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Abstract. In 2000 Allen Schwenk, using a well-known mathematical model of matchplay
tournaments in which the probability of one player beating another in a single match is fixed
for each pair of players, showed that the classical single-elimination, seeded format can be
“unfair” in the sense that situations can arise where an indisputibly better (and thus higher
seeded) player may have a smaller probability of winning the tournament than a worse one.
This in turn implies that, if the players are able to influence their seeding in some preliminary
competition, situations can arise where it is in a player’s interest to behave “dishonestly”, by
deliberately trying to lose a match. This motivated us to ask whether it is possible for a
tournament to be both honest, meaning that it is impossible for a situation to arise where
a rational player throws a match, and “symmetric” - meaning basically that the rules treat
everyone the same - yet unfair, in the sense that an objectively better player has a smaller
probability of winning than a worse one. After rigorously defining our terms, our main result
is that such tournaments exist and we construct explicit examples for any number n ≥ 3 of
players. For n = 3, we show (Theorem 3.6) that the collection of win-probability vectors for
such tournaments form a 5-vertex convex polygon in R3, minus some boundary points. We
conjecture a similar result for any n ≥ 4 and prove some partial results towards it.

1. Introduction

In their final game of the group phase at the 2006 Olympic ice-hockey tournament, a surpris-
ingly lethargic Swedish team lost 3−0 to Slovakia. The result meant they finished third in their
group, when a win would have guaranteed at worst a second placed finish. As the top four teams
in each of the two groups qualified for the quarter-finals, Sweden remained in the tournament
after this abject performance, but with a lower seeding for the playoffs. However, everything
turned out well in the end as they crushed both their quarter- and semi-final opponents (6− 2
against Switzerland and 7− 3 against the Czech Republic respectively), before lifting the gold
after a narrow 3− 2 win over Finland in the final.

The Slovakia match has gained notoriety because of persistent rumours that Sweden threw
the game in order to avoid ending up in the same half of the playoff draw as Canada and Russia,
the two traditional giants of ice-hockey. Indeed, in an interview in 2011, Peter Forsberg, one of
Sweden’s top stars, seemed to admit as much1, though controversy remains about the proper
interpretation of his words. Whatever the truth in this regard, it certainly seems as though
Sweden were better off having lost the game.

Instances like this in high-profile sports tournaments, where a competitor is accused of de-
liberately losing a game, are rare and tend to attract a lot of attention when they occur. This
could be considered surprising given that deliberate underperformance in sport is nothing un-
usual. For example, quite often a team will decide to rest their best players or give less than
100% effort when faced with an ostensibly weaker opponent, having calculated that the risk
in so doing is outweighed by future potential benefits. Note that this could occur even in a
single-elimination knockout tournament, with a team deciding to trade an elevated risk of an
early exit for higher probability of success later on. Of course, in such a tournament it can
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never be in a team’s interest to actually lose. However, many tournaments, including Olympic
ice-hockey, are based on the template of two phases, the first being a round-robin event (ev-
eryone meets everyone) which serves to rank the teams, and thereby provide a seeding for the
second, knockout phase2 Teams are incentivized to perform well in the first phase by (1) often,
only higher ranking teams qualify for the second phase, and (2) standard seeding (c.f. Figure 1)
aims to place high ranking teams far apart in the game tree, with higher ranking teams closer
to lower ranking ones, meaning that a high rank generally gives you an easier starting position.

The example of Sweden in 2006 illustrates the following phenomenon of two-phase tourna-
ments. Since a weaker team always has a non-zero probability of beating a stronger one in
a single match, a motivation to throw a game in the first phase can arise when it seems like
the ranking of one’s potential knockout-phase opponents does not reflect their actual relative
strengths. Sweden’s loss to Slovakia meant they faced Switzerland instead of Canada in the
quarter-final and most observers would probably have agreed that this was an easier matchup,
despite Switzerland having finished second and Canada third in their group (Switzerland also
beat Canada 2− 0 in their group match).

The above phenomenon is easy to understand and begs the fascinating question of why
instances of game-throwing seem to be relatively rare. We don’t explore that (at least partly
psycho-social) question further in this paper. However, even if game-throwing is rare, it is still
certainly a weakness of this tournament format that situations can arise where a team is given
the choice between either pretending to be worse than they are, or playing honestly at the cost
of possibly decreasing their chances of winning the tournament.

In a 2000 paper [5], Allan Schwenk studied the question of how to best seed a knockout tour-
nament from a mathematical point of view. One, perhaps counter-intuitive, observation made
in that paper is that standard seeding does not necessarily benefit a higher-ranking players,
even when the ranking of its potential opponents accurately reflects their relative strengths.
Consider a matchplay tournament with n competitors, or “players” as we shall henceforth call
them, even though the competitors may be teams. In Schwenk’s mathematical model, the play-
ers are numbered 1 through n and there are fixed probabilities pij ∈ [0, 1] such that, whenever
players i and j meet, the probability that i wins is pij . Draws are not allowed, thus pij+pji = 1.
Suppose we impose the conditions

(i) pij ≥ 1/2 whenever i < j,
(ii) pik ≥ pjk whenever i < j and k 6∈ {i, j}.

Thus, for any i < j, i wins against j with probability at least 1/2, and for any other player
k, i has at least as high a probability of beating k as j does. It then seems unconstestable to
assert that player i is at least as good as player j whenever i < j. Indeed, if we imposed strict
inequalities in (i) and (ii) we would have an unambiguous ranking of the players: i is better than
j if and only if i < j. This is a very natural model to work with. It is summarized by a so-called
doubly monotonic n× n matrix M = (pij), whose entries equal 1

2 along the main diagonal, are
non-decreasing from left to right along each row, non-increasing from top to bottom along each
column and satisfy pij +pji = 1 for all i, j. We shall refer to the model as the doubly monotonic
model (DMM) of tournaments. It is the model employed throughout the rest of the paper.

In [5], Schwenk gave an example of an 8×8 doubly monotonic matrix such that, if the standard
seeding method (illustrated in Figure 1) were employed for a single-elimination tournament,
then player 2 would have a higher probability of winning than player 1. As an evident corollary,
assuming the same mathematical model one can concoct situations in two-phase tournaments
of the kind considered above in which it is a player’s interest to lose a game in the first phase
even when, say, in every other match played to that point, the better team has won.

2In 2006, the Olympic ice hockey tournament employed a minor modification of this template. There were
12 teams. In the first phase, they were divided into two groups of six, each group playing round-robin. The top
four teams in each group qualified for the knockout phase. The latter employed standard seeding (c.f. Figure 1),
but with the extra condition that teams from the same group could not meet in the quarter-finals. This kind
of modification of the basic two-phase template, where the teams are first divided into smaller groups, is very
common since it greatly reduces the total number of matches that need to be played.
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Figure 1. The standard seeding for a single-elimination knockout tournament
with 23 = 8 players. In general, if there are 2n players and the higher ranked
player wins every match then, in the ith round, 1 ≤ i ≤ n, the pairings will be
{j + 1, 2n+1−i − j}, 0 ≤ j < 2n+1−i.

Many tournaments consist of only a single phase, either round-robin3 or single-elimination.
As opposed to the aforementioned two-phase format, here it is not hard to see that it can never
be in a team’s interest to lose a game. Indeed, this is clear for the single-elimination format, as
one loss means you’re out of the tournament. In the round-robin format, losing one game, all else
being equal, only decreases your own total score while increasing the score of some other team.
As Schwenk showed, the single-elimination option, with standard seeding, may still not be fair,
in the sense of always giving a higher winning probability to a better player. The obvious way
around this is to randomize the draw. Schwenk proposed a method called Cohort Randomized
Seeding4, which seeks to respect the economic incentives behind the standard method5 while
introducing just enough randomization to ensure that this basic criterion for fairness is satisfied.
According to Schwenk himself, in email correspondence with us, no major sports competition
has yet adopted his proposal6.

Even tournaments where it is never beneficial to lose a match often include another source of
unfairness, in that players may face quite different schedules, for reasons of geography, tradition
and so on. For example, qualifying for the soccer World Cup is organized by continent, an
arrangement that effectively punishes European teams. The host nation automatically qualifies
for the finals and is given a top seeding in the group phase, thus giving it an unfair advantage
over everyone else. In the spirit of fair competition, one would ideally wish for a tournament
not to give certain players any special treatment from the outset, and only break this symmetry
after seeing how the teams perform within the confines of the tournament. Note that a single-
elimination tournament with standard seeding is an example of such “asymmetric scheduling”,
unless the previous performances upon which the seeding is founded are considered part of the

3or, more commonly, a league format, where each pair meet twice.
4It is easy to see that the standard method cannot result in a player from a lower cohort, as that term is

defined by Schwenk, having a higher probability of winning the tournament than one in a higher cohort.
5The standard format ensures the romance of “David vs. Goliath” matchups in the early rounds, plus the

likelihood of the later rounds featuring contests between the top stars, when public interest is at its highest.
Schenk used the term delayed confrontation for the desire to keep the top ranked players apart in the early
rounds.

6On the other hand, uniformly random draws are commonly employed. An example is the English FA Cup,
from the round-of-64 onwards.
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tournament.

The above considerations lead us to the question on which this paper is based. Suppose the
rules of a tournament ensure both

- honesty, meaning it is impossible for a situation to arise where it is in a player’s interest to
lose a game, and

- symmetry, meaning that the rules treat all the players equally. In particular, the rules should
not depend on the identity of the players, or the order in which they entered the tournament.

Must it follow that the tournament is fair, in the sense that a better player always has at
least as high a probability of winning the tournament as a worse one? Having defined our terms
precisely we will show below that the answer, perhaps surprisingly, is no. Already for three
players, we will provide simple examples of tournaments which are symmetric and honest, but
not fair. The question of “how unfair” a symmetric and honest tournament can be seems to be
non-trivial for any n ≥ 3 number of players. For n = 3 we solve this problem exactly, and for
n ≥ 4 we formulate a general conjecture. The rest of the paper is organized as follows:

• Section 2 provides rigorous definitions. We will define what we mean by a (matchplay)
tournament and what it means for a tournament to be either symmetric, honest or fair.
The DMM is assumed throughout.
• Sections 3 and 4 are the heart of the paper. In the former, we consider 3-player tourna-

ments and describe what appear to be the simplest possible examples of tournaments
which are symmetric and honest, but not fair. Theorem 3.6 gives a precise character-
ization of those probability vectors (x1, x2, x3) ∈ R3 which can arise as the vectors of
win-probabilities for the players in a symmetric and honest tournament7; here fairness
would mean x1 ≥ x2 ≥ x3.
• In Section 4 we extend these ideas to a general method for constructing symmetric,

honest and unfair n-player tournaments. We introduce a family of n-vertex digraphs
and an associated convex polytope A∗n of probability vectors in Rn and show that every
interior point of this polytope arises as the vector of win-probabilities of some symmetric
and honest n-player tournament. The polytope A∗n includes all probability vectors sat-

isfying x1 ≥ x2 ≥ · · · ≥ xn, but is shown to have a total of 3n−1+1
2 corners, thus yielding

a plethora of examples of symmetric and honest, but unfair tournaments. Indeed, we
conjecture (Conjecture 4.2) that the vector of win-probabilities of any symmetric and
honest n-player tournament lies in A∗n.
• Section 5 considers the notion of a frugal tournament, namely one which always begins

by picking one player uniformly at random to take no further part in it (though he
may still win). The tournaments constructed in Sections 3 and 4 have this property,
and the main result of Section 5 is, in essence, that frugal tournaments provide no
counterexamples to Conjecture 4.2.
• Section 6 introduces the notion of a tournament map, which is a natural way to view

tournaments as continuous functions. We describe its relation to the regular tournament
concept. Using this, we show (Corollary 6.4) that any symmetric and honest tournament
can be approximated arbitrarily well by one of the form described in the section. We
further provide three applications.

- The first is to strictly honest tournaments, which means, informally, that a player
should always be strictly better off in winning a match than in losing it. We show that
any symmetric and honest tournament can be approximated arbitrarily well by a strictly
honest one.

7These results may remind some readers of the notion of a truel and of the known fact that, in a
truel, being a better shot does not guarantee a higher probability of winning (that is, of surviving). See
https://en.wikipedia.org/wiki/Truel. Despite the analogy, we’re not aware of any deeper connection be-
tween our results and those for truels, nor between their respective generalizations to more than three “players”.
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- The second application is to tournaments with rounds. For simplicity, we assume in
the rest of the article that matches in a tournament are played one-at-a-time, something
which is often not true in reality. Extending the notion of honesty to tournaments with
rounds provides some technical challenges, which are discussed here.

- The final application is to prove that the possible vectors of win-probablities for
symmetric and honest n-player tournaments form a finite union of convex polytopes in
Rn, minus some boundary points. This provides, in particular, some further evidence in
support of Conjecture 4.2.
• In Section 7, we consider the concept of a futile tournament, one in which a player’s

probability of finally winning is never affected by whether they win or lose a given
match. We prove that, in a symmetric and futile n-player tournament, everyone has
probability 1/n of winning. This is exactly as one would expect, but it doesn’t seem to
be a completely trivial task to prove it.
• Finally, Section 8 casts a critical eye on the various concepts introduced in the paper,

and mentions some further possibilities for future work.

2. Formal Definitions

The word tournament has many different meanings. In graph theory, it refers to a directed
graph where, for every pair of vertices i and j, there is an arc going either from i to j or from j to
i. In more common language, a matchplay refers to a competition between a (usually relatively
large) number of competitors/players/teams in which a winner is determined depending on the
outcome of a number of individual matches, each match involving exactly two competitors.
We concern ourselves exclusively with matchplay tournaments8. Even with this restriction, the
word “tournament” itself can be used to refer to: a reoccurring competition with a fixed name
and fixed format, such as the Wimbledon Lawn Tennis Championships, a specific instance of
a (potentially reoccurring) competition, such as the 2014 Fifa World Cup, or a specific set of
rules by which such a competition is structured, such as “single-elimination knock-out with
randomized seeding”, “single round-robin with randomized scheduling”, etc. We will here use
tournament in this last sense.

More precisely, we consider an n-player tournament as a set of rules for how to arrange
matches between n players, represented by numbers from 1 to n. The decision on which players
should meet each other in the next match may depend on the results from earlier matches as
well as additional randomness (coin flips etc.). Eventually, the tournament should announce
one of the players as the winner. We assume that:

(1) A match is played between an (unordered) pair of players {i, j}. The outcome of said
match can either be i won, or j won. In particular, no draws are allowed, and no more
information is given back to the tournament regarding e.g. how close the match was,
number of goals scored etc.

(2) Matches are played sequentially one-at-a-time. In practice, many tournaments consist of
“rounds” of simultaneous matches. We’ll make some further remarks on this restriction
in Subsection 6.2.

(3) There is a bound on the number of matches that can be played in a specific tournament.
So, for example, for three players we would not allow “iteration of round-robin until
someone beats the other two”. Instead, we’d require the tournament to break a potential
three-way tie at some point, e.g. by randomly selecting a winner.

Formally, we may think of a tournament as a randomized algorithm which is given access to
a function PlayMatch that takes as input an unordered pair of numbers between 1 and n and
returns one of the numbers.

In order to analyze our tournaments, we will need a way to model the outcomes of individ-
ual matches. As mentioned in the introduction, we will here employ the same simple model

8Athletics, golf, cycling, skiing etc. are examples of sports in which competitions traditionally take a different
form, basically “all-against-all”.
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as Schwenk [5]. For each pair of players i and j, we assume that there is some unchanging
probability pij that i wins in a match between them. Thus, pij + pji = 1 by (1) above. We set
pii = 1

2 and denote the set of all possible n× n matrices by

Mn = {P ∈ [0, 1]n×n : P + P T = 1},

where 1 denotes the all ones matrix. We say that P = (pij)i,j∈[n] ∈ Mn is doubly monotonic if
pij is decreasing in i and increasing in j. We denote

Dn = {P ∈Mn : P is doubly monotonic}.

We will refer to a pair T = (T , P ) consisting of an n-player tournament T and a matrix
P ∈ Mn as a specialization of T . Note that any such specialization defines a random process
where alternatingly two players are chosen according to T to play a match, and the winner
of the match is chosen according to P . For a given specialization T of a tournament, we
let πk denote the probability for player k to win the tournament, and define the win vector
wv(T ) = (π1, . . . , πn). For a fixed tournament T it will sometimes be useful to consider these
probabilities as functions of the matrix P , and we will hence write πk(P ) and wv(P ) to denote
the corresponding probabilities in the specialization (T , P )

We are now ready to formally define the notions of symmetry, honesty and fairness.

Symmetry: Let T be an n-player tournament. For any permutation σ ∈ Sn and any P ∈Mn,
we define Q = (qij) ∈ Mn by qσ(i)σ(j) = pij for all i, j ∈ [n]. That is, Q is the matrix one
obtains from P after renaming each player i 7→ σ(i). We say that T is symmetric if, for any
P ∈Mn, σ ∈ Sn and any i ∈ [n], we have πi(P ) = πσ(i)(Q).

This definition is meant to capture the intuition that the rules “are the same for everyone”.
Note that any tournament can be turned into a symmetric one by first randomizing the order
of the players.

Honesty: Suppose that a tournament T is in a state where r ≥ 0 matches have already
been played, and it just announced a pair of players {i, j} to meet in match r + 1. Let π+i (P )
denote the probability that i wins the tournament conditioned on the current state and on i
being the winner of match r + 1, assuming the outcome of any subsequent match is decided
according to P ∈ Mn. Similarly, let π−i (P ) denote the probability that i wins the tournament
given that i is the loser of match r + 1. We say that T is honest if, for any possible such state
of T and any P ∈Mn, we have π+i (P ) ≥ π−i (P ).

The tournament is said to be strictly honest if in addition, for all P ∈ Mo
n, the above

inequality is strict, and all pairs of players have a positive probability to meet at least once
during the tournament. HereMo

n denotes the set of matrices (pij) ∈Mn such that pij 6∈ {0, 1}.
It makes sense to exclude these boundary elements since, if pij = 0 for every j 6= i, then player
i cannot affect his destiny at all. For instance, it seems natural to consider a single-elimination
tournament as strictly honest, but in order for winning to be strictly better than losing, each
player must retain a positive probability of winning the tournament whenever he wins a match.

To summarize, in an honest tournament a player can never be put in a strictly better-off
position by throwing a game. In a strictly honest tournament, a player who throws a game is
always put in a strictly worse-off position.

Remark 2.1. We note that the “state of a tournament” may contain more information than
what the players can deduce from the matches played so far. For instance, the two-player
tournament that plays one match and chooses the winner with probability 0.9 and the loser
with probability 0.1 is honest if the decision of whether to choose the winner or loser is made
after the match. However, if the decision is made beforehand, then with probability 0.1 we
would have π+1 = π+2 = 0 and π−1 = π−2 = 1. Hence, in this case the tournament is not honest.

Fairness: Let T be an n-player tournament. We say that T is fair if π1(P ) ≥ π2(P ) ≥ · · · ≥
6



πn(P ) for all P ∈ Dn.

The main purpose of the next two sections is to show that there exist symmetric and honest
tournaments which are nevertheless unfair.

3. Three-player tournaments

It is easy, though non-trivial, to show that every 2-player symmetric and honest tournament
is fair - see Proposition 3.4 below. Already for three players, this breaks down however. Let
N ≥ 2 and consider the following two tournaments:

Tournament T 1 = T 1,N : The rules are as follows:
Step 1: Choose one of the three players uniformly at random. Let i denote the chosen player

and j, k denote the remaining players.
Step 2: Let j and k play N matches.
- If one of them, let’s say j, wins at least 3N

4 matches, then the winner of the tournament is
chosen by tossing a fair coin between j and i.

- Otherwise, the winner of the tournament is chosen by tossing a fair coin between j and k.

Tournament T 2 = T 2, N : The rules are as follows:
Step 1: Choose one of the three players uniformly at random. Let i denote the chosen player

and j, k denote the remaining players.
Step 2: Let j and k play N matches.
- If one of them wins at least 3N

4 matches, then he is declared the winner of the tournament.
- Otherwise, i is declared the winner of the tournament.

It is easy to see that both T 1 and T 2 are symmetric and honest (though not strictly honest),
for any N . Now let p12 = p23 = 1

2 and p13 = 1, so that the matrix P = (pij) is doubly
monotonic, and let’s analyze the corresponding specializations T 1, T 2 of each tournament as
N →∞.

Case 1: Player 1 is chosen in Step 1. In Step 2, by the law of large numbers, neither 2 nor 3
will win at least 3N

4 matches, asymptotically almost surely (a.a.s.). Hence, each of 2 and 3 wins

T 1 with probability tending to 1
2 , while 1 a.a.s. wins T 2.

Case 2: Player 2 is chosen in Step 1. In Step 2, player 1 will win all N matches. Hence, each
of 1 and 2 wins T 1 with probability 1

2 , while 1 wins T 2.

Case 3: Player 3 is chosen in Step 1. In Step 2, neither 1 nor 2 will win at least 3N
4 matches,

a.a.s.. Hence, each of 1 and 2 wins T 1 with probability tending to 1
2 , while 3 a.a.s. wins T 2.

Hence, as N →∞, we find that

(3.1) wv(T1)→
(

1

3
,

1

2
,

1

6

)
and wv(T2)→

(
2

3
, 0,

1

3

)
.

Indeed, we get unfair specializations already for N = 2, in which case the dichotomy in Step 2
is simply whether or not a player wins both matches. One may check that, for N = 2,

wv(T1) =

(
3

8
,

5

12
,

5

24

)
and wv(T2) =

(
7

12
,

1

6
,

1

4

)
.

We can think of T 1 as trying to give an advantage to player 2 over player 1, and T 2 trying
to give an advantage to player 3 over player 2. It is natural to ask if it is possible to improve
the tournaments in this regard. Indeed the difference in winning probabilities for players 1 and
2 in T 1 is only 1

2 −
1
3 = 1

6 , and similarly the winning probabilities for players 3 and 2 in T 2 only

differ by 1
3 . In particular, is it possible to modify T 1 such that π1 goes below 1

3 or such that

π2 goes above 1
2? Is it possible to modify T 2 such that π3 goes above 1

3? The answer to both
of these questions turns out to be “no”, as we will show below. In fact, these two tournaments
are, in a sense, the two unique maximally unfair symmetric and honest 3-player tournaments.
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We begin with two lemmas central to the study of symmetric and honest tournaments for an
arbitrary number of players.

Lemma 3.1. Let T be a symmetric n-player tournament. If pik = pjk for all k = 1, . . . , n,
then πi = πj.

Proof. Follows immediately from the definition of symmetry by taking σ to be the permutation
that swaps i and j.

Lemma 3.2. Let T be an honest n-player tournament and let P = (pij)i,j∈[n] ∈ Mn. Then,
for any k 6= l, πk = πk(P ) is increasing in pkl.

As the proof of this lemma is a bit technical, we will delay this until the end of the section.
In applying Lemma 3.2, it is useful to introduce some terminology. We will use the terms buff

and nerf to refer to the act of increasing, respectively decreasing, one player’s match-winning
probabilities while leaving the probabilities between any other pair of players constant9.

Proposition 3.3. Let n ≥ 2 and let T be a symmetric and honest n-player tournament. For
any P ∈ Dn and any i > 1 we have πi(P ) ≤ 1

2 .

Proof. Given P ∈ Dn, we modify this to the matrix P ′ by buffing player i to be equal to player
1, that is, we put p′i1 = 1

2 and for any j 6∈ {1, i}, p′ij = p1j . By Lemma 3.2, πi(P ) ≤ πi(P ′). But

by Lemma 3.1, π1(P
′) = πi(P

′). As the winning probabilities over all players should sum to 1,
this means that πi(P

′) can be at most 1
2 .

Proposition 3.4. Every symmetric and honest 2-player tournament is fair. Moreover, for
any p ∈ [12 , 1], there is a specialization of an honest and symmetric 2-player tournament where
π1 = p and π2 = 1− p.

Proof. By Proposition 3.3, any doubly monotonic specialization of such tournament satisfies
π2 ≤ 1

2 and thereby π1 ≥ π2. On the other hand, for any p ∈
[
1
2 , 1

]
, if p12 = p and the

tournament consists of a single match, then π1 = p.

Proposition 3.5. Let T be a symmetric and honest 3-player tournament. Then, for any
P ∈ D3, π1 ≥ 1

3 , π2 ≤ 1
2 and π3 ≤ 1

3 .

Proof. The second inequality was already shown in Proposition 3.3.
Let us consider the bound for player 1. Given P we construct a matrix P ′ by nerfing player 1

such that he becomes identical to player 2. That is, we let p′12 = 1
2 and p′13 = p23. This reduces

the winning probability of player 1, i.e. π1(P
′) ≤ π1(P ), and by symmetry π1(P

′) = π2(P
′). We

now claim that this common probability for players 1 and 2 is at least 1
3 . To see this, suppose we

construct P ′′ from P ′ by buffing player 3 to become identical to players 1 and 2, i.e. p′′ij = 1
2 for

all i, j. On the one hand, this increases the winning probability of player 3, i.e. π3(P
′′) ≥ π3(P ′),

but on the other hand, by symmetry we now have π1(P
′′) = π2(P

′′) = π3(P
′′) = 1

3 . Hence,

π3(P
′) ≤ 1

3 and hence π1(P
′) = π2(P

′) ≥ 1
3 , as desired.

The bound for player 3 can be shown analogously. We first buff player 3 to make him identical
to player 2, and then nerf 1 to become identical to the other two players.

For each n ∈ N, let Pn denote the convex polytope of n-dimensional probability vectors, i.e.:

Pn = {(x1, . . . , xn) ∈ Rn : xi ≥ 0 ∀ i and

n∑
i=1

xi = 1}.

Let Fn ⊂ Pn be the closed, convex subset

Fn = {(x1, . . . , xn) ∈ Pn : x1 ≥ x2 ≥ · · · ≥ xn}.
We call Fn the n-dimensional fair set. A vector x = (x1, . . . , xn) ∈ Pn will be said to be
achievable if there is a matrix P ∈ Dn and a symmetric, honest n-player tournament T such
that wv(T , P ) = x. We denote by An the closure of the set of achievable vectors in Pn. Note
that Proposition 3.4 says that A2 = F2, whereas we already know from (3.1) that A3 6= F3.

9These terms will be familiar to computer gamers.
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Figure 2. Illustration of the set A3, the closure of the set of achievable win
vectors in symetric and honest 3-player tournaments. The set P3 is illustrated
by the triangle on the right with corners (top), (bottom left), (bottom right)
corresponding to the win vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. The
fair set F3 is the triangle with corners V3 = (1, 0, 0), V4 = (12 ,

1
2 , 0) and V5 =

(13 ,
1
3 ,

1
3). The dotted lines show the three inequalities π1 ≥ 1

3 (horizontal), π2 ≤ 1
2

(down right diagonal) and π3 ≤ 1
3 (up right diagonal), as shown in Proposition

3.5. This means that all achievable win vectors are contained in the remaining
set, i.e. the convex pentagon with corners V3, V4, V5 together with the unfair
points V1 = (13 ,

1
2 ,

1
6) and V2 = (23 , 0,

1
3). We show in Theorem 3.6 that every

point in this set, except possibly some points on the boundary, is achievable.
Thus A3 is equal to this pentagon.

The following result summarizes our findings for symmetric and honest 3-player tournaments.
This is illustrated in Figure 2.

Theorem 3.6. A3 =
{

(x1, x2, x3) ∈ P3 : x1 ≥ 1
3 , x2 ≤

1
2 , x3 ≤

1
3

}
.

Proof. Denote the above set by S. By Proposition 3.5, we know that A3 ⊆ S, so it only remains
to prove that S ⊆ A3. We start with two observations:

• S is a convex polygon with five vertices:

V1 =

(
1

3
,

1

2
,

1

6

)
, V2 =

(
2

3
, 0,

1

3

)
, V3 = (1, 0, 0), V4 =

(
1

2
,

1

2
, 0

)
, V5 =

(
1

3
,

1

3
,

1

3

)
.

• Suppose T 0, T 1 are specializations of symmetric and honest n-player tournaments T 0,
T 1 respectively, and with the same matrix P ∈Mn. For p ∈ [0, 1] we let T p denote the
tournament: “With probability p play T 0 and with probability 1− p play T 1”. Clearly,
T p is also symmetric and honest for any p and, if T p is its specialization for the matrix
P , then wv(T p) = p ·wv(T 0) + (1− p) ·wv(T 1).

It follows from these observations that, in order to prove that S ⊆ A3, it suffices to con-
struct, for each i = 1, . . . , 5, a sequence T i, N of symmetric and honest tournaments such that
wv(T i, N ) → Vi as N → ∞, where T i, N is the specialization of T i, N by the unique matrix

P = (pij) ∈ D3 satisfying p12 = p23 = 1
2 , p13 = 1.

Indeed, we’ve already constructed appropriate sequences for i = 1, 2, by (3.1), so it remains
to take care of i = 3, 4, 5.

Tournament T 3, N : Play N iterations of round-robin. Choose the winner uniformly at random
from among the players with the maximum number of wins.

9



It is clear that T 3, N is symmetric and honest and that wv(T 3, N )→ V3 as N →∞.

Tournament T 4, N : Play N iterations of round-robin. Choose a player uniformly at ran-
dom from among those with the minimum number of wins. Flip a coin to determine the winner
among the two remaining players.

It is clear that T 4, N is symmetric and honest and that wv(T 4, N )→ V4 as N →∞.

Tournament T 5: Just choose the winner uniformly at random. Obviously wv(T 5) = V5
and the tournament is symmetric and honest.

To conclude this section, we finally give the proof of Lemma 3.2.

Proof of Lemma 3.2. Fix k, l ∈ [n] and δ > 0. Consider two matrices P = (pij), P
′ = (p′ij) ∈

Mn such that p′kl = pkl + δ, p′lk = plk − δ and p′ij = pij whenever {i, j} 6= {k, l}. The proof will

involve interpolating between the specializations (T , P ) and (T , P ′) by a sequence of what we’ll
call “tournaments-on-steroids”.

For a given r ≥ 0 we imagine that we play the tournament T where, in the first r matches,
winning probabilities are determined by P ′, and after that according to P . The idea is that,
at the beginning of the tournament, we give player k a performance enhancing drug that only
works against l, and only lasts for the duration of r matches (regardless of whether he plays
in those matches or not). With some slight abuse of terminology, we will consider these as
specializations of T , and denote them by T r, and the corresponding winning probability of
a player i ∈ [n] by πri . Clearly T 0 = (T , P ), and taking m equal to the maximum number
of matches played in T , it follows that T m = (T , P ′). Hence, it suffices to show that πrk is
increasing in r.

Suppose we run the specializations T r and T r+1 until either T chooses a pair of players
to meet each other in match r + 1, or a winner is determined before this happens. As both
specializations evolve according to the same probability distribution up until this point, we may
assume that both specializations have behaved identically so far. The only way the winning
probability for player k can differ in the two specializations from this point onwards is if match
r + 1 is between players k and l. Assuming this is the case, let π+k denote the probability
that k wins the tournament conditioned on him winning the current match and assuming all
future matches are determined according to P , that is, according to the specialization (T , P ).
Similarly π−k denotes the probability that he wins conditioned on him losing the match. This

means that the winning probability for k is pkl · π+k + plk · π−k in T r and p′kl · π
+
k + p′lk · π

−
k in

T r+1. But by honesty, π+k ≥ π
−
k , from which it is easy to check that the winning probability is

at least as high in T r+1 as in T r. We see that, for any possibility until match r + 1 is played,
the probability for k to win in T r+1 is at least as high as in T r. Hence πr+1

k ≥ πrk, as desired.

Remark 3.7. (i) The above proof still works without assuming a bound on the number of
matches in T . The only difference will be that (T , P ′) is now the limit of T r as →∞.

(ii) If T is strictly honest, one can see that πr+1
k > πrk for any P ∈ Mo

n and any r such that
there is a positive probability that match r + 1 is between players k and l. Hence, πk(P ) is
strictly increasing in pkl in this case.

4. n-Player Tournaments

Already for n = 4, it appears to be a hard problem to determine which win vectors are
achievable. The aim of this section is to present partial results in this direction. As we saw in
the previous section, A3 can be completely characterized by the minimum and maximum win
probability each player can attain. Thus, a natural starting point to analyze An for n ≥ 4 is to

10



try to generalize this. For each i ∈ [n], let

Πi, n := max{xi : (x1, . . . , xn) ∈ An},
Πi, n := min{xi : (x1, . . . , xn) ∈ An}.

In other words, Πi, n (resp. Πi, n) is the least upper bound (resp. greatest lower bound) for the
win probability for player i, taken over all doubly monotonic specializations of all symmetric
and honest n-player tournaments.

It is not too hard to construct a sequence of doubly monotonic specializations of symmetric
and honest tournaments such that π1 → 1. Thus we have Π1, n = 1 and Πi, n = 0 for all i > 1.
Moreover, by Proposition 3.3, Πi, n ≤ 1

2 for all i > 1. We can extract a little more information
by using the the technique of “buffing and nerfing a player” which was used in Propositions 3.3
and 3.5.

Proposition 4.1. (i) For every n ∈ N, Πi, n is a decreasing function of i.
(ii) Π3, 4 ≤ 3

8 .

(iii) Π1, 4 ≥ 1
6 .

Proof. (i) Suppose, on the contrary, that Πi+1, n > Πi, n, for some n ≥ 2 and 1 ≤ i < n. Then
there must exist some symmetric and honest n-player tournament T and some matrix P ∈ Dn
such that πi+1(P ) > Πi, n. Now buff player i+ 1 until he is indistinguishable from i (according
to the same kind of procedure as in the proof of Proposition 3.3). Let P ′ be the resulting
matrix. By symmetry and honesty we then have Πi, n ≥ πi(P ′) = πi+1(P

′) ≥ πi+1(P ) > Πi+1, n,
a contradiction.

(ii) Let T be any symmetric and honest 4-player tournament and let P ∈ Dn. Perform the
following three modifications of the specialization:

Step 1: Buff player 3 until he is indistinguishable from 2.
Step 2: Nerf player 1 until he is indistinguishable from 2 and 3.
Step 3: Buff player 4 until he is indistinguishable from 1, 2 and 3.

Let P ′, P ′′ and P ′′′ be the corresponding matrices at the end of Steps 1, 2 and 3 respectively.
By Lemmas 3.1 and 3.2, we first have

(4.1) π3(P
′) ≥ π3(P ), π2(P

′) = π3(P
′).

The latter equality implies, in particular, that

(4.2) π1(P
′) ≤ 1− 2π3(P

′).

A second application of Lemmas 3.1 and 3.2 implies that

(4.3) π1(P
′′) ≤ π1(P ′), π1(P

′′) = π2(P
′′) = π3(P

′′).

A third application yields

(4.4) π4(P
′′′) ≥ π4(P ′′), π1(P

′′′) = π2(P
′′′) = π3(P

′′′) = π4(P
′′′) =

1

4
.

Putting all this together, we have

1 = 3π1(P
′′) + π4(P

′′) ≤ 3(1− 2π3(P
′)) +

1

4
⇒ π3(P

′) ≤ 3

8
⇒ π3(P ) ≤ 3

8
.

(iii) As before, let T be any symmetric and honest 4-player tournament and let P ∈ Dn. We
must show that π1(P ) ≥ 1

6 . Perform the following two modifications of the specialization:
Step 1: Nerf player 1 until he is indistinguishable from 2.
Step 2: Buff player 3 until he is indistinguishable from 1 and 2.

Let P ′, P ′′ be the corresponding matrices at the end of Steps 1 and 2 respectively. Twice
applying lemmas 3.1 and 3.2 we get

π1(P
′) ≤ π1(P ), π1(P

′) = π2(P
′),(4.5)

π3(P
′′) ≥ π3(P ′), π1(P

′′) = π2(P
′′) = π3(P

′′).(4.6)
11



From (4.6) we deduce that π3(P
′) ≤ 1

3 . By a similar argument, where in Step 2 one instead

buffs 4 to the level of 1 and 2, one shows that π4(P
′) ≤ 1

3 . Then, with the help of (4.5), we have

1 = π1(P
′) + π2(P

′) + π3(P
′) + π4(P

′) ≤ 2π1(P
′) + 2 · 1

3
⇒ π1(P

′) ≥ 1

6
⇒ π1(P ) ≥ 1

6
.

We next present a way to construct many symmetric and honest but unfair tournaments. For
each n ∈ N, let Gn denote the family of labelled digraphs (loops and multiple arcs allowed) on
the vertex set {1, 2, . . . , n} whose set of arcs satisfies the following conditions:

Rule 1: There are exactly two arcs going out from each vertex.
Rule 2: Every arc (i, j) satisfies j ≤ i.
Rule 3: If (i, j1) and (i, j2) are the two outgoing arcs from i, then j1 = j2 ⇒ j1 = 1 or j1 = i.

In other words, if the two arcs have the same destination, then either they are both loops or
the destination is vertex 1.

To each digraph G ∈ Gn we associate a vector v(G) = (v1, . . . , vn) ∈ Pn according to the rule

(4.7) vi =
indegG(i)

2n
.

Note that since, by Rule 1, each vertex has outdegree 2, we can also write this formula as

(4.8) vi =
1

n
+

indegG(i)− outdegG(i)

2n
.

In what follows, each vector v(G) will be interpreted as the win vector of a certain symmetric
and honest tournament. According to (4.8), the arcs of G instruct us how to “redistribute”
win probabilities amongst the players, starting from the uniform distribution, where each arc
“carries with it” 1

2n of probability.

Let A∗n denote the convex hull of all vectors v(G), G ∈ Gn. It is easy to see that A∗1 is the
single point (1) - the only digraph in G1 consists of the single vertex 1 with two loops. For

n ≥ 2, the number of digraphs in Gn is
∏n
i=2 2 +

(
i
2

)
since, for each i ≥ 2, the possibilities for

the two outgoing arcs from vertex i are:
- send both to i (1 possibility),
- send both to 1 (1 possibility),

- send them to distinct j1, j2 ∈ {1, . . . , i} (
(
i
2

)
possibilities).

The number of corners in the convex polytope A∗n is, however, much less than this. For a
digraph G to correspond to a corner of A∗n, there must exist some vector a = (a1, . . . , an) ∈ Rn
such that v(G) is the unique maximizer, in v(Gn), of the sum

∑n
i=1 aivi(G). We can assume

that the coefficients ai are distinct numbers. For a given vector a, a digraph which maximizes
the sum is determined by the following procedure: List the components of a in decreasing order,
say ai1 > ai2 > · · · > ain . Now draw as many arcs as possible first to i1, then to i2 and so on,
all the while respecting Rules 1,2,3 above.

We see that the resulting digraph depends only on the ordering of the components of a, not on
their exact values. In other words, there is a well-defined map f : Sn → Pn from permutations
of {1, . . . , n} to corners of A∗n, f(σ) = v(Gσ), where, for σ = (σ1, . . . , σn) ∈ Sn, the digraph Gσ
is given by the procedure:

“Draw as many arcs as possible first to vertex σ1, then to σ2 and so on, all the while respecting
Rules 1, 2, 3”.

Table 1 shows how this works for n = 2 and n = 3. The map f is not injective for any
n ≥ 3 and the exact number of corners in A∗n is computed in Proposition 4.5 below. For the
time being, the crucial takeaway from Table 1 is that A∗2 = A2 and A∗3 = A3. Recall also that
A∗1 = A1 = {(1)}.

We are ready to formulate
12



σ Gσ v(Gσ)

(1, 2)

1 2

(1, 0)

(2, 1)

1 2 (
1
2 ,

1
2

)

(1, 2, 3) or (1, 3, 2)

1

2 3
(1, 0, 0)

(2, 1, 3)

1

2 3 (
1
2 ,

1
2 , 0

)

(2, 3, 1)

1

2 3 (
1
3 ,

1
2 ,

1
6

)

(3, 1, 2)

1

2 3 (
2
3 , 0, 1

3

)

(3, 2, 1)

1

2 3 (
1
3 ,

1
3 ,

1
3

)
Table 1. All σ ∈ Sn, Gσ ∈ Gn and corners v(Gσ) of A∗n, for n = 2, 3.
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Conjecture 4.2. A∗n = An, for every n ∈ N.

Our main result in this section is

Theorem 4.3. A∗n ⊆ An, for every n ∈ N.

Proof. We’ve already observed that A∗n = An for n = 1, 2, 3. We divide the remainder of the
proof into two cases.

Case I: n ≥ 5. Since we can form a “convex combination of tournaments” - see the proof
of Theorem 3.6 - it suffices to find, for any fixed P ∈ Dn and for each G ∈ Gn, a sequence TG,N

of symmetric and honest tournaments such that wv((TG,N , P ))→ v(G) as N →∞.
Let P = (pij) be any doubly monotonic matrix such that pij 6= pkl unless either i = k, j = l

or i = j, k = l. The matrix P is henceforth fixed. Let

(4.9) ε1 := min
i 6=j
|pij − 1

2 |, ε2 := min
i 6=j, k 6=l,

{i, j}6={k, l}

|pij − pkl|, ε :=
1

2
min{ε1, ε2}.

In other words, ε is half the minimum difference between two distinct numbers appearing in the
matrix P .

For N ∈ N and G ∈ Gn, the rules of the tournament TG,N are as follows. We remark that the
matrix P here is a fixed parameter as part of the rules and does not (necessarily) have anything
to do with the specialization. In due course we will, however, also have reason to consider the
specialization (TG,N , P ).

Step 1: Present the matrix P to each of the players.

Step 2: Choose one of the players uniformly at random. This player takes no further part
in the tournament.

Step 3: The remaining n− 1 players play N iterations of round-robin.
Once all the matches are finished, each remaining player performs a sequence of tasks10 which

is a little technical to describe. Informally, he tries to establish the identities of the other n− 2
remainers, as elements from [n], by checking the results of all the matches not involving himself
and comparing with the given matrix P . More formally, he does the following:

(a) He makes an arbitrary list (t1, t2, . . . , tn−2) of the other n−2 remainers and computes the
elements qij of an (n− 2)× (n− 2) matrix such that qij is the fraction of the matches between
ti and tj which were won by ti.

(b) He tries to find a subset {u1, . . . , un−2} ⊂ [n] such that, for all 1 ≤ i < j ≤ n− 2,

(4.10) |qij − pui, uj | < ε.

Note that, by (4.9), he can find at most one such (n− 2)× (n− 2) submatrix of P . If he does
so, we say that he succeeds in Step 3.

Step 4: For each player that succeeds in Step 3, do the following:
(a) Let i < j ∈ [n] be the numbers of the two rows and columns in P which are excluded

from the submatrix he identified in Step 3.
(b) For each l ∈ [n]\{i, j}, compute the fraction rl of matches which he won against the

player whom he identified in Step 3 with row l of the matrix P .
(c) If rl > pil − ε for every l, then assign this player a “token” of weight

nji

2 , where nji is the
number of arcs from j to i in the digraph G.

10One can instead imagine that there is a “referee” who performs all these tasks, since they are part of the
rules for the tournament. We think it’s intuitively easier to understand the idea, however, in terms of each player
perfoming his own calculations. Note that Step 1 can be removed from the description of the rules if we formulate
them in terms of a central referee.
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Step 5: Assign to the player eliminated in Step 2 a token of weight 1 − s, where s is the
sum of the weights of the tokens distributed in Step 4. The winner of the tournament is now
chosen at random, weighted in accordance with the distribution of tokens.

What needs to be proven now is that the tournament TG,N is always well-defined, that is, it
can never happen that the total weight of the tokens distributed in Step 4 exceeds one. Suppos-
ing for the moment that this is so, it is clear that the tournament is symmetric and honest, and
it is also easy to see that wv((TG,N , P ))→ v(G) as N →∞. For if the relative strengths of the
n players are, in fact, given by the matrix P then, as N → ∞, with high probability everyone
not eliminated in Step 2 will succeed with identifying an (n − 2) × (n − 2) submatrix of P in
Step 3, namely the submatrix corresponding to the actual rankings of these n − 2 remainers,
and will then have performed well enough to be assigned a token in Step 4(c) if and only if
their actual ranking is higher than that of the player eliminated in Step 2 (note that the weight
of the token they are assigned will still be zero if there is no corresponding arc in the digraph G).

So it remains to prove that the total weight of all tokens assigned in Step 4(c) can never
exceed one. If at most one player is assigned a token of non-zero weight then we’re fine, because
of Rule 1 in the definition of the family Gn. Suppose at least two players are assigned tokens
of non-zero weight. Let A,B,C,D, . . . denote all the players not eliminated in Step 2 (these
are just letters, not numbers) and suppose A and B are assigned non-zero-weight tokens. Since
each of A and B can see the results of all matches involving C,D, . . . , they will identify these
with the same n− 3 elements of [n] in Step 3. Note that here we have used the fact that n ≥ 5.
Let S ⊂ [n] be this (n − 3)-element subset. This leaves three indices i < j < k ∈ [n]\S. We
have four options to consider:

Option 1: At least one of A and B identifies the other as k. We show this can’t happen.
Suppose A identifies B as k. Then B must have performed at about the level expected of k
against each of C,D, . . . . More precisely, for any l ∈ S,

(4.11) |rBl − pkl| < ε.

On the other hand, the rules of Step 4 imply that, for B to receive a token, he must have
performed at least at the level expected of j against each of C,D, . . . (and, indeed, at the level
expected of i in the case that he failed to identify A as i). Precisely, for each l ∈ S,

(4.12) rBl > pjl − ε.

But (4.11) and (4.12) contradict (4.9).

Option 2: A and B identify one another as j. We show that this can’t happen either. Suppose
otherwise. Since A gets a token, it must pass the test rAj > pij − ε. Similarly rBj > pij − ε. But

rAj + rBj = 1, since each of A and B is here computing the fraction of matches it won against

the other. This implies that pij <
1
2 + ε, which contradicts (4.9).

Option 3: Each of A and B identifies the other as i. Then the weight of the token assigned to
each is

nkj

2 . But j > 1 so nkj ≤ 1, by Rule 3 for the family Gn. Hence it suffices to prove that
no other player receives a token. Suppose C receives a token. C sees the results of matches
involving either A or B and any of D, . . . . Since A and B have already identified one another
as i, then C must make the same identification for each, by (4.9). In other words, C cannot
distinguish A from B, a contradiction.

Option 4: A and B identify one another as i and j, in some order. Since both get non-
zero-weight tokens, there must, by Rules 1-3, be exactly one arc in G from k to each of i and
j. So the sum of the weights assigned to A and B equals one, and there is no arc in G from
k to any vertex other than i and j. It now suffices to show that no other player C receives
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a positive weight token. The only way C can succeed in Step 3 is if it also identifies A and
B as i and j, and if there is some l 6= k such that it identifies {C, Z} = {k, l}, where Z
is the player eliminated in Step 2. Both A and B must in turn have identified C as l. If
k < l this means that C cannot have played sufficiently well to obtain a token in Step 4(c).
If l < k then even if C gets a token it will have weight zero, since there is no arc in G from k to l.

Case II: n = 4. We use the same tournaments TG,N as in Case I, but in order to en-
sure their well-definedness we require, in addition to (4.9), the following conditions on the 4× 4
doubly monotonic matrix P = (pij):

(4.13) p14 > p24 > p34 > p13 > p12 > p23.

Intuitively, player 4 is useless, while the gap between 1 and 2 is greater than that between 2
and 3. To prove well-definedness, it suffices to establish the following two claims:

Claim 1: If some player receives a token of weight one, then no other player receives a to-
ken of positive weight.

Claim 2: It is impossible for three players to receive positive weight tokens.

Let D denote the player eliminated in Step 2 and A,B,C the three remainers.

Proof of Claim 1. Suppose A receives a token of weight one. The rules for Gn imply that
A must identify himself as 1 and there are two arcs in G from j to 1, where j is the identity
which A assigns to D. We consider two cases.

Case (a): j = 4. Suppose, by way of contradiction, that B also receives a positive weight
token. In order to obtain a token at all, B cannot have identified himself as 1, because he has
lost more than half his matches against A. Hence there is no arc in G from 4 to whomever B
identifies himself as, so B cannot have identified D as 4. Since A also beat C, it must be the
case that B identifies C = 4, A = 1, B = 2, D = 3. But for B to receive a token, he must
then have won at least p24 − ε of his matches against C. This contradicts A:s identification
{B, C} = {2, 3}, since the latter would mean that the fraction of matches B won against C
was at most p23 + ε.

Case (b): j ∈ {2, 3}. A must have identified some remainer as 4, say C, and then won at
least a fraction p14 − ε of their matches. C:s performance against A is so bad that he cannot
possibly receive a token. Moreover, B observes this and hence must also identify A = 1, C = 4.
So if B receives a token, he will have agreed with A on the identities of all four players. But
then his token cannot have positive weight, since there are no more arcs emanating from j.

Proof of Claim 2. Suppose each of A, B, C receives a token. Since p34 > p13 by (4.13),
each must identify D = 4. This is because if anyone has identified you as 4, you are so bad that
you can never satisfy the condition to get a token. We consider three cases.

Case (a): Someone, say A, identifies themselves as 1. Then, without loss of generality, they
identify B = 2, C = 3. Since A gets a positive weight token, he must at least have won more
than half of his matches against both B and C. Hence, neither B nor C can self-identify as
1 and get a token. Since there are at most two arcs emerging from 4, B and C must identify
themselves as the same number, one of 2 and 3. But B observes the matches between A and C
and, since A got a token, he won at least a fraction p13−ε of these. Thus B must self-identify as
2, hence so does C. But C observes the matches between A and B, of which A won a majority,
hence C must identify A as 1. But then C cannot get a token, since he lost at least a fraction
p13 − ε of his matches against A.

Case (b): Nobody self-identifies as 1, and someone lost at least half of their matches against
each of the other two. WLOG, let A be this “loser”. The only way A can get a token is if he
self-identifies as 3. WLOG, he identifies B = 1, C = 2. To get a token he must have won at
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least a fraction p32 − ε of his matches against C. But C beat A and B didn’t self-identify as
1, hence B must have identified C = 1, which means that C won at least a fraction p12 − ε of
his matches against A. This contradicts (4.9), given the additional assumption that p12 > p23
in (4.13).

Case (c): Nobody self-identifies as 1, and everyone beat someone else. Without loss of
generality, A beat B, who beat C who beat A. First suppose someone, say A, self-identifies as
2. Then he must identify B = 1, C = 3. But then he would have to have beaten C to get a
token, a contradiction.

So, finally, we have the possibility that each of A,B,C self-identifies as 3. Thus each identifies
the other two as 1 and 2, which means that in each pairwise contest, the fraction of matches
won by the winner lies in the interval (p12− ε, p12 + ε). Let rCA denote the fraction of matches
won by C against A. Since C beat A, the previous analysis implies that rCA > p12 − ε. But A
identifies himself as 3 and B beat C, so he must identify C as 2. Since A gets a token, we must
have rCA < p23 + ε. But these two inequalites for rCA contradict (4.13) and (4.9).

Corollary 4.4. Fn is a proper subset of An, for all n ≥ 3.

Proof. It is easy to see that Fn is a proper subset of A∗n, for each n ≥ 3. Then apply Theorem
4.3.

Given the preceding results, we now return to the consideration of the maximum and mini-
mum winning probabilities, Πi, n and Πi, n respectively, attainable by each player i. If we want
to minimize the first coordinate in a vector v(G), there should be no arc pointing to 1 from any
j > 1, and just the two loops from 1 to itself. In that case, v1(G) = 1

n . For i ≥ 2, in order to
maximize the i:th coordinate of v(G), it is clear that the digraph G should

- have one arc from j to i, for each j = i+ 1, . . . , n,
- have two loops (i, i),
- hence, have no arc from i to k, for any k < i.

For such G we’ll have vi(G) =
indegi(G)

2n = n−i+2
2n = 1

2 −
i−2
2n . Hence, by Theorem 4.3, we have

(4.14) Π1, n ≤
1

n
; Πi, n ≥ 1

2
− i− 2

2n
, i = 2, . . . , n.

If Conjecture 4.2 were true, we’d have equality everywhere. Note that, by Proposition 3.3, we
do indeed have the equality Π2, n = 1

2 , and by Proposition 4.1, Π3,4 = 3
8 . Other than this, we

can’t prove a single outstanding equality for any n ≥ 4. In particular, for every n ≥ 4 it remains
open whether Π1, n = Πn, n = 1

n .
Next, we determine the exact number of corners in A∗n:

Proposition 4.5. There are 3n−1+1
2 corners in the convex polytope A∗n.

Proof. We must determine the number of elements in the range of the function f : Sn → Pn
defined earlier. We begin by noting that, in the encoding f(σ) = v(Gσ), we may not need to
know the entire permutation σ in order to construct Gσ. In particular, it suffices to know the
subsequence σ′ of all vertices that get assigned incoming arcs. We note that a vertex i has
no incoming arcs in Gσ if and only if it is either preceded by two lower-numbered vertices or
preceded by the vertex 1. Therefore, any such subsequence σ′ is a sequence of distinct elements
in [n] that (i) ends with a 1 and (ii) for any i, at most one of σ′1, σ

′
2, . . . , σ

′
i−1 is smaller than

σ′i. Conversely, any sequence σ′ that satisfies (i) and (ii) can be extended to a permutation σ,
without affecting which vertices get incoming arcs, by putting the missing numbers after the
’1’. Hence the possible subsequences σ′ are characterized by (i) and (ii).

We claim that the map σ′ 7→ v(Gσ′) is injective. Let σ′, σ′′ be two distinct such sequences
and pick k such that σ′1 = σ′′1 , . . . , σ

′
k−1 = σ′′k−1 and σ′k 6= σ′′k , say σ′k < σ′′k . To prove injectivity

it suffices, by (4.7), to show that the vertex σ′′k has higher indegree in Gσ′′ than in Gσ′ . We
consider two cases:
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Case 1: σ′′k does not appear at all in the subsequence σ′. Then, simply by how these subse-
quences were defined, σ′′k has indegree zero in Gσ′ and strictly positive indegree in Gσ′′ .

Case 2: σ′′k = σ′l for some l > k. Since σ′k < σ′′k , property (ii) applied to σ′ implies that
σ′j = σ′′j > σ′′k for every j = 1, . . . , k − 1. Hence, in Gσ′′ , the vertex σ′′k will retain both of its

loops, whereas in Gσ′ there will be one arc from σ′′k to σ′k. Moreover, since σ′ and σ′′ agree
before the appearance of σ′′k , which then appears first in σ′′, if v ∈ [n] is any vertex that sends
an arc to σ′′k in Gσ′ , then it will send at least as many arcs to σ′′k in Gσ′′ . Hence, the total
indegree of σ′′k will be strictly higher in Gσ′′ than in Gσ′ , as desired.

It remains to count the number of sequences σ′ that satisfy properties (i) and (ii). Denote
this by an. Given such a sequence of elements in [n−1], we construct a sequence in [n] by either
(1) doing nothing, (2) placing n first in the sequence, or (3) inserting n between the first and
second element - this is possible for all sequences except the one just consisting of a ’1’. Thus
for any n ≥ 2, we have an = 3an−1 − 1. It is easy to check that a1 = 1 and thus it follows by

induction that an = 3n−1+1
2 as desired.

We close this section by posing a natural question which arises from the previous discussion,
but which remains unknown to us:

Question 4.6. For each n ≥ 3, which boundary points of A∗n are achievable ?

5. Frugal tournaments

A central idea of the unfair tournaments presented in Sections 3 and 4 is to first choose one
player uniformly at random to exclude from participation. This player won’t take part in any
matches, though he might still win the tournament. Let us call a tournament with this property
frugal, as the organizers won’t have to pay the attendance costs for one of the players. In the
proof of Theorem 4.3, we constructed symmetric, honest and frugal tournaments whose win
vector can attain any interior point in A∗n for any n ≥ 4. We will now show that, under the
restriction that the tournament is frugal, nothing outside of A∗n can be achieved.

Theorem 5.1. Let T be a symmetric, honest and frugal n-player tournament for any n ≥ 2.
Then for any P ∈ Dn, wv((T , P )) ∈ A∗n.

Corollary 5.2. The closure of the set of all achievable win vectors for all symmetric, honest
and frugal n-player tournaments equals A∗n.

Proof. This follows immediately from Theorems 5.1 and 4.3.

In order to prove Theorem 5.1, we need a new formulation of A∗n. We say that a matrix
M ∈ Rn×n is a fractional arc flow if

mij ≥ 0 for all i ≥ j,(5.1)

mij = 0 for all i < j,(5.2)

mij ≤
1

2
for all j 6= 1, i,(5.3)

n∑
j=1

mij = 1 for all i ∈ [n].(5.4)

Lemma 5.3. For any fractional arc flow M , define v(M) ∈ Rn by vj(M) = 1
n

∑n
i=1mij. Then

v(M) ∈ A∗n.

Proof. Let A be the set of vectors v that can be obtained from fractional arc flows in this way.
Clearly, A is a convex polytope in Rn. Thus it is uniquely defined by the values of maxv∈A u · v
for all u ∈ Rn. For a given u ∈ Rn, it is easy to optimize the corresponding fractional arc flow.
Namely, initially all vertices are given a flow of 1. Go through the indices j ∈ [n] in the order of
decreasing uj , with ties broken arbitrarily, and try to send as much remaining flow as possible
from all i ≥ j to j. By (5.3), we see that any such optimal v is given by v(G) for some G ∈ Gn.
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From the discussion in the paragraph preceding Conjecture 4.2, it is easy to see that the vector
v(G) is also the optimal vector in the maximization problem maxv∈A∗n u · v. Hence A = A∗n as
desired.

Proof of Theorem 5.1. For any i 6= j, let T i denote the modified version of this tournament
that always excludes player i. By possibly precomposing T with a random permutation of the
players, we may assume that the rules of T i do not depend on (a) which player i was excluded,
and (b) the order of the remaining players [n] \ {i}.

Let πij(P ) denote the winning probability for player j in the specialization (T i, P ). Then

πj(P ) = 1
n

∑n
i=1 π

i
j(P ). As T is honest, it follows directly from the definition of honesty that

also T i is honest, hence πij(P ) is increasing in pjk for any k 6= j. Moreover, if two players i and

j are identical for a given P ∈Mn in the sense that pik = pjk for all k ∈ [n], then by (a) by (b),

πij(P ) = πji (P )

and
πki (P ) = πkj (P ) for any k 6= i, j.

Using the same argument as in Proposition 3.3 it follows that, for any P ∈ Dn,

πij(P ) ≤ 1

2
unless either (i) j = 1, (ii) i = j, or (iii) i = 1 and j = 2.

Moreover, for any P ∈ Dn and i < j, let P ′ be the matrix obtained by buffing player j to be

identical to player i. Then, by honesty, πij(P ) ≤ πij(P
′), by (a), πij(P

′) = πji (P
′), and as πji (·)

does not depend on the skill of player j, πji (P
′) = πji (P ). Thus

πij(P ) ≤ πji (P ) for any i < j and P ∈ Dn.

The idea now is that, for a given P ∈ Dn, we can interpret the probabilities πij(P ) in terms

of a fractional arc flow. For any i, j ∈ [n] we define m′ij = πij(P ). Then πj(P ) = 1
n

∑n
i=1m

′
ij .

Now, this does not necessarily define an arc flow as m′ij might be positive even if i < j, and we

might have m′12 >
1
2 (which is really just a special case of the former). However, as m′ij ≤ m′ji

whenever i < j, we can cancel out these “backwards flows” by, whenever m′ij = x > 0 for i < j,

reducing m′ij and m′ji and increasing m′ii and m′jj , all by x. Let (mij) be the resulting matrix.
Then this is an arc flow. As the cancelling does not change the net influx to each vertex, we
have πj(P ) = 1

n

∑n
i=1mij . Hence the theorem follows by Lemma 5.3.

6. Tournament maps

As we have seen earlier in the article, an n-player tournament induces a map P 7→ wv(P )
fromMn to the set Pn of probability distributions on [n]. The aim of this section is to see how
honest and symmetric tournaments can be characterized in terms of these maps.

We define an n-player tournament map as any continuous function f from Mn to Pn. For
any M ∈Mn we denote f(M) = (f1(M), . . . , fn(M)). Similarly to tournaments, we define:

Symmetry: For any permutation σ ∈ Sn and any P ∈ Mn, we define Q = (qij) ∈ Mn

by qσ(i)σ(j) = pij for all i, j ∈ [n]. We say that a tournament map f is symmetric if, for any
P ∈Mn, σ ∈ Sn and any i ∈ [n], we have fi(P ) = fσ(i)(Q).

Honesty: A tournament map f is (strictly) honest if for any two distinct i, j ∈ [n] we have
that fi(P ) is (strictly) increasing in pij .

Using these definitions it follows that the tournament map fT induced by a tournament T
inherits the properties of T .

Lemma 6.1. The tournament map induced by any symmetric tournament is symmetric. The
tournament map induced by any honest tournament is honest.
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Proof. The first statement is the definition of a symmetric tournament. The second statement
follows from Lemma 3.2.

We now want to show a converse to this lemma. Here we have to be a bit careful though.
Consider for instance the 2-player tournament map

f1(P ) :=
1

2
+ sin(p12 −

1

2
), f2(P ) :=

1

2
− sin(p12 −

1

2
).

This can be shown to be symmetric and honest, but as f1 and f2 are not polynomials in the
entries of P , this map cannot be induced by any tournament whatsoever. On the other hand,
for any tournament map f , we can construct a tournament T f whose win vector approximates
f arbitrarily well.

Definition 6.2. Let f be an n-player tournament map and let N be a (large) positive integer.
We let T f = T f,N denote the tournament defined as follows:

• Play N iterations of round-robin.
• Let p̂ij denote the fraction of matches that i won against j, and let P̂ ∈ Mn be the

corresponding matrix.
• Randomly elect a tournament winner from the distribution given by f(P̂ ).

Proposition 6.3. Let f be an n-player tournament map. For any ε > 0 there exists an N0

such that for N ≥ N0, the tournament T f satisfies |πi(P )− fi(P )| < ε for all P ∈ Mn and
all i ∈ [n]. Moreover T f is symmetric if f is symmetric, and (strictly) honest if f is (strictly)
honest.

Proof. It is easy to see that this tournament is symmetric if f is so, and likewise for honesty.
It only remains to show that the win vector is sufficiently close to f(P ) for all P ∈ Mn. First,

note that πi(P ) = Efi(P̂ ). Hence, by Jensen’s inequality,

|πi(P )− fi(P )| ≤ E
∣∣∣fi(P̂ )− fi(P )

∣∣∣ .
As f is continuous and Mn is compact, f is uniformly continuous. Hence, given ε > 0, there

exists a δ > 0 such that, for any P ,
∣∣∣fi(P̂ )− fi(P )

∣∣∣ < ε/2 whenever ‖P̂ − P‖∞ < δ. Choosing

N0 sufficiently large, we can ensure that P(‖P̂−P‖∞ ≥ δ) < ε/2, by the Law of Large Numbers.

As, trivially,
∣∣∣fi(P̂ )− fi(P )

∣∣∣ ≤ 1, it follows that

E
∣∣∣fi(P̂ )− fi(P )

∣∣∣ < ε/2 · P(‖P̂ − P‖∞ < δ) + 1 · P(‖P̂ − P‖∞ ≥ δ) ≤ ε/2 + ε/2.

For a given ε > 0, we say that two n-player tournaments T 1 and T 2 are ε-close if, for any
i ∈ [n] and P ∈Mn, we have |πi(T 1, P )− πi(T 2, P )| < ε. A nice implication of the above results
is that Definition 6.2 provides an almost general construction of symmetric, honest tournaments
in the following sense.

Corollary 6.4. Any symmetric and honest tournament T is ε-close to a tournament T f for
a symmetric and honest tournament map f . As a consequence any such T is ε-close to a
symmetric and honest tournament where

• the match schedule is fixed,
• each pair of players meet the same number of times,
• the tournament satisfies a stronger form of honesty, namely, given the outcomes of all

both past and future matches in the tournament, it is never better to lose the current
match than to win it.

Proof. Let f be the induced tournament map of T . Then f is symmetric and honest by Lemma
6.1, and by Proposition 6.3, T f = T f,N is ε-close to T for N sufficiently large. It is clear that
T f has the claimed properties.
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Let An denote the set of all vectors f(P ) attained by symmetric and honest n-player tour-
nament maps f at doubly monotonic matrices P ∈ Dn.

Corollary 6.5. Ān = An, where Ān denotes the closure of An.

Proof. If T is a symmetric and honest n-player tournament then, by Lemma 6.1, the tournament
map fT induced by T is also symmetric and honest. For any P ∈ Mn, we have wv(T , P ) =

fT (P ). It follows that An ⊆ Ān. Conversely, for any symmetric and honest tournament map
f and any doubly monotonic matrix P ∈ Dn, we know by Proposition 6.3 that there exist
symmetric and honest tournaments T f , whose win vector at P approximates f(P ) arbitrarily
well. Hence An is dense in Ān. As both sets are closed, they must be equal.

It turns out that An is a closed set, hence An = An, a fact which will be established in
Subsection 6.3 below. Before that, we consider two other applications of the above material.

6.1. Strictly honest tournaments. As has been remarked earlier in the article, the con-
structions of symmetric and honest tournaments presented in Sections 3 and 4 are generally
not strictly honest. Since, in practice, honestly attempting to win a match typically requires a
greater expenditure of effort than not trying, it is natural to require that a tournament should
be strictly honest as to guarantee a strictly positive payoff for winning. We will now show
how the proof of Corollary 6.4 can be modified such that the tournament T f is also strictly
honest. Hence, any symmetric and honest tournament can be approximated arbitrarily well by
symmetric and strictly honest ones.

Given T , let g = gT be the induced tournament map and let h be any symmetric and strictly
honest tournament map whatsoever, for instance

hi(M) :=
1(
n
2

)∑
j 6=i

mij .

Then f = (1− ε
2)g + ε

2h is a symmetric and strictly honest tournament map such that, for any
P ∈Mn,

||f(P )− g(P )||∞ ≤
ε

2
||g(P )− h(P )||∞ ≤

ε

2
.

By Proposition 6.3, we know that choosing N sufficiently large ensures that, for any P ∈Mn,
||wv((T f,N , P ))−f(P )||∞ < ε

2 . Hence T f,N is ε-close to T . On the other hand, as f is strictly
honest, so is T f,N , as desired.

6.2. Tournaments with rounds. In our definition of “tournament” we required that matches
be played one-at-a-time. Many real-world tournaments consist of “rounds” of matches, where
matches in the same round are in principle meant to be played simoultaneously. In practice,
things usually get even more complicated, with each round being further subdivided into non-
temporally overlapping segments, for reasons usually having to do with TV viewing. Our formal
definition of tournament is easily extended to accomodate this much complexity: simply replace
“matches” by “rounds of matches”, where each player plays at most one match per round. In
defining honesty, it then makes sense to condition both on the results from earlier rounds and
on the pairings for the current round.

If T is such a “tournament with rounds”, then there is a canonical associated tournament
without rounds T ′, got by internally ordering the matches of each round uniformly at random.
It is easy to see that

(a) T symmetric ⇔ T ′ symmetric,
(b) T ′ (strictly) honest ⇒ T (strictly) honest.

The reverse implication in (b) does not always hold, a phenomenon which will be familiar to
sports fans11. A toy counterexample with four players is presented below.

11For example, many professional European football leagues currently require that, in the final round of the
season, all matches kick off at the same time. The same rule applies to the final round of group matches in major

21



Nevertheless, a tournament with rounds also induces a tournament map and, using the same
proof idea as Lemma 3.2, one can show that the induced tournament map of any symmetric
and honest tournament with rounds is symmetric and honest. Hence, by Corollary 6.5, any win
vector that can be attained by a symmetric and honest tournament with rounds for a doubly
monotonic matrix is contained in An. In fact, for any ε > 0, Proposition 6.3 implies that any
symmetric and honest tournament with rounds is ε-close to a regular (i.e. one without rounds)
symmetric and honest tournament T f .

Example 6.2.1. Consider the following tournament with rounds T :

Step 0: Pair off the players uniformly at random. Say the pairs are {i, j} and {k, l}.
Round 1: Play matches {i, j} and {k, l}.
Round 2: Play the same matches.
Step 3: Toss a fair coin. The winner of the tournament is determined as follows:

If heads, then
- if k and l won one match each, the loser of the first match between i and j wins the

tournament
- otherwise, the winner of the first {i, j} match wins the tournament.

If tails, then same rule except that we interchange the roles of the pairs {i, j} ↔ {k, l}.

It is clear that T is symmetric and honest (though not strictly honest, since what one does
in Round 2 has no effect on one’s own probability of winning the tournament). Without loss of
generality, take player i. If he loses in Round 1, then he wins the tournament with probability
pkl(1− pkl). If he wins in Round 1, then he wins the tournament with probability 1

2(p2kl + (1−
pkl)

2). The latter expression is bigger for any pkl, and strictly so if pkl 6= 1
2 . However, consider

any instance of T ′. Without loss of generality, i and j play first in Round 1. Suppose pij >
1
2

and j wins this match. Then each of k and l would be strictly better off if they lost their first
match.

6.3. An = An is a finite union of convex polytopes. We already know that An is a convex
polytope for n = 1, 2, 3 and, if Conjecture 4.2 holds, then this is true in general. In this
subsection, we extend the ideas of tournament maps to show that An is a finite union of convex
polytopes. We will here take convex polytope to mean a set in Rn for some n that can be
obtained as the convex hull of a finite number of points. Equivalently, it is a bounded region
of Rn described by a finite number of non-strict linear inequalities. In particular, a convex
polytope is always a closed set. As a corollary, we show the stronger version of Corollary 6.5
that An = An. In particular, for any n ≥ 1, this gives the alternative characterization

(6.1) An = {f(P ) : f is a symmetric and honest n-player tournament map, P ∈ Dn}

of the closure of the set of achievable win vectors.
For any P ∈Mn, we define

(6.2) An(P ) = {f(P ) : f is a symmetric and honest n-player tournament map}.

By definition,

(6.3) An =
⋃

P∈Dn

An(P )

and so, by Corollary 6.5,

(6.4) An = Ān =
⋃

P∈Dn

An(P ).

international tournaments such as the World Cup and European Championships and was introduced after the
so-called “Disgrace of Gijón”: https://en.wikipedia.org/wiki/Disgrace of Gijon
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Our strategy will consist of two main steps. First, we show that it suffices to take the union in
(6.3) and therefore also in (6.4) over a finite number of P ∈ Dn. Second, for any such P we give
a discretization argument that shows that An(P ) is a convex polytope. As then An is a finite
union of closed sets, it is closed. Hence An = An (without closure).

Let us begin with the first step. For any two matrices P,Q ∈ Mn, we say that P and Q
are isomorphic if pij < pkl ⇔ qij < qkl. As there are only a finite number of ways to order n2

elements, the number of isomorphism classes is clearly finite.

Proposition 6.6. If P and Q are isomorphic, then An(P ) = An(Q).

Proof. Let B = {pij : i, j ∈ [n]} and C = {qij : i, j ∈ [n]}. As the entries of P and Q are ordered
in the same way, the sets B and C contain the same number of elements. Moreover, as each set
contains 1

2 and is invariant under the map x 7→ 1−x, each contains an odd number of elements.

Let us enumerate these by b0 < b1 < · · · < b2k and c0 < c1 < · · · < c2k. Then bk = ck = 1
2

and bi + b2k−i = ci + c2k−i = 1
2 . We define ϕ : [0, 1] → [0, 1] to be the unique piecewise-linear

function satisfying ϕ(0) = 0, ϕ(bi) = ci for all 0 ≤ i ≤ 2k, ϕ(1) = 1. It follows that ϕ is a
continuous increasing function such that ϕ(1−x) = 1−ϕ(x) for all x ∈ [0, 1]. Hence, by letting
ϕ act on P ∈ Mn coordinate-wise, we can consider ϕ as an increasing map from Mn to itself
such that ϕ(P ) = Q.

Now, for any symmetric and honest tournament map f , it follows that f◦ϕ and f◦ϕ−1 are also
symmetric and honest tournament maps. Moreover f(Q) = (f ◦ϕ)(P ) and f(P ) = (f ◦ϕ−1)(Q).
Hence the same win vectors are achievable for P and Q, as desired.

As for the second step, we want to show that for any fixed P ∈ Mn, An(P ) is a convex
polytope. Given P , we define BP as the set consisting of 0, 1 and all values pij for i, j ∈ [n].
We define Mn(P ) as the set of all matrices Q ∈ Mn such that qij ∈ BP for all i, j ∈ [n], and
define a P -discrete tournament map as a function fromMn(P ) to Pn. We define symmetry and
honesty in the same way as for regular tournament maps. Let A′n(P ) be the set of all vectors
f(P ) for P -discrete, symmetric and honest n-player tournament maps.

Proposition 6.7. For any P ∈Mn, A′n(P ) is a convex polytope.

Proof. As Mn(P ) is a finite set, we can represent any P -discrete n-player tournament map
as a vector in a finite-dimensional (more precisely (|Mn(P )| × n)-dimensional) space. The
conditions that the map is symmetric and honest can be expressed as a finite number of linear
equalities and non-strict inequalities to be satisfied by this vector. It is also clearly bounded,
as it is contained in M\ ×Pn, which is a bounded set. Hence, the set of P -discrete, symmetric
and honest n-player tournament maps form a convex polytope. Evaluating a tournament map
at P can be interpreted as a projection of the corresponding vector, hence A′n(P ) is a linear
projection of a convex polytope, which means that it must be a convex polytope itself.

Proposition 6.8. For any P ∈Mn, An(P ) = A′n(P ).

Proof. As the restriction of any symmetric and honest tournament map f to Mn(P ) is a sym-
metric and honest P -discrete tournament map, it follows that An(P ) ⊆ A′n(P ). To prove that
A′n(P ) ⊆ An(P ), it suffices to show that any symmetric and honest P -discrete tournament map
f can be extended to a symmetric and honest (non-discrete) tournament map g.

Given Q ∈Mn, we construct a random matrix R ∈Mn(P ) as follows: for each pair of players
{i, j}, if qij , and thereby also qji are contained in AP , let rij = qij and rji = qji. Otherwise,
write qij = pak + (1 − p)ak+1 for p ∈ (0, 1) where ak, ak+1 denote consecutive elements in AP
and, independently for each such pair of players, put rij = ak, rji = 1 − ak with probability
p, and rij = ak+1, rji = 1 − ak+1 with probability 1 − p. We define g(Q) = Ef(R). This
construction is clearly continuous and symmetric, and a simple coupling argument shows that
gi(Q) is increasing in qij , thus g is honest. Moreover, by construction g(P ) = f(P ). Hence
A′n(P ) ⊆ An(P ), as desired.
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7. Futile Tournaments

Recall the notations π+i , π−i in the definition of honest tournaments in Section 2. In words,
they were the probabilities of i winning the tournament, conditioned on whether i won or
lost a given match and given the results of earlier matches and knowledge of the rules of the
tournament. Honesty was the criterion that π+i ≥ π−i should always hold. We now consider a
very special case:

Definition 7.1. With notation as above, a tournament is said to be futile if π+i = π−i always
holds.

One natural way to try to reconcile the (arguably) paradoxical fact that symmetric and honest
tournaments can benefit a worse player over a better one is to imagine the winning probability
of player i to be divided into two contributions. First, the result of matches where player i is
involved, where, by honesty, a higher ranked player should always be better off. Second, the
result of matches where i is not involved, where there is no immediate reason a player with low
rank could not benefit the most.

Following this intuition, it would make sense to expect the most unfair symmetric and honest
tournaments to be ones without the first contribution, that is, symmetric and futile tournaments.
However, as the following result shows, this is not the case.

Proposition 7.2. If T is a symmetric and futile n-player tournament, then π1 = · · · = πn = 1
n

in any specialization.

Proof. Since T is futile, it is honest and hence, by Lemma 3.2, πi is increasing in pij at every
point of Mn, for any i 6= j. But consider the tournament T c which has the same rules as T ,
but where we reverse the result of every match. Clearly this will also be futile, hence honest,
and corresponds to a change of variables puv 7→ 1 − puv(= pvu). Hence, for i 6= j it also holds
that πi is decreasing in pij at every point ofMn and so πi does not depend on pij for any i 6= j.

Given a matrix P ∈ Mn, we say that a player i > 1 is a clone of player 1 if p1j = pij for all
j ∈ [n]. Clearly, π1 = π2 = · · · = πn = 1

n for any matrix P with n − 1 clones of player 1. We
show by induction that the same equality holds for any number of clones.

Assume π1 = π2 = · · · = πn = 1
n whenever P ∈ Mn contains k ≥ 1 clones of player 1. Let

P ∈ Mn be a matrix that contains k − 1 such clones. For any player i > 1 that is not a clone,
we can make it into one by modifying the entries in the i:th row and column of P appropriately.
By futility, πi does not depend on these entries, but by the induction hypothesis, i gets winning
probability 1

n after the modification. Hence any i > 1 that is not a clone of player 1 has winning

probabiltity 1
n . By symmetry, any clone must have the same winning probability as player 1,

which means that these also must have winning probability 1
n .

8. Final Remarks

In this paper we have taken a well-established mathematical model for tournaments - whose
key ingredient is the assumption of fixed probabilities pij for player i beating j in a single match
- and introduced and rigorously defined three new concepts: symmetry, honesty and fairness.
Our main insight is that it is possible for a tournament to be symmetric and (strictly) honest,
yet unfair. We’d like to finish here with some remarks on the concepts themselves.

Symmetry seems to us a rather uncontroversial idea. It is of course true that, in practice,
many tournaments have special arrangements which break symmetry in a myriad of ways.
Hoewever, if one wishes to develop some general mathematical theory, it seems like a natural
restriction to impose at the beginning.

Turning to honesty, the fact that“it takes effort to try and actually win a match”suggests that
it would be more realistic to demand that the differences π+i − π

−
i are bounded away from zero

somehow. The same fact indicates that a more realistic model should incorporate the possibility
of there being intrinsic value for a player in trying to minimize the total number of matches
he expects to play in the tournament. This basically involves abandoning the assumption that
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the pij are constant. Incorporating “effort expended” into our framework is therefore clearly a
non-trivial task, which we leave for future investigation.

Thirdly, we turn to fairness. Various alternative notions of “fairness” can already be gleaned
from the existing literature. Basically, however, there are two opposite directions from which
one might criticize our definition:

• On the one hand, one might say we are too restrictive in only concentrating on the
probabilities of actually winning the tournament. In practice, many tournaments end
up with a partial ordering of the participants (though usually with a single maximal
element), and rewards in the form of money, ranking points etc. are distributed according
to one’s position in this ordering. Hence, instead of defining fairness in terms of winning
probability, one could do so in terms of expected depth in the final partial ordering, or
some other proxy for expected reward. This is another possibility for future work.
• At the other end of the spectrum, one could suggest that a fair tournament should not

just give the best player the highest probability of winning, but that this probability
should be close to one. There are a number of important papers in the literature which
take this point of view, see for example [1], [3] and [4]. These authors are concerned with
a different kind of question than us, namely how efficient (in terms of expected total
number of matches played) can one make the tournament while ensuring that the best
player wins with high probability ? There are elegant, rigorous results for the special
case of the model in which pij = p for all i < j, and some fixed p ∈ (0, 1]. Moreover, as
the papers [3] and [4] show, this kind of question has applications far beyond the world
of sports tournaments. In this regard, see also [2], where the focus is more on efficiently
producing a correct ranking of all participants with high probability.

Since our main result is a “negative” one, it seems reasonable to ask whether there is some-
thing stronger than honesty, but still a natural condition, which if imposed on a tournament
ensures fairness, in the sense we defined it. Of course, Schwenk’s paper already gives some kind
of positive answer: the simplest way to ensure honesty is by having single-elimination and his
method of Cohort Randomized Seeding (CRS) introduces just sufficient randomness to ensure
fairness. Note that, since a partial seeding remains, his tournaments are not symmetric. Our
question is whether there is a natural condition which encompasses a significantly wider range
of symmetric tournaments.

An alternative viewpoint is to ask for “more realistic” examples of tournaments which are
symmetric and honest but unfair. It may be surprising at first glance that the tournaments T 1

and T 2 in Section 3 are indeed unfair, but it is probably not going out on a limb to guess that
no major sports competition is ever likely to adopt those formats. This is even more the case
with the tournaments in Section 4, which have the feeling of being “rigged” to achieve just the
desired outcome.

As noted in Section 1, there are at least two commonly occurring examples of symmetric and
honest (and fair) tournaments:

- round-robin, with ties broken uniformly at random,
- single-elimination with uniformly randomized seeding.

On the other hand, the popular two-phase format of first playing round-robin in order to rank
the players for a knock-out tournament using standard seeding is symmetric but not necessarily
honest (or fair). Here it’s worth noting that a two-phase tournament consisting of round-robin
followed by CRS single-elimination, while symmetric, need not be honest either. Suppose we
have 2k players, for some large k, all but one of whom are clones (see the proof of Proposition
7.2), while the last player is much worse than the clones. Suppose that, before the last round of
matches in the round-robin phase, the poor player has defied the odds and won all of his 2k − 2
matches to date, while nobody else has won significantly more than 2k−1 matches. In that case,
the poor player is guaranteed to be in the highest cohort, so it is in the interest of every clone
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to end up in as low a cohort as possible, as this will increase their chances of meeting the poor
player in the second phase, i.e.: of having at least one easy match in that phase. In particular,
it will be in the interest of a clone to lose their last round-robin match.

If we employ uniform randomization in the knockout phase, then the round-robin phase
serves no purpose whatsoever. We do not know if there is any other randomization procedure
for single-elimination which, combined with round-robin, still yields a symmetric and honest
tournament.

These observations suggest that finding “realistic” examples of symmetric and honest, but
unfair tournaments may not be easy. Then again, sports tournaments, or even tournaments
as defined in this paper, represent a very narrow class of what are usually called “games”.
As mentioned in Section 1, a truel could be considered as another type of game which is
symmetric and honest, yet unfair (in particular, it is possible to define those terms precisely in
that context). As a final speculation, we can ask whether the“real world”provides any examples
of phenomena analogous to those considered in this paper? A social scientist might use a term
like “equal treatment” instead of “symmetry”, so we are asking whether the real world provides
examples of situations where participants are treated equally, there is no incentive for anyone
to cheat, and yet the outcome is unfair (on average).
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References

[1] Ben-Naim, E.; Hengartner, N.W.; Redner, S.; Vazquez, F. Randomness in competitions. J. Stat. Phys. 151
(2013), no. 3-4, 458–474.

[2] Bradley, Ralph Allan; Terry, Milton E. Rank analysis of incomplete block designs. I. The method of paired
comparisons. Biometrika 39 (1952), 324–345.

[3] Braverman, Mark; Mossel, Elchanan Noisy sorting without resampling. Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, 268–276, ACM, New York, 2008.

[4] Feige, U.; Peleg, D.; Raghavan, P.; Upfal, E. Computing with unreliable information. Proceedings of the
Twenty-Second Annual ACM Symposium on the Theory of Computing, 128–137, ACM, New York, 1990.

[5] Schwenk, Allen J. What is the correct way to seed a knockout tournament ?. Amer. Math. Monthly 107 (2000),
no. 2, 140–150.

Department of Mathematical Sciences, Chalmers University Of Technology and University of
Gothenburg, 41296 Gothenburg, Sweden

E-mail address: hegarty@chalmers.se

Institute of Theoretical Computer Science, ETH Zürich, 8092 Zürich, Switzerland
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