
Answers to even numbered exercises

1.1

20. The system is consistent for all values of h ∈ R. Moreover, there are
infinitely many solutions when h = −2.
22. h = −5/3.
23. True, false, true, true.
24. True, false, false, true.
34. T1 = 20, T2 = 27.5, T3 = 30, T4 = 22.5.

1.2

20 (a) h = 9, k 6= 6 (b) h 6= 9, any k (c) h = 9, k = 6.
21. False, false, true, true, false.
22. False, false, true, false, true.
24. No, since there will be a row of zeroes in the coefficient matrix to the
left of this pivot.
26. Back substitution will produce a unique solution.
28. There should be a pivot in each column of the coefficient matrix, but
not in the right-hand column of the augmented matrix.
30. x + y + z = 1 and x + y + z = 2.
32. About half as n → ∞ (I think, but don’t really care).
34. Matlab exercise.

1.3

23. True, false, true, true, false (u and v could be collinear).
24. True, true, false, true, true.

1.4

16. The echelon form of the augmented matrix is





1 −3 −4 | b1

0 −7 −6 | b2 + 3b1

0 0 0 | b1 + 2b2 + b3



 .
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Thus there is a solution if and only if b1 + 2b2 + b3 = 0.
23. False, true, false (true if we replace the words ‘augmented matrix’ by
‘coefficient matrix’), true, true, true.
24. True, true, true, true, false, true.

1.5

23. True, false, false, false, false (since they don’t say what p is).
24. False, true, false, true, true (assuming some solution exists).
26. See 24(e).

1.7

21. True (assuming they mean ONLY the trivial solution), false, true, true.
22. True, false, true, false.
24. The second row must have all zeroes.
26. In other words a1, a2, a3 are linearly independent. Then the echelon
form has exactly one row of zeroes.
28. 5 (if there were a row of zeroes in the echelon form of the matrix, which
we’ll call A, then there would be no solution to Ax = b for some b).
30. n.
34. True (really stupid question !).
36. False, whenever v1, v2 and v4 are already linearly dependent.
38. True. Any subset of a linearly independent set of vectors is linearly
independent. Equivalently, any superset of a linearly dependent set of vectors
is linearly dependent.

1.8

21. True, false, true, true, true.
22. True, true, false (it’s an ‘existence’ question), true, true.

1.9

4.
[

cos(−π/4) − sin(−π/4)
sin(−π/4) cos(−π/4)

]

=
1√
2

[

1 1
−1 1

]

.

23. True, true, false, false, false.
24. False, true, true, false, true.
32. m (see Theorem 12).

2



2.1

15. False, false, true, true, false.
16. False (true without the + signs), True, False, False, True.
22. In general, the columns of an m× n matrix M are linearly dependent if
and only if there is a non-zero vector x ∈ R

n such that Mx = 0.
So suppose the columns of B are linearly dependent. Thus there exists a

non-zero vector x such that Bx = 0. Multiply both sides of this equation on
the left by A, and we have A(Bx) = A · 0 = 0. But matrix multiplication is
associative, so A(Bx) = (AB)x. Thus (AB)x = 0 so, by the same reasoning
as before, the columns of AB must be linearly dependent.
24. Let b be given and multiply both sides of the equation AD = Im on the
right by b. This yields (AD)b = b. By associativity of matrix multiplication,
the left-hand side of this equals A(Db). But then we have indeed a solution
to Ax = b, namely x = Db.

2.2

9. True (in the sense that a right-inverse must always be a left-inverse too,

and vice versa), False, False (e.g.: A =

[

2 3
1 6

]

), True, True.

10. False, True, True, True, False.
12. Row reduction A ∼ I corresponds to left-multiplication by A−1 (thought
of as a product of elementary matrices). Performing the same row reduction
on B thus results in A−1B, v.s.v.
32. The matrix is not invertible, since the row operations R2 7→ R2 − 4R1,

R3 7→ R3 +2R1, R3 7→ R3−2R2 take it to the echelon form





1 −2 1
0 1 −1
0 0 0



.

2.3

11. True, True, False (unless A is invertible), True, True.
12. True, True, True, False, True.

2.8

16. The two vectors are linearly dependent (the first is −2 times the second),
hence not a basis for R

2.
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18. Yes. The vectors are linearly independent since the matrix with these
as columns reduces to the triangular matrix





1 −5 7
0 4 −7
0 0 −5



 .

20. No, there’s four of them and dim(R3) = 3.
22 (a) False (the condition is necessary but not sufficient).
(b) True (c) True.
(d) False (rather it is the set of those b for which the equation has a solution).
(e) False (rather the corresponding columns of A form a basis for Col(A)).

2.9

18 (a) True (b) True.
(c) False (rather it’s the number of free variables).
(d) True. (e) True.

20. Two (by Theorem 14 in this section).
22. Follows directly from the various theorems in this section, or those in
Section 4.5.
24. A matrix all of whose rows are the same non-zero vector in R

3 will do.
26. Because they span a 4-dimensional susbspace of Col(A) and subspace of
a vector space of the same dimension as the whole space must coincide with
it. This is most easily to follow from Theorem 11 in Section 4.5 in fact.

3.1

39. True, False (a subtle matter of terminology, since in the text the (i, j)-th
cofactor is defined to be the number Ci,j = (−1)i+j det Aij).
40. False, False (true if we replace ‘sum’ by ‘product’).

3.2

27. True (since by ‘row replacement operation’ he means adding to a row
some multiple of another : see page 197 and Theorem 3(a) on page 192),
True, True, False.
28. True, False, False, False.
32. det(rA) = rn(det A).
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3.3

26. A typical vector v in the set p + S is of the form v = p + s, for some
vector s ∈ S. Applying T and using linearity we have T (v) = T (p + s) =
T (p) + T (s), which is just a typical element of T (p) + T (S) since, by defini-
tion, T (S) = {T (s) : s ∈ S}.
32. Let T1, T2 be the names of the tetrahedra with sides e1, e2, e3 and
v1, v2, v3 respectively. By the formula for the volume of a tetrahedron given
in the text, we have that Vol(T1) = 1/6, since it has perpendicular height
one and its base is an equilateral triangle of side-length one, thus of area 1/2.

Now the linear transformation defined by T (ei) = vi, i = 1, 2, 3 trans-
forms T1 to T2. By definition, the matrix of this transformation is MT =
[v1 v2 v3], i.e.: the 3 × 3 matrix whose columns are the v-vectors. By the
geometric definition of determinant, we have that Vol T2 =
| detMT |· (Vol T1). Thus, by what we noted at the outset, it follows that

Vol(T2) = ±1

6

∣

∣

∣

∣

∣

∣

| | |
v1 v2 v3

| | |

∣

∣

∣

∣

∣

∣

,

the sign depending on whether the determinant is positive or negative.

4.1

4. I will try so say this in words. Draw any line L in the plane not passing
through (0, 0). Pick any point P on the line and let v be the vector ~OP .

Consider 2v. This is the vector ~OQ, where Q is the point along the line
through O and P , which is twice as far away from O as is P and in the same
direction. Clearly, this point is not on your line L, thus proving that L is
not a subspace of R

2.

20 (a) You need to know that a sum of two continuous functions is con-
tinuous, as is a scalar multiple of a continuous function (see Adams, Section
1.4, Theorem 6).
(b) Suppose f(a) = f(b) and g(a) = g(b). Then, clearly, (f + g)(a) =
(f + g)(b). Also (cf)(a) = (cf)(b), so the set of functions under considera-
tion is closed under addition and scalar multiplication, hence a subspace of
C[a, b].
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23. False, False (the opposite is true), False, True, False (they’re digital,
according to the waffle at the start of the chapter).
24. True, True, True (of itself),
False, though it is isomorphic to a subspace of R

3, for example the subspace
of all vectors whose z-component is zero,
False, since it doesn’t say what u and v are. The statement would be true
if it read instead : (ii) for any two vectors u and v in H , it is also the case
that u + v is in H (iii) if u is in H then so is cu, for any scalar c.

36. y is in Col(A) if and only if the system Ax = y has a solution. So
run the command A\y and see if you get an error message.

4.2

25. True, False, True, True (if he means that the equation is consistent for
EVERY b), True, True.
26. True, True, False, True, True, True (don’t bother yet as to why).
30. Let w1 and w2 be any two vectors in the range of T and c any scalar.
We must show that both w1 + w2 and cw1 are in the range of T .

Since both w1 and w2 are in the range of T there exist, by definition,
vectors v1 and v2 in V such that

T (v1) = w1, T (v2) = w2.

But T is linear, thus

T (v1 + v2) = T (v1) + T (v2) = w1 + w2

and

T (cv1) = cT (v1) = cw1.

This equations show that both w1 + w2 and cw1 are in the range of T , as
desired.

4.3

4. The matrix with these three vectors as its columns can be Gauss-reduced
to the diagonal matrix





2 1 −7
0 1 1
0 0 12



 .
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Thus, these three vectors are linearly independent and form a basis for R
3.

10. The matrix can be Gauss-reduced to




1 0 −5 1 4
0 1 −4 0 6
0 0 0 1 −3



 .

Take x3 and x5 as free variables, and perform back substitution to get that
a general element of the nullspace can be written as

x3 ·













5
4
1
0
0













+ x5 ·













−7
−6
0
3
1













.

The two vectors above then form a basis for the nullspace.
21. False, False, True, False, True.
22. False, True, True, False, False (rather the corresponding columns in A
itself).
30. Let A be the n × k matrix which has these vectors as its columns.
If these vectors formed a basis for R

n then, in particular, they would be
linearly independent. This would mean that Nul(A) would contain only the
zero vector. But since A has more columns than rows, there will remain
at least one free variable after Gauss elimination on A, and thus Nul(A)
contains non-zero vectors (see Section 1.5, for example, though I don’t know
what theorem exactly he wants you to use (and it doesn’t matter !)).
36, 38. Matlab exercises.
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4.4

10.





3 2 8
−1 0 −2
4 −5 7



.

15. True, False, False (P3
∼= R

4).
16. True, False (other way round), True (namely, if the plane passes through
the origin).

4.5

6. Write out the subspace more explicitly as














a ·









3
6
−9
−3









+ b ·









6
−2
5
1









+ c ·









−1
−2
3
1























.

Here the first vector is just -3 times the third one. So the space has dimension
2, and a basis is























6
−2
5
1









,









−1
−2
3
1























.

14. Both are 3-dimensional.
19. True, False (unless it goes through the origin), False, False (unless S
contains exactly n vectors), True.
20. False (see 4.1.24(d)), False (rather the number of FREE variables), False,
False (see 19(d)), True.
29. True, True, True.
30. False, True, False.

4.6

17. True, False (unless B was obtained from A without any row inter-
changes), True, False (unless A is square), ?? (don’t know what he means
and don’t care !).
18. False (see 4.3.22(e)), False, True, True, True.
30. They must be equal, since consistency means that b is a linear combi-
nation of the columns of A, hence adding b as a column to the matrix does
not increase the dimension of its column space.
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4.7

10.

[

2 3
−5 −8

]

and

[

8 3
−5 −2

]

respectively.

11. False, True.
12. True, False (rather it satisfies [x]C = P [x]B).

5.1

6. Compute





3 6 7
3 3 7
5 6 5









1
−2
1



 =





−2
4
−2



 = (−2) ·





1
−2
1



 .

Thus, yes, it is an eigenvector, with corresponding eigenvalue −2.
21. False (x must be non-zero), True, True, True, False (row operations can
change the eigenvalues of a matrix).
22. False (it’s true if x is not the zero vector), False (opposite true), True,
False, True.

5.2

18. h = 6.
20. We know that for any matrix M it holds that det M = det MT . Let λ
be a scalar. Then

det(A − λI) = det(A − λI)T = det(AT − λI).

Thus det(A − λI) = 0 if and only if det(AT − λI) = 0. In other words, λ is
an eigenvalue of A if and only if it is an eigenvalue of AT , v.s.v.
21. False, False, True, False (rather −5 is then an eigenvalue).
22. False (the volume equals | detA|), False, True,

False : as an example, take

[

1 1
0 1

]

. This is diagonal, so its only eigenvalue

is λ = 1. The row replacement R2 7→ R2−R1 produces the matrix

[

1 1
−1 0

]

.

One can check that the characteristic polynomial for this matrix is λ2−λ+1,
so there are two complex eigenvalues λ1,2 = 1

2

(

1 ±
√

3i
)

.
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24. Similarity means that there exists an invertible matrix P such that
B = P−1AP . Then

det B = det(P−1AP ) = (det P−1)(det A)(det P ) =

(

1

det P

)

(det A)(det P ) = det A, v.s.v.

30. Blah ...

5.3

21. False (D must be diagonal), True, False, False.
22. False (true if we add the words ‘linearly independent’), False (converse
true), True, False.

5.7

6. The solution is

x(t) =

[

x1(t)
x2(t)

]

=

[

5e−t − 2e−2t

5e−t − 3e−2t

]

= 5

[

1
1

]

e−t −
[

2
3

]

e−2t.

The origin is an attractor and the direction of greatest attraction is along
the line 2y = 3x.

6.1

6. 5

49





6
−2
3



.

8. 7.
19. True, true, true, false (rather Row(A) is orthogonal to Nul(A)), true.
20. True, false (rather |c|), true, true, true.
24. We have

||u ± v||2 = (u ± v) · (u ± v) = u · u + v · v ± 2(u · v) = ||u||2 + ||v||2 ± 2(u · v).

When we add, the terms ±2(u · v) cancel and we’re left with the right-hand
side.
26. W is the nullspace of the 1 × 3 matrix with the single row uT . So he’s
probably referring to some theorem that says that the nullspace of an m×n
matrix is a subspace of R

n. Geometrically, W is a plane through the origin
with normal vector u. Its equation is 5x − 6y + 7z = 0.
34. Blah ...
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6.2

23. True, true, false, true, false (rather ||y − ŷ||).
24. False, false (true if ||ui|| = 1 for each i = 1, ..., p), true, true, true.

6.3

21. True, true, false, true, true.
22. True, true, true, false (rather projW y), false (true when n = p).

6.4

17. False (true if c 6= 0), true, true.
18. True, true, true.

6.5

17. True, true, false (rather ≥), true, true.
18. True, false, true, false (true if AT A is invertible), ?? (don’t understand
what he means by ‘reliable’), True (I guess).

6.6

4. y = 1

10
(43 − 7x).

10 (a) The model is Ax = b where

A =













e−.02t1 e−.07t1

e−.02t2 e−.07t2

e−.02t3 e−.07t3

e−.02t4 e−.07t4

e−.02t5 e−.07t5













, x =

[

MA

MB

]

, b =













y1

y2

y3

y4

y5













.

7.1

2. Not symmetric.
4. Symmetric.
6. Not symmetric.
24. Check directly that Av1 = 10v1 and Av2 = v2. Thus we have at least
two eigenvalues, λ1 = 10 and λ2 = 1. The matrix A is symmetric, so we
know it must be orthogonally diagonalisable. Therefore, there must be a
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third eigenvector v3, which is orthogonal to both v1 and v2. But, since we’re
working in R

3, there is only one possibility for such a vector, up to a scalar
multiple, namely we can take

v3 = v1 × v2 =

∣

∣

∣

∣

∣

∣

~i ~j ~k
−2 2 1
1 1 0

∣

∣

∣

∣

∣

∣

= −~i +~j − 4~k.

Thus v3 =





−1
1
4



 must be an eigenvector. Now check directly that Av3 =

v3. Thus the eigenvalue here is also λ2 = 1, so this eigenspace is two-
dimensional.

We then have an orthogonal diagonalisation

A = PDP T ,

where

D =





10 0 0
0 1 0
0 0 1



 , P =





| | |
u1 u2 u3

| | |





and u1, u2, u3 are the normalised eigenvectors, i.e.:

u1 =
v1

||v1||
=

v1

3
, u2 =

v2

||v2||
=

v2√
2
, u3 =

v3

||v3||
=

v3√
18

.

Thus finally

P =





−2/3 1/
√

2 −1/
√

18

2/3 1/
√

2 1/
√

18

1/3 0 −4/
√

18



 .

26. True, true, false, true.
28.

(Ax) · y = (Ax)T y = (xT AT )y
A=AT

= (xT A)y = xT (Ay) = x · (Ay), v.s.v.
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