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Abstract. We construct a convolution-thresholding approximation scheme for the geometric
surface evolution in the case when the velocity of the surface at each point is a given function of the
mean curvature. Conditions for the monotonicity of the scheme are found and the convergence of
the approximations to the corresponding viscosity solution is proved. We also discuss some aspects
of the numerical implementation of such schemes and present several numerical results.
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1. Introduction. The topic of curvature flows of different types was popular
during the last 20 years and is still popular in both pure and applied mathematics.
By curvature flow we mean a family {Γt}t≥0 of hypersurfaces in R

n depending on
time t with local normal velocity equal to the mean curvature or a function of it for
generalized curvature flows. The mean curvature in turn denotes here the sum of
principal curvatures.

In the three-dimensional case a smooth initial surface can develop singularities
after some finite time. There have been several successful attempts to deal with
singularities and topological complications: the varifold approach [7], [2], the phase
field method [14], [8], and the level-set method. This approach was suggested in the
physical literature [26] and was extensively developed for numerical purposes by Osher
and Sethian [27]. The main idea of this method is to evolve some continuous function
u : [0,∞)×R

n �→ R in such a way that Γt ⊂ R
n would always be a level-set of u (x, t),

i.e., Γt = {x ∈ R
n : u (x, t) = 0} for all t ≥ 0. In the case of the mean curvature flow,

the evolution equation for u turns out to be

ut = |Du|div

(
Du

|Du|

)
.(1.1)

The evolution equation for a function u with each point of a level-set moving along the
normal with velocity equal to some function G of the mean curvature is the so-called
generalized mean curvature evolution PDE

ut = |Du|G
(

div

(
Du

|Du|

))
.(1.2)
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This equation is degenerate parabolic. The existence and uniqueness of general-
ized viscosity solutions (see [12]) to the initial value problem{

ut = |Du|G
(
div

(
Du
|Du|

))
in R

n × (0, T ) ,

u = g (x) ∈ BUC (Rn) on R
n × {0}

(1.3)

was investigated in [17], [11], [22].
Curvature flows arise naturally in various problems. Among these are the fast

reaction–slow diffusion problem [29], [4], [16], [19] and image processing [1].
In the present work we construct a class of approximations of a convolution-

thresholding type to the generalized curvature flows. By this we mean the following.
Assume that, initially, the surface under consideration is a boundary of a compact
set C ∈ R

n. Take compactly supported functions ρ̃i : R+, �−→ R+, i = 1, 2 (in fact,
one can also take ρ̃i with unbounded support decreasing fast for large x). We define
ρi : R

n �→ R+,

ρi (x) =
1

hn/2
ρ̃i

(
|x| /

√
h
)
,

and introduce a convolution

Mi (C) (x, h) =

∫
Rn

χC (y) ρi (x− y) dy.

Now Mi (C) (x, h) are functions of x, and we define a new position of the surface as
a boundary of the set

HhC = {x ∈ R
n : F (M1 (C) (x, h) ,M2 (C) (x, h)) ≥ 0} ,(1.4)

where F is some (thresholding) function. Next we follow Evans [15] and introduce an
operator on the space of bounded functions B (Rn): H (h) : B (Rn) �→ B (Rn) by

[H (h)u] (x) = sup {λ ∈ R : x ∈ Hh [u ≥ λ]} .(1.5)

The purpose of the present study is, for a given function G in (1.3), to find a cor-
responding thresholding function F in (1.4) so that H (t/m)

m
g (x) converges to the

unique viscosity solution of (1.3) as m → ∞.
Such a function in the case when G is linear was proposed by Merriman, Bence,

and Osher in [25]. This result is often referred to as the Bence–Merriman–Osher
method. Rigorous proofs of the convergence of such approximations can be found in
[15], [20], and [3]. In this case it is enough to take a thresholding function depending
only on one convolution.

Suppose that G is nonlinear. As we show in section 3, in this case one has to use
two convolutions M1 and M2 and a thresholding function depending on two variables
F (M1,M2). This is necessary to ensure that the operator H is consistent with the
PDE in (1.3). We also show how to choose convolution kernels in order to get a
monotone H. These two conditions—monotonicity and consistency—are crucial for
the convergence.

Using our approach we also suggest a new construction of higher order schemes
for the classical curvature flows. The numerical experiments with these schemes show
a considerable improvement in the accuracy.

Finite difference approximations for (1.3) have been studied in [27], [31], [13].
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Another class of approximation operators, the so-called Matheron filters, comes
from image processing. The connection between such operators and the mean curva-
ture evolution PDE (1.2) was established in [10]. This result was then extended in
[18] and [9].

Threshold dynamics models, introduced earlier in [21], lead to approximations
of the solution of the Cauchy problem to a nonlinear parabolic equation, where the
right-hand side can be interpreted as a general elliptic operator on a level set of the
solution. This is a generalization of the curvature flow, but it does not entirely include
(1.3) as a special case.

Another generalization of the Bence–Merriman–Osher method can be found in
[23]. The author suggests an approximation procedure that allows tracking the surface
evolution when the velocity of the surface depends also on the coordinates. The
convergence of this approximation is also proved.

Outline. This paper is organized as follows. After introducing the basic notions
and stating some results for viscosity solutions in section 2, we turn to our method of
approximation for such solutions. In section 3, we construct F to get the convergence
of the convolution-thresholding approximation to the viscosity solution of (1.3) with a
monotone continuous function G. This is the main result of the paper. More precisely,
the following local uniform convergence is proved:

((H (t/m))
m
g) (x) → u (x, t) , m → ∞,

where H is defined by (1.5) and u (x, t) is the viscosity solution of (1.3).
We use this construction for numerical calculation for some cases of the gener-

alized curvature flows in R
2 and R

3. Numerical results and two approaches to the
implementation are described in section 4.

2. The viscosity solution framework. Consider the nonlinear equation (1.2)
on an open set Ω× (0, T ) with function G continuous and nondecreasing. This is the
second order equation with a right-hand side that is monotonic and degenerate elliptic
(see [12]) provided that G is nondecreasing and Du 	= 0. Viscosity solution to (1.2)
was defined by Evans and Spruck in [17] and by Chen, Giga, and Goto in [11]. In
our presentation we will use a somewhat more general definition of viscosity solutions
introduced by Ishii and Souganidis in [22] to allow for a wider class of functions G in
(1.2). For the general degenerate elliptic equation

ut + G
(
Du,D2u

)
= 0,(2.1)

they introduce a special class of test functions and adapt the definition of viscosity
solution for possible singularities of the right-hand side. Representation of (1.3) in
the form of (2.1) gives

G(p,X) = −|p|G
(

1

|p| tr
((

I − p⊗ p

|p|2

)
X

))
.

Let us begin by introducing an auxiliary subclass of C2 ([0,∞)). We say that
f : [0,∞) �→ R lies in F ⊂ C2 if f (0) = f ′ (0) = f ′′ (0) = 0, f ′′ (r) > 0 for r > 0 and
the following limits hold:

lim
f ′ (|p|)
|p| G (p, I) = lim

f ′ (|p|)
|p| G (p,−I) = 0.
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As was shown in [22], this set of functions is a nonempty cone, provided that the right-
hand side lies in C ((Rn\ {0}) × S (n)). The class of test functions A (G) depends on
G and is defined as follows.

Definition 2.1. A function φ is admissible if it is in C2 (Rn × (0, T )) and if,
for each ź =

(
x́, t́

)
where Dφ (ź) = 0, there is δ > 0, f ∈ F , and ω ∈ C ([0,∞)) such

that ω = o (r) and for all (x, t) ∈ B (ź, δ)∣∣φ (x, t) − φ (ź) − φt (ź)
(
t− t́

)∣∣ ≤ f (|x− x́|) + ω
(∣∣t− t́

∣∣) .
Let us also denote by u∗ and u∗ the upper and lower semicontinuous envelopes

of u:

u∗ (x, t) = lim sup
(y,s)→(x,t)

u (y, s) , u∗ (x, t) = lim inf
(y,s)→(x,t)

u (y, s) .

The definition of viscosity solution follows.
Definition 2.2. Take an open set Õ ⊂ R

n and O = Õ × (0, T ). u : O ⊂
R

n× (0, T ) �→ R∪{−∞} is a viscosity subsolution (supersolution) of (1.2) in an open
O if u∗ < ∞ (u∗ > −∞) and for all φ ∈ A (G) and all local maximum (minimum)
points (z0, t0) of u∗ − φ (u∗ − φ),⎧⎨

⎩ φt (z0, t0) ≤ (≥) |Dφ (z0, t0)|G
(

div
Dφ (z0, t0)

|Dφ (z0, t0)|

)
if Dφ (z) 	= 0,

φt (z0, t0) ≤ (≥)0 otherwise.

Consequently, a viscosity solution is a function that is sub- and supersolution simul-
taneously.

The result by Ishii and Souganidis presented in [22] can be restated in terms of
the level-set equation (see [28]) as follows.

Theorem 2.3. Assume that G is continuous and nondecreasing. Then the initial
value problem (1.3) has a unique viscosity solution u ∈ BUC (Rn × (0, T )) .

In what follows, we also use another result by Ishii and Souganidis [22] concerning
locally uniform perturbations of the right-hand side of the equation. One can restate
this result in the case of (1.2) as follows (see [28]).

Theorem 2.4. Assume that G is continuous and nondecreasing. Suppose also
that {Gm}∞1 is a sequence of continuous, nondecreasing functions on R and Gm → G
locally uniformly. For any m, let F (G) ⊂ F (Gm) and for any f ∈ F (G),

lim inf
p→, m→∞

f ′ (|p|)Gm (1/p) ≥ 0,(
resp., lim sup

p�→0, m→∞
f ′ (|p|)Gm (−1/p) ≤ 0

)
.

Let um be a subsolution (resp., supersolution) of

∂um

∂t
= |Dum|Gm

(
div

Dum

|Dum|

)
in O.

Then

u+ (z) = lim sup
r �→0

{um (y) , |y − z| ≤ r, m > 1/m} ,(2.2) (
resp., u+ (z) = lim inf

r→0
{um (y) , |y − z| ≤ r, m > 1/m}

)
(2.3)

is a subsolution (resp., supersolution) of (1.2) in O provided that u+ < ∞ (resp.,
u+ > −∞).
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3. A convolution-thresholding method for a generalized curvature flow.

3.1. Convergence of approximation schemes. Here we make use of a theo-
rem by Barles and Souganidis proved in [5]. In order to base the proof of our main
result on this theorem, we follow Pasquignon [28] and restate it in terms of (1.2).

Let H (h) be the approximation operator, i.e.,

uh (x, (n + 1)h) = H (h)uh (x, nh) = H (h)
n+1

u0 (x) ,

uh (x, 0) = u0 (x) .

Definition 3.1.

1. Consistency.
An approximation operator H (h) , h > 0, is consistent with (1.2) if for any
φ ∈ C∞ (

Ω̄
)

and for any x ∈ Ω̄, the following holds:

(H (h)φ) (x) − φ (x)

h
= |Dφ|G

(
div

Dφ

|Dφ|

)
+ ox (1) for Dφ 	= 0.(3.1)

If the convergence of ox (1) is locally uniform on sets, where Dφ 	= 0, then
H (h) is said to be uniformly consistent with the PDE.

2. Monotonicity.
An operator H (h) , h > 0, is locally monotone if there exists r > 0 such
that for any functions u (y) , v (y) ∈ B

(
Ω̄
)

with u ≥ v on B (x, r) \ {x}, the
following holds:

H (h)u (y) ≥ H (h) v (y) + o (h) ,

where the convergence of o (h) is uniform on B (x, r) \ {x}.
3. Stability.

An approximation scheme H (h) is stable if H (h)
n
u ∈ B

(
Ω̄
)

for every u ∈
B
(
Ω̄
)
, n ∈ N, h > 0, with a bound independent of h and n.

In this setting the result of Barles and Souganidis reads as follows.
Theorem 3.2. Consider a monotone, stable approximation operator H (h) that

commutes with additions of constants (i.e., H (h) (u + C) = H (h)u+C for all C ∈ R)
and is uniformly consistent with (1.2). Suppose also that

lim
h→0

H (h) (f (|x− x0|)) (x0)

h
= 0(3.2)

for any f ∈ F (G). Then uh (x, nh) converges locally uniformly to the unique viscosity
solution u (x, t) of (1.2) as nh �→ t.

3.2. Properties of H. We consider a convolution generated motion of a hyper-
surface in R

n defined by (1.4) and the corresponding evolution of an initially bounded
function g : R

n �→ R defined by (1.5). Consider also the initial value problem (1.3)
with given G and g. We are looking for such a thresholding function F in (1.4) so that
Hm

t/mg (x) would converge (in some sense) to the unique viscosity solution of (1.3).

For example, set F (M1,M2) = M1 − 1
2 and ρ̃1 (x) = 1

(4π)n/2 e
−x2/4 to get cor-

responding operators Hh and H (h) by (1.4) and (1.5). Then we get the Bence–
Merriman–Osher procedure to which the main result of [15] applies, and H (h)

n
u0

converges locally uniformly to the unique viscosity solution of (1.3) with G (k) = k.



APPROXIMATION OF GENERALIZED CURVATURE FLOWS 2657

We will see that it is necessary to compute two convolutions M1 and M2 and
use the thresholding function depending on both these values to resolve the problem
when G is not linear.

Let us now consider an operator H (h) defined by (1.5) with the help of an operator
Hh with an arbitrary thresholding function (1.4). We look for requirements on F
sufficient to fulfill the conditions of Theorem 3.2.

Stability. Suppose u (x) ∈ B (Rn). We show that H (h)u ∈ B (Rn). Intuitively,
we require

HhR
n = R

n,(3.3)

Hh∅ = ∅,(3.4)

and denote A = max |u|. With these settings, we have [u ≤ A] = R
n and

−A ≤ H (h)u (x) = inf {λ ∈ R : x ∈ Hh [u ≤ λ]} ≤ A.

It remains to find out for which F the conditions (3.3) and (3.4) are satisfied. To do
this, we substitute the corresponding sets into the definition of H:

HhR
n = {x ∈ R

n : F (M1R
n (x, h) ,M2R

n (x, h)) ≥ 0}

=

{
x ∈ R

n : F

(∫
Rn

ρ1dx,

∫
Rn

ρ2dx

)
≥ 0

}
= R

n

Hh∅ = {x ∈ R
n : F (M1∅ (x, h) ,M2∅ (x, h)) ≥ 0}

= {x ∈ R
n : F (0, 0) ≥ 0} = ∅.

Thus, the requirements on F become

F

(∫
Rn

ρ1dx,

∫
Rn

ρ2dx

)
≥ 0,

F (0, 0) < 0.

Monotonicity. Let us now show that if Hh satisfies the so-called inclusion princi-
ple, then Hh is monotonous.

Lemma 3.3. Assume, that Hh satisfies the inclusion principle, i.e.,

∀C1, C2 ⊆ R
n : C1 ⊆ C2 we have HhC1 ⊆ HhC2;(3.5)

then Hh is monotone, that is,

∀u, v ∈ C (Rn) : v ≤ u we have Hh (v) ≤ Hh (u) .

Proof. Suppose, there exists x0 s.t. H (h)u (x0)<H (h) v (x0). We denote λ1 =
H (h)u (x0), λ2 = H (h) v (x0), and ε = λ2−λ1

2 > 0. Since

λ1 + ε < inf {λ ∈ R : x0 ∈ Hh [v ≤ λ]} ,

we have x0 /∈ Hh [v ≤ λ1 + ε], but

Hh [v ≤ λ1 + ε] ⊇ Hh [u ≤ λ1 + ε] .

Therefore x0 /∈ Hh [u ≤ λ1 + ε], which contradicts the definition of λ1.
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Consistency. We sum up some calculations in the following lemma.
Lemma 3.4. Let φ ∈ C∞ (Rn) φ (0) = 0 and Dφ (0) = (0, 0, . . . , β). Then the

consistency of an operator H (h) with (1.3) is equivalent to

γ (h, 0) = hG (−Δγ (h, 0)) + o (h),(3.6)

where Δγ (h, 0) =
∑n−1

i=1 ∂2γ/∂x2
i (0) and xn = γ (h, x́) is a parameterization of the

surface

{x ∈ R
n : φ (x) = H (h)φ (0)}

near x́ = 0.
We observe that in these settings −Δγ (h, 0) ≡ k is the mean curvature of the

graph of γ at the point (0, γ (h, 0)).
Proof. Without loss of generality, one can consider the consistency condition (3.1)

only for φ as in the statement. We rewrite (3.1) in a more convenient form:

(H (h)φ) (0) = h |Dφ (0)|G
(

div
Dφ

|Dφ| (0)

)
+ o (h) .(3.7)

We use the equality

div

(
Dφ

|Dφ|

)
=

1

|Dφ|

n∑
i,j=1

(
δi,j −

φxiφxj

|Dφ|2

)
φxixj

.

Since φ (0) = 0 and φxi (0) = δniβ,

div
Dφ

|Dφ|

∣∣∣∣
x=0

=
1

β

[
n∑

i=1

φxixi (0) − φxn (0)φxn (0)

β2
φxnxn (0)

]

=
1

β
Δ

′
φ (0) .(3.8)

Here Δ
′
φ =

∑n−1
i=1 φxixi

. Our next step is to take small x́, namely |x́| < Rh. For such
x́ we apply the inverse function theorem to φ,

H (h)φ (0) = φ (x́, γ (h, x́)) = φ (0) + βγ (h, 0) + O
(
h2

)
.(3.9)

Putting (3.9) and (3.8) into (3.7) we get

γ (h, 0) = hG

(
1

β
Δ

′
φ (0)

)
+ o (h) .(3.10)

Furthermore, differentiating both sides of H (h)φ (0) = φ (x́, γ (h, x́)) gives

φxi + φxnγxi = 0,

φxixj
+ φxixn

γxj
+ φxnxj

γxi
+ φxnxn

γxj
γxi

+ φxn
γxixj

= 0

for j, i = 1, . . . , n− 1. We deduce γxi (h, 0) = 0 from the first equality and rewrite the
second one for i = j,

φxjxj (0) + φxn (0) γxjxj (h, 0) = 0.

After a summation over j this becomes

1

β
Δ

′
φ (0) = −Δγ (h, 0) .

It remains to put this relation into (3.10) to get the desired equality (3.6).



APPROXIMATION OF GENERALIZED CURVATURE FLOWS 2659

3.3. The convergence result for general G. In this subsection we construct
the thresholding function F (M1,M2) and show that the corresponding convolution
thresholding scheme (1.4), (1.5) converges to the viscosity solution u (x, t) of (1.3),

Hm
t
m
g (x) → u (x, t) as m → ∞.

We start with F (M1C (x, h) ,M2C (x, h)), where

MiC (x, h) =

∫
C

ρi (x− y) dy.

For each ρi we expand this integral into the power series in h (see (3.19)), i.e.,

Mi [φ ≤ H (h)φ (0)] (0, h) = Ai +
√
hvCi +

√
hΔγ (h, 0)Bi + O

(
h3/2

)
,(3.11)

where

Ai =

∫
Rn−1

∫ 0

−∞
ρi (|y|) dyndý,(3.12)

Bi =
1

2

∫
Rn−1

y2
kρi (ý, 0) dý,(3.13)

Ci =

∫
Rn−1

ρi (ý, 0) dý,(3.14)

and i = 1, 2. This is a system of linear algebraic equations for Δγ (h, 0) and v. We
choose the kernels so that the determinant of this system is positive,

D = C1B2 − C2B1 > 0,

denote Ni = Mi [φ ≤ H (h)φ (0)] (0, h) −Ai, and write the solution

v =
γ (h, 0)

h
=

1√
h

N1B2 −N2B1

C1B2 − C2B1
+ O (h) ,

Δγ (h, 0) =
1√
h

N2C1 −N1C2

C1B2 − C2B1
+ O (h) .

Lemma 3.4 implies that the operator H is consistent with the PDE in (1.3) if we take

F (N1, N2) = v −G (−Δγ (h, 0))

=
1√
h

N1B2 −N2B1

D
−G

(
1√
h

N1C2 −N2C1

D

)
.(3.15)

In the case of the thresholding function of one variable, the inclusion principle
(3.5) holds for H when F is nondecreasing. In the case of two variables we require

∂F

∂N1
=

B2

D
− C2

D
G

′ ≥ 0,(3.16)

∂F

∂N2
= −B1

D
+

C1

D
G

′ ≥ 0.(3.17)
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This implies

B1

C1
≤ G

′ ≤ B2

C2
.(3.18)

Therefore, for awhile we restrict ourselves with G having a bounded and positive
derivative. Comparing (3.14) with (3.13) one sees that it is possible to make the
lower bound in (3.18) small by choosing ρ1 with mass concentration close to the
origin. The upper bound will be large if the mass of ρ2 is concentrated relatively far
from the origin.

Next, we state some auxiliary results.
Lemma 3.5. Suppose (3.16) and (3.17) hold and H is defined by (1.4); then for

all h ∈ R+,
1. H (h) (Rn) = R

n, H (h) (∅) = ∅,
2. for all a, b ∈ X : a ⊆ b ⇒ H (h) a ⊆ H (h) b.

Proof.
1. It is enough to show that F

(
M1 (Rn) (x, h) ,M2 (Rn)

(
x, h

))
≥ 0, and F

(
M1

(∅)
(
x, h

)
,M2 (∅) (x, h)

)
< 0. First we observe that F (A1, A2) = 0, Mi (R

n) (x, h)

≥ Ai, and Mi (∅) (x, h) = 0 < Ai. This, together with ∂F
∂Ni

> 0, gives the
desired inequalities.

2. Since Mi (b) ≥ Mi (a), F (M1 (b) ,M2 (b)) ≥ F (M1 (a) ,M2 (a)), therefore
[F (M1 (a) ,M2 (a)) ≥ 0] ⊆ [F (M1 (b) ,M2 (b)) ≥ 0], which is equivalent to
H (h) a ⊆ H (h) b.

Proposition 3.6. Define H by (1.5) and H by (1.4); then for each h > 0 and
u ∈ B (Rn) one has H (h)u ∈ B (Rn).

Proof. Without loss of generality we assume that S1 ≤ u (x) ≤ S2 for some
S1, S2 ∈ R. From

∀h ∈ R+ H (h) (Rn) = R
nand H (h) (∅) = ∅

it follows that x ∈ H (h) [u ≤ S2] and x /∈ H (h) [u ≤ S1]. Therefore, we see that

S1 ≤ H (h)u (x) = inf {λ ∈ R : x ∈ H (h) [u ≤ λ]} ≤ S2.

With the results above, we are ready to state the convergence of the approxima-
tions H (t/m)

m
g to the unique viscosity solution of (1.3).

Theorem 3.7. Let H (h) be defined by

[H (h)u] (x) = sup {λ ∈ R : x ∈ Hh [u ≥ λ]}

with

HhC = {x ∈ R
n : F (M1 (C) (x, h) ,M2 (C) (x, h)) ≥ 0} ,

where

F (N1, N2) =
1√
h

N1B2 −N2B1

D
−G

(
1√
h

N2C1 −N1C2

D

)
,
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and where ρ̃1, ρ̃2 have compact support and G is continuous nondecreasing satisfying
(3.18). Then

Hm
t/mg (x) → u (x, t)

locally uniformly when m → ∞. Here u (x, t) is the unique viscosity solution of (1.3)
with G satisfying (3.18).

Proof. Our aim is to show here that the operator H (h) satisfies the conditions of
Theorem 3.2. The monotonicity of Hh is ensured by Lemmas 3.3 and 3.5.

The stability of H is exactly the result of Proposition 3.6: H (h)u ∈ B
(
Ω̄
)
.

Another requirement in Theorem 3.2 is that H (h) must commute with the addi-
tion of constants, i.e.,

∀a ∈ R H (h) (u (x) + a) = H (h)u (x) + a.

This follows from the very definition of H (h):

H (h) (u (x) + a) = inf {λ ∈ R : x ∈ H (h) [u (x) + a ≤ λ]}
= inf {β + a ∈ R : x ∈ H (h) [u (x) ≤ β]} = H (h)u (x) + a.

The operator H (h) has to fulfill (3.2) as well. The limit we are interested in is

lim
h→0

H (h)u (x0)

h
= 0

for u of the form u (x) = f (|x− x0|), where f ∈ C2 ([0,∞)) with f (0) = f ′ (0) =
f ′′ (0) = 0 and f ′′ (r) > 0 for r > 0.

It is enough to show that this is true for x0 = 0. First, we observe that H−1
h [{0}] =

{u ≤ λ1}, where λ1 = H (h)u (0). Since both ρ1 and ρ2 have compact support, we
can be sure that there exists R s.t.

{
|x| ≤ R

√
h
}
⊇ H−1

h [{0}]. Now we observe, that{
|x| ≤ R

√
h
}

= {u ≤ λ2} for some λ2 > λ1. From the latter equality we deduce

λ2 = O
(
h3/2

)
and conclude with

lim
h→0

H (h)u (x0)

h
≤ lim

h→0

O
(
h3/2

)
h

= 0.

To show that our approximation operator is consistent with the PDE, we use
Lemma 3.4. It is enough to prove the following:

γ (h, 0) = hG (−Δγ (h, 0)) + o (h) ,

where xn = γ (h, x́) is a parameterization of the surface

{x ∈ R
n : u (x) = H (h)u (0)}

near x́ = 0. To show this, we use the fact that

F (M1 [u ≤ μ] ,M2 [u ≤ μ])|x=0 = 0.

We begin by writing the expressions for Mi in detail:
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Mi =

(
χ[u≤μ] �

1

hn/2
ρi

(
|·|√
h

))
(0) =

∫
Rn

χ[u≤μ] (y)
1

hn/2
ρi

(
|y|√
h

)
dy

=

∫
Rn−1

∫ γ(h,ý)

−∞

1

hn/2
ρi

(
|y|√
h

)
dyndý = Ai +

∫
Rn−1

∫ (1/
√
h)γ(h,

√
hý)

0

ρi (|y|) dyndý.

Here Ai is given by (3.12). Expanding γ
(
h,

√
hý

)
in the Taylor series with respect to

the spatial variables (keeping h as a parameter) we get

1√
h
γ
(
h,

√
hý

)
=

√
h
γ (h, 0)

h
+

√
h

2

n−1∑
i,j=1

γyiyj (h, 0) yiyj

+
h

6

n−1∑
i,j,l=1

γyiyjyl
(h, 0) yiyjyl + O

(
h3/2ý4

)
.

Observing that γ (h, 0) = O
(√

h
)
, we denote γ(h,0)

h = v. The expression for Mi be-
comes

Mi = Ai +

∫
Rn−1

ρi (ý, 0)

⎡
⎣√hv +

√
h

2

n−1∑
i,j=1

γyiyj
(h, 0) yiyj + O

(
h3/2ý4

)⎤⎦ dyndý

= Ai +
√
hvCi +

√
hΔγ (h, 0)Bi + O

(
h3/2

)
,(3.19)

where we have used the fact that ρi (x́, xn) is smooth and radially symmetric, in
particular,

∂ρi
∂xn

(x́, 0) = 0.

The constants Bi, Ci depend only on ρi and are given by (3.13) and (3.14).
Remark 1. At this point it is easy to see that a scheme with a thresholding

depending only on one variable can be consistent with the PDE (1.2) only in the case
of linear G. The thresholding condition becomes

F
(
A +

√
hvC +

√
hΔγ (h, 0)B + O

(
h3/2

))
= 0.

As was required by the inclusion principle, the function F is nondecreasing. This
implies

A +
√
hvC +

√
hΔγ (h, 0)B + O

(
h3/2

)
= a,

where a is the unique solution of F (a) = 0. Thus

v =
γ (h, 0)

h
= −B

C
Δγ (h, 0) − a−A√

hC
+ o

(√
h
)
.

Comparing this relationship with the one in Lemma 3.4, we see that the only G’s we
can resolve by thresholding depending on one variable are the linear ones: G (k) =
const · k + const.
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Let us denote here k = Δγ (h, 0).
Now we can express v and k in terms of Mi and constants Ai, Bi, and Ci :

v =
1√
h

N1B2 −N2B1

C1B2 − C2B1
+ O (h) ,

k =
1√
h

N2C1 −N1C2

C1B2 − C2B1
+ O (h) .

Since F (M1,M2) = v −G (−k) = 0, we have

γ (h, 0) = hG (−Δγ (h, 0)) + o (h) .

Remark 2. As was already mentioned above, convolution kernels ρ̃i can also
be taken with unbounded support. For example, the exponential decay for large
arguments is sufficient in order for Theorem 3.7 to hold.

The requirement (3.18) is quite restrictive. Our next result shows that it is
enough to take Gε satisfying (3.18) and uniformly close to G in order to approximate
the solutions of (1.3).

Proposition 3.8. Suppose Gε, G are continuous and Gε → G uniformly on R

as ε → 0. Then F (G) = F (Gε).
Proof. Suppose f ∈ F (G). It means that f (0) = f ′ (0) = f ′′ (0), f (r) > 0 for

r > 0, and

lim
p→0

f ′ (p)G

(
1

p

)
= lim

p→0
f ′ (p)G

(
−1

p

)
= 0.

Since Gε → G uniformly, G (k) = Gε (k) + oε (1)α (k), where α ∈ B (R). We write

0 = lim
p�→0

f ′ (p)G

(
1

p

)

= lim
p→0

f ′ (p)

(
Gε

(
1

p

)
+ oε (1)α

(
1

p

))
= lim

p→0
f ′ (p)Gε

(
1

p

)

to see that f ∈ F (Gε).
The proof of the reverse inclusion is analogous.
Lemma 3.9. Suppose Gε, G are nondecreasing continuous and Gε → G uniformly

on R as ε → 0. Suppose also that for each ε > 0 the operator Hε is monotone, stable,
commuting with additions of constants, and consistent with

∂uε

∂t
= |Duε|Gε

(
div

Duε

|Duε|

)
.(3.20)

Additionally, let the following limit hold:

lim
h→

Hh (h) (f (|x− x0|)) (x0)

h
= 0(3.21)

for each f ∈ F (G). Then

Hm
t/m (t/m)u0 (x) → u (x, t)

locally uniformly as m → ∞, where u (x, t) is the unique viscosity solution of (1.3).
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Proof. We show here that the operator Hh (h) satisfies the conditions of Theorem
3.2. This operator commutes with additions of constants and satisfies limit (3.21) by
the assumption. Since the operator Hε is stable for all ε > 0, it is particularly stable
for ε = h for each h > 0.

Since the operator Hε is monotonic for all ε > 0, it is particularly monotonic for
ε = h for each h > 0.

We have to show consistency; i.e., for each φ ∈ C∞ (Rn) at each point where
|Dφ| 	= 0,

Hh (h)φ (x) − φ (x) = h |Dφ (x)|G
(

div
Dφ (x)

|Dφ (x)|

)
+ o (h)(3.22)

has to hold. Since the operator Hε is consistent with (3.20) and Gh (k) = G (k) +
oh (1)α (k) for some α ∈ B (R) , we write

Hh (h)φ (x) − φ (x) = h |Dφ (x)|Gh

(
div

Dφ (x)

|Dφ (x)|

)
+ o (h)

= h |Dφ (x)|
(
G

(
div

Dφ (x)

|Dφ (x)|

)
+ oh (1)α

(
div

Dφ (x)

|Dφ (x)|

))
+ o (h)

= h |Dφ (x)|G
(

div
Dφ (x)

|Dφ (x)|

)
+ o (h) ;

here oh (1) → 0 as h → 0.

Theorem 3.10. Consider a convolution-thresholding scheme

Hε (h)u (x) = inf {λ ∈ R : x ∈ Hε (h) [u ≤ λ]} ,
Hε (h)C = {x ∈ R

n : Fε (M1 (C) (x, h) ,M2 (C) (x, h)) ≥ 0} ,

where the thresholding function Fε (M1,M2) is chosen so that the scheme is monotone
and consistent with (3.20) and the convolution kernels have compact support. If Gε →
G uniformly, then

Hm
t/m (t/m)u0 (x) → u (x, t)

locally uniformly as m → ∞, where u (x, t) is the unique viscosity solution of (1.3).

Proof. The convergence follows form Lemma 3.9 if we show that the limit (3.21)
holds. Let us set x0 = 0; then the set [f (|x|) ≤ λ] is a ball centered at the origin with
radius O

(
λ1/3

)
. We denote Hh (h) f (0) = λ1. Observe that λ1 can be characterized

as a number for which Hh (h) [f ≤ λ1] = {0}. Since we know that Fh (A1, A2) > 0,
the radius of [f ≤ λ1] must be less than or equal to the radius of the greatest support

of the kernel: O
(
λ

1/3
1

)
≤ R

√
h. From this inequality we deduce Hh (h) f (0) = λ1 ≤

O
(
h3/2

)
. This establishes the desired limit (3.21).

Let us now consider the particular interesting case with G (k) = k |k|α−1
with

α > 1. We set

Gm (k) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − α)mα + αmα−1k for k < −n,
m1−αk for |k| < 1/n,
− (1 − α)mα + αmα−1k for k > n,

k |k|α−1
elsewhere.
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Gm is continuous, increasing, and its derivative is bounded from below and above:
m1−α ≤ G

′

m ≤ αmα−1. Moreover, Gm → k |k|α−1
locally uniformly as m → ∞.

Using Theorem 2.4 it is easy to show the following.
Theorem 3.11. Let um be the viscosity solution of

∂um

∂t
= |Dum|Gm

(
div

Dum

|Dum|

)
in O,

where Gm is defined above. Then um → u locally uniformly as m → ∞, where u is
the viscosity solution of (1.2) in O, with G (k) = k |k|α−1

, α > 1.
Proof. First we establish the inclusion F (G) ⊂ F (Gm). Take f ∈ F (G). By the

definition of F (G), f ′ (x) = o (xα). This immediately gives

lim
p→0

f ′ (p)Gm (1/p) = lim
p→0

f ′ (p) /p = 0,

since α > 1. We observe also that the remaining conditions of Theorem 2.4 are
satisfied. Hence a subsolution and a supersolution u+ and u+ can be constructed by
means of (2.2) and (2.3). Since the equation has the strong comparison property (see
[12]), u+ = u+ and the result follows.

Remark 3. In a more general case when G (k) = O (kα), α > 1, one can pick a
sequence of increasing functions with derivative bounded below and above and apply
Theorem 2.4 to get a result similar to Theorem 3.11.

4. Numerical implementation. This section is devoted to a description of
our numerical implementations of the convolution-thresholding scheme developed in
section 3.

Given a compact set C ⊂ R
n, we fix convolution kernels ρ1, ρ2 and the time step

h and approximate Ct at a time moment t = mh by (H (h))
m
C. The algorithm of

computations consists of the following steps:
1. Compute convolutions and the thresholding function

MiC (x, h) =

∫
Rn

χC (y) ρi (x− y) dy, i = 1, 2,(4.1)

F (x, h) = F (M1C (x, h) ,M2C (x, h)) .(4.2)

2. Find the evolved set H (h)C = {x ∈ R
n : F (x, h) ≥ 0}.

3. Repeat the procedure with the evolved set to get H2(h)C and so on.
We used two different algorithms for the calculation of the convolution step, which

constitutes the main computational part of the algorithm.

4.1. Spatial discretization. We assume that initially the surface is closed and
contained in a unit cube. The surface under consideration is always an isosurface of
some function. In our implementation we use a modification of the so-called marching
cubes algorithm for extracting an isosurface. The algorithm was originally proposed
in [24] and was first applied for the mean curvature flow calculations in [30]. The
algorithm creates an adaptive spatial discretization of C (see Figure 4.1).

By our implementation, we significantly reduce the number of grid points. In
addition, the accurate piecewise polynomial approximation of the ∂C can be arranged.

4.2. Spectral method. One can use a Fourier series to calculate the convo-
lutions (4.1). Numerical aspects of this approach have been presented by Ruuth in
[30].
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Fig. 4.1. On the spatial discretization.

In order to compute Fourier coefficients of χC given on a nonuniform grid, the
unequally spaced approximate fast Fourier transform algorithm [6] is used. The nu-
merical cost of this transform algorithm combined with the marching cubes procedure
is (see [30]) O

(
mnNp + Nn

f log (Nf )
)
, where m is a constant depending on a desired

accuracy in the calculation of the Fourier coefficients (in case m = 23, the accuracy is
comparable with the machine truncation error), Nf is a number of the Fourier modes
along each axis, and Np is the number of nodes in the grid.

4.3. Direct method. If ρ1 and ρ2 are simple enough and have compact support,
their convolutions with χC can be calculated explicitly. Let us choose

ρ̃1 (x) =

{ 1
|B1| if x < 1,

0 otherwise,

ρ̃2 (x) =
1

αn
ρ̃1

(x

α

)
,

where |B1| is the Lebesgue measure of a unit ball in R
n and α ∈ R+, α < 1. In this

case, convolution values (4.1) are proportional to the measure of the intersection of
C with a ball of radius proportional to

√
h centered at the point x.

We present expressions for the thresholding function F (M1,M2) in the case n = 2:

F (M1,M2) = v −G (k) , where

v =
πα (2αM1 − 2M2 − α + 1)

4
√
h (α2 − 1)

,

k =
−3π (2M1 − 2αM2 + α− 1)

2
√
h (α2 − 1)

.

In this case convolutions M1 and M2 can be calculated as follows. We represent
C as a disjoint union of squares and triangles (or cubes in tetrahedron in case n = 3)
using the marching cubes method and calculate the area (volume) of intersection of
the ball (supp ρ) with each square and triangle. The numerical cost of each step of
the evolution can be estimated by O (Np ∗Ni + Np), where Ni is the number of points

inside the ball of radius
√
h with the center at some grid point. When h is large, the

accuracy of the method is low; therefore one can take less grid points. Thus, Ni is
entirely determined by the desired accuracy.

4.4. Computed examples. In the case of the mean curvature curve evolution in
R

2, the accuracy of calculations can be monitored with the help of the Von Neumann–
Mullins parabolic law. It asserts that dS/dt = −2π, where S is the area enclosed by
the curve.
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Fig. 4.2. The mean curvature evolution of a nonsmooth, nonconvex curve.
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Fig. 4.3. Local area error dependence on time. The first order method with time step 1/600—
the line with triangle markers; the first order method with time step 1/6000—the thin line; the
second order method with time step 1/6000—the line with square markers.

Consider a nonconvex, nonsmooth initial curve, depicted in Figure 4.2. The mean
curvature evolution of this curve was calculated using the direct method with time
step values dt = 1/600 and 1/6000. The shape of the curve is plotted in Figure 4.2 for
times t = 1/600, 2/600, . . . when calculated with the fine time step. The comparison
between local relative errors

ei =
|Si − Si+1 − 2πdt|

2πdt
(4.3)

for calculations with different time steps is seen in Figure 4.3. One can observe that
the error indeed depends linearly on the time step.
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Fig. 4.4. The evolution v = k1/3 of an ellipse.

Fig. 4.5. Computed mean curvature evolution.

The evolution with the velocity v = k1/3 is depicted in Figure 4.4. In this case
the flow is affine invariant [1]; hence the eccentricity e of the evolving ellipse remains
constant. In this particular example, the curvature is bounded from above and below
by some positive constants for some evolution time. This means that we never use
the parts of G(k) = k1/3, where its derivative is too large or too small. This allows
us to apply the thresholding procedure without any approximation of G.

In Figures 4.5 and 4.6 computed three-dimensional evolution of a nonconvex sur-
face is represented for curvature flow and for a flow with velocity v = G(k), as in
Figure 4.7 with ∼ 200000 triangles approximating the surface.

4.5. On the higher order schemes for the mean curvature motion. Let
us now look at approximations to the mean curvature evolution. It is easy to see
that if the surface is smooth, the Bence–Merriman–Osher method gives the first order
approximation in time for a curvature flow. A higher order scheme by an extrapolation
argument in time was proposed by Ruuth in [30]. We propose here higher order
approximations to the mean curvature evolution using some properties of functions
Mi.

We rewrite the equations (3.11) and keep an additional term of order h3/2 in each
equation with a kernel-dependent multiplier Ei to get the error term of order h5/2.
Considering two equations we get the relation

E2N1 − E1N2 =
√
h[(E2C1 − E1C2)v + (E2B1 − E1B2)γ

′′ (h, 0)] + O
(
h5/2

)
.(4.4)

This relationship motivates us to take the thresholding function F (N1, N2) = E2N1−
E1N2 to approximate the mean curvature evolution with the second order accuracy
for smooth curves. However, this thresholding function does not simultaneously sat-
isfy (3.16) and (3.17) and, therefore, the stability of the numerical scheme is not
guaranteed by the previous argument.

The calculations with the above thresholding function were performed. No sign
of instability was observed in the numerical experiments and, as one can see in Figure
4.3, the accuracy was increased by approximately one order. This increase agrees with
the construction (4.4).



APPROXIMATION OF GENERALIZED CURVATURE FLOWS 2669

Fig. 4.6. Computed generalized mean curvature evolution.
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Fig. 4.7. Function G(k) used in the computation.

Acknowledgments. A part of this work was completed during our visit to the
University of South Carolina. We are grateful to Professor Björn Jawerth for the
opportunity to work there and for fruitful discussions. We would also like to thank
the anonymous referees for pointing out necessary corrections in the formulation of
Theorem 3.2, for clarifying some key points in the text, and for suggesting additional
references.

REFERENCES

[1] L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel, Axioms and fundamental equations
of image processing, Arch. Rational Mech. Anal., 123 (1993), pp. 199–257.

[2] S. Angenent, T. Ilmanen, and D. L. Chopp, A computed example of nonuniqueness of mean
curvature flow in R3, Comm. Partial Differential Equations, 20 (1995), pp. 1937–1958.

[3] G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme
for computing motions by mean curvature, SIAM J. Numer. Anal., 32 (1995), pp. 484–500.

[4] G. Barles, H. M. Soner, and P. E. Souganidis, Front propagation and phase field theory,
SIAM J. Control Optim., 31 (1993), pp. 439–469.

[5] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear
second order equations, Asymptotic Anal., 4 (1991), pp. 271–283.

[6] G. Beylkin, On the fast Fourier transform of functions with singularities, Appl. Comput.
Harmon. Anal., 2 (1995), pp. 363–381.

[7] K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Princeton University Press,
Princeton, NJ, 1978.

[8] L. Bronsard and R. V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-
Landau dynamics, J. Differential Equations, 90 (1991), pp. 211–237.

[9] F. Cao, Partial differential equations and mathematical morphology, J. Math. Pures Appl. (9),
77 (1998), pp. 909–941.
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