonal, e.g.: ( g (1) )

5.3.22 (a) False. Any matrix has infinitely many eigenvectors, because the

eigenvectors are grouped into eigenspaces. What is TRUE is that A is dia-
gonalisable if it has n linearly independent eigenvectors.

12



(b) False, but the converse is true : see 5.3.21(c) above.
(¢) True. See class notes. This is where we got the eigenvalue equation from.
(d) False. These are quite different concepts.

5.3.26 Yes it is possible. The third eigenspace will either be one- or two-
dimensional, and A will be diagonalisable if and only if the latter case holds.

5.3.28 An n x n matrix has n linearly independent eigenvectors if and only
if it is diagonalisable (see 5.3.22(a) above). Thus we can reformulate the
question as :

‘Show that if a square matrix A is diagonalisable, then so is AT’

So suppose A is diagonalisable, i.e.: suppose there exists an invertible matrix
P and a diagonal matrix D such that

A=PDP
Transpose both sides. Thus
AT — (PDPfl)T — (Pfl)TDTPT — QAQfl’

where we have set @ := (P~1)T and A := DT. Obviously Q is invertible
since P is, and A is diagonal since the transpose of a diagonal matrix is
itself. Thus A" is also diagonalisable, v.s.v.

5.4.14 The basis should consist of eigenvectors of A. The characteristic
equation for A is

0=pAN)=6G-XN1=-XN=-21=X2—6A—16=(\—8)(\+2),

so we have the distinct eigenvalues Ay = 8, Ay = —2. One then checks that
the corresponding eigenspaces are spanned by the vectors vy := (1,—1)7
and vy == (3,7)7.

Thus we can take B := {v1,v2}.

13
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6.3.22 (a) Sant. Jag bevisade detta pa foreldsningen i mandags : om x €
W s& innebér det att & -w = 0 for alla w € W. Men om  sjilvt &r ocksa i
W sé foljer speciellt att ¢ -x = 0. Men - = ||z||? s& ||z|| = 0, dvs z = 0.
(b) Sant. Varje term har formen

Y-u;
2 )
(\qu~\l2> '

som dr ortogonalprojektionen av y pa det 1-dimensionella underrummet som
spanns upp av u;.

(c) Sant. Foljer fran entydigheten av ortogonaldecompositionen.

(d) Falskt. Det dr snarare sjélva projyy (som jag har betecknat med ¢y )
som ar den basta uppskattningen till y inom W.

(e) Falskt. En sddan matris U satisfierar UTU = I,,, som jag visade i sam-
band med uppgift 6.2.24 (se Theorem 6, p.390). Om n = p s innebér detta
att UT = U~! och d& giller att UUT = I,, ocksi. S& pastdendet #r faktiskt
sant i fallet n = p.

I allminhet, dock, det som géller ges av Theorem 10, p.399, ndmligen att
UUTx #r lika med projektionen av & pa underrummet till R" som spinns
upp av kolonnerna till U. Alltsa UUTxz = & om och endast om z ligger i
detta underrum, dvs om och endast om x ligger i Col(U).
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