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The natural Markov structure for population growth is that of genetics: newborns inherit tvpes
from their mothers, and given those they are independent of the history of their earlier ancestry.
This Ieads to Markov ficlds on the space of sets of individuals, partially ordered by descent. The
structure of such fields is investigated.

[t is proved that this Markov property implies branching, t.e. the conditional independence of
disjoint danghter populations. The process also has the strong Markov property at certain optional
sets of individuals. An intrinsic martingale {indexed by sets of individuals) is exhibited, that
catches the stochastic element of population development. The deterministic part is analyzed by
Markov renewal methods.

Finally the strong Markov property found is used to divide the population into conditionally
independent subpopulations. On those classical limit theory for sums of independeni random
variables can be used fo carch the asvmpiotic population development, as real time passes.

branching processes = population growth = Markov fields

1. Introduction

Is there any natural Markovian structure in population growth? Or to be more
precise, in tolerably general models {or populations of independently reproducing
individuals?

Certainly we cannot take the population size itself as Markovian in continuous,
physical time. That would have well-known absurd consequences at the individual
level: life spans must be exponentially distributed and mothers give birth as an
age-homogeneous Poisson process, and possibly also by splitting at death.

But even the much more sophisticated Markovianness in age distributions,
assumed in most demography and biological population dynamics, subsumes
undesired, or at least, quite special properties of individual life. Indeed, the process
which gives at each instant not only the number of individuals born but also their
ages, can only be Markovian if individual reproduction point processes have
independent increments, {Otherwise additional Information about who is whose
daughter would be relevant for population forecasts.) But by Kingman's theorem
{Kallenberg, 1983, pp. 56-39) the births then still form a Poisson process, or possibly
occur at fixed ages.
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It thus seems that the only acceptably general Markov poputation processes of
independently reproducing individuals are those in discrete time—the generation
counting {multi-type) Galton-Watson processes. However, {from an empiric point
of view these are of little avail except for the study of time-independent phenomena,
like ultimate extinction. Sull, their existence provides a hint: maybe the difficulty
in Markov modelling of population growth consists not so much in finding a proper
state space, but rather in realizing that the natural “time” is the genealogical, only
partially ordered, family tree, rather than physical time,

Indeed, from genetics we may take the basic dependence structure to be mothers
passing on & type (the “genotype”) to the newborns at their birth, that type
determining a probability law over a space of possible life careers, the latter being
thus independent of everything else, once the type is given.

We shall use this idea to formulate general branching processes in abstract type
spaces as Markov random fields, indexed by sets of individuals, partially ordered
by descent, Existence, uniqueness and a strong Markov branching property will be
exhibited. Here the Markov property means that, given the types of a set of
individuals, then the population stemming from the set will be independent of the
history of its earhier ancestry. The branching property is our name for the conditional
independence between daughter populations of different individuals, given their
prehistary and provided none of them stem from the others. It turns cut to be 3
beautiful, simpie consequence of the theory that the Markov property actually
implies branching. In other words, there are no other population processes
Markaovian over descent trees than branching processes.

We shall also exhibit an intrinsic martingale, indexed by sets of individuals, which
catches the stochastic element in population growth, The mean growth 1s analyzed
in Markov renewal terms. In the supercritical case the classical x log x condition
will turn out 1o guarantee uniform integrability and hence L'-convergence of this
martingale with only partially ordered indices. The martingale convergence will
finaily be combined with some classical Hmit theory for sums of independent random
variabies, to vield limit theorems on population growth in real time and the stabili-
zation of population composition over ages, types, eic., in the supercritical case.

The strict formulation of the model will be in terms of a general Ulam-Harris
family space, as in Nerman {1984}, or for the one type case in Jagers (1975) and
in Jagers and Nerman {1984). The main impetus for this work, however, comes
from the tree-space ideas by Neveu (1986) and Chauvin {1986). In particular, the
fundamental concept of ‘stopping line’ {i.e. a set of individuals where no member
stems from any other member), first appeared in Chauvin’s paper. In 1986 D, Grey
{198%) had similar ideas, looking for a framework for various martingale appearing
in branching processes. A methodological prerequisite for the work is modern
Markov renewal theory where [ have chosen to rely upon the formulation by Nien
and Nummelin (1986}. The intrinsic, set indexed martingale we use is derived from
Nerman's {1981 and 1984) real time martingale and the results on the real-time
process in our last seciion are close to those obtained by Nerman (1984) by
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L*.arguments. The methods however, a combination of weak L'-convergence with
classical Hmit theory, bear more resemblance to Cohn’s (1985} proof for the one-type
case. For a law-of-large-numbers approach to this case ¢f. Nerman (1981).

2. Basic notions

In the classical Ulam-Harris family space each (possible) individual is identified
with his descent: an individual is a vector of positive integers, x = {x;, X>,..., X,
being read as the x,th child of the...of the x:th child of the x;th child of the
ancestor, the latter denoted by zero. In other words, the space of individuals is

X

1={J N,

51 nd)

where N7={0} and N =1{1,2,...}. On individuals it is good to have notation for
some simple operators or functions: For 0% x=(x,, ..., X, (, X, ),

mx={X,,. .., Xpt)
is X's morher, mx=01if xe N. Also
FX =X,

is x's rank (in her sibship). If x, y € I' we write xy for the concatenrated individual,
having first x’s and then y¥’s coordinates. In particular Ox = x = x0 and mxry = X,
For any x< [, g(x} is x’s dimension or generation,

g(x}=n & xe N-

Obviously m" " x must be x’s nth grandmother, provided g{x) > n. It will be suitable
to stop this regression at the ancestor, so that m0= (.

If for some r y = m"x, we write x > p and say that x stems from v. By convention
this includes m"x = x. This obviously renders T a partially ordered set, and indeed
a semilattice (every non-empty finite subset has a lower bound, the last common
ancestor), The partial order will play a crucial réle in the sequel and much of the
theory will be valid for abstract semilattices. Here, let us only mention three further
examples:

a. Binary splitting, {_/" ., {1, 2}", or any subset of {, which is a tree in the sense
of Joffe {1978} and Neveu {1986,

b. The continuous semilattice [ N™.

¢. The doubly infinite pedigree {Jagers and Nerman (1984}), Write Z_=
(0,—-1,-2,...) to be interpreted as a special {e.g. randomly chosen) individual,
“Ego’, followed by her mother, grandmother etc. Then

vl

is a doubly infinite space of individuals, centered around Ego. In'this space —J has
daughters —j+1,(—j i}, i= N.
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However, we shall stick to the Ulam-Harris space L In this case the progeny of
any set M < [

PrM={xacl; x> M}

can be written M x L {Some algebraic literature uses TM for this set.} Here, of
course x> M means that x>y for some v& M. Generally we write L> M if all
x & L stem from M.

As pointed cut in the introduction stopping Hines or, for short, lines are particularly
interesting sets of individuals: L= 1 is a (stopping) line f x, ve L, x# y=x A
Thus, a line here is not at all the same as a genealogical line, but rather something
cutting those. Any set M of individuals is initiated by a line, that might be called
the head of the set, AM:

hM ={xe M. y<x, y#x=ve M}

Several properties of these sets of individuals are easily realized, like # Pr M =
AM, Pr{Lw M)y={(Pr Ly (Pr M) and the following.

Propesition 2.1. If L, M < [ are stopping lines, then L=M<Pr L=Pr M.

We turn now 10 the fife space ({1, &7} An element w & {2 is a possible life career
and any property of individuals like their mass at some age or their life span is
viewed as a measurable function on the life space. In particular this applies to
reproduction, defined by a sequel of maps 0= +(1)= 7{2}= - = from the life
space into the extended positive real line, vk} o) being the age of an individual
with life career w when she begets her kth child. If 7(k}{w )=, the kth child is
never born.

At birth any child gets a tvpe in an abstract type space § with a countably
generated sigma-algebra 7. These types are given by measurable functions gk} £2 -
S ke N, p{k} being the type of the kth child. The reproduction process is thus the
point process

EAX By=#1k plkic A, 7lk)e B}, Aclf Be 3,

# the Borel algebra on B
From the life and type spaces we construct the population space

(0, dy=(S= {3 Fray
an putcome of which thus consists of a starting type, for the ancestor, and then a
life career for each individual in . For M < I write U, for the projection Sx (27 -
M ang U, = U,.,. Of great importance are the pre-L-sigma algebras

Fo=F ol x> Li=Yxall,, xePrl]
for L« I {Properly speaking, they are “ex-Pr L rather than “pre-L7.} As above
we write F, for F,,.
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Since L<M=2Pr L>Pr M==F, <« %,,, it holds that:
Propesition 2.2, {%, L < It is a filiration under <.

The following can also be immediately seen:

=

Proposition 2.3, #, =%, ~nFyand F,=%,;,. O

To Lt an entity y defined on the life spuce into the population space write
.= x e U

for the y-value pertaining to x< L In particular & =&+ U, is x’s reproduction
process. However, we let r, denote r{rx) < U,,, L.e. x's mother’s age at x’s birth.
Similarly p.=plrx}o U, is X’s type. If x is defined on §x £ it will be fitting to
fet y, denote y{ g, U.L

Finally assume the ancestor born at time zero, i.e. define the hirth times of x € [ by

o=, T, =0, +7., OFxel
Here o, =20 has the inferpretation that x is never born and
#={xal, o <}

might be termed the set of realized individuals.
3. The prebability measure

Now, as hinted in the introduction, assume for each € § a probability measure
P(s, ) given on the life space. The functions s Pls, A} should be measurable,
A€ sl We shall see that such a kernel defines, to each s 8, a4 unique probability
measure P, on the population space, which has the property that, given p,= 5 and
the type p. of x, x's iife follows the law P{p,, *) independeatly of the process for
the rest.

Indeed, the space of individuals can be enumerated in such a wayv that a mother
always precedes her daughters. For any x < f we may therefore define a transition
prabability for the life law of x, given g, and the lives of individuals preceding x
in the enumeration, simply to be Pip., 1. By lonesco Tulces's theorem { Neveu,
1965, p. 162} this defines a unique probability measure P, on {5 x 07, Fx o ') such
that gy =3 and the lollowing holds for fnite dimensional sets: For any finite set,
M, of individuais write

AnM={xe I’"M; Ay M, x <y}

for the set of proper ancesiors of M, and
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for the restriction of an outcome to life careers of individuals in M, wyy = Uyl ), w =
{ps, wy; x€ 1} Define

» -~

P (dw) ¢J e } I Pipdw}), da,).
!I,\;: AF

xu{ An M b A
(Recall that under P,

) fplri(w,,), x#0,
3 =
prle 15, x=0.)

It also follows that for any Ae Fx ', s »P (A) is measurable,

The obvious fact that the formation of the finite product measure under the
integral is associative leads to Neveu's and Chauvin's {1986} succinet formulation
of the Markov and branching properties. To state it write 8, = { p,, Up .} for the
type of x and the projection on the progeny of x & [ In another interpretation, this
is the translation that renders x the ancestor {cf. Jagers, 1975).

Theorem 3.1, Let L I be a stopping line and ¢, x ¢ L, non-negative measurable
Junctions on the population space. Then, for any 5 S,

i{ [T g lei"-i""ﬁ,] H & Led,

E, denoting expectation with respect to P, s S,

Proof. Assume L to be finite and consider for anv x¢ L Bnite J, o I, writing
xJoo={xy: ye J.}. Assume that AnJ =, i.e. that J, with any individual contains
all her ancestors. Then with p,= 5,

U A Lyu iU ey x(de) = i Plpiw), dw,)

e iAn Lyl b xd,

= [ Plpdwhde) Il Il Plp.lw)do)

g A L xa bozald,

=P, UL de) {] 7, U, (de),
xal '
The general result follows from considerations of a sequence of finite L, T L, 0= ¢,
I, monotone convergence and backwards martingale convergence applied to the

conditional expectations given %, when #; | #,. [

Here we used an argument that will appear several times, that L, < L, =L, <
L, and hence o Fp .

The Neveu-C hamm form directly exhibits the announced beautiful fact that the
Markov property imphies branching, 1.e. that conditional independence of disjoint
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daughter processes is actually a consequence of the Markovianess on the population
three:

Theorem 3.2. Consider a probability measure P, sc 8, on the population space {8 x

0 x4 such that for any x ¢ I S| F, has the distribution B, . Then, for any line
L Fthe 5., xe L, are conditionally independent given ¥, .

Proof. i suffices to consider finite lines, so assume L={x,, X,,..., x,}. Let ¢, §x
£2' »10,1] be arbitrary measurable functions, i=1,2,...#n Then, E, denoting
expectation with respect to P, s€ §,

‘V;!jI 2£\' { Ei gx ° S\';[’Ev[‘Px’l ° S\,;JM] L;’z:l:l

2

= iE\- { EI“ 40.\", @ Sw;gﬁp‘;[@nﬂ ‘F.'] = [Ep“[(p\';]ﬁéx { i; ‘Px; © S‘i’; [ j;‘l,]‘

.2 P

We used first that %, < #_, and then the Markov assumption. Repeating the
argument we conclude that

E, {'ﬁ"‘i .o S| ﬁ} =[E [el=lEe, oS 7] O

f== 1 !

4. Optionality and strong Markov branching

The purpose of this section is to extend Theorem 3.1 to random stopping lines,
which are “predetermined’ or optional in the appropriate sense. Thus we define a
random set of individuals

Fi8x0 7

ta be oprional if {# < L}e %, forall Lo L If # is both optional and a stopping line,
we shall call it an optional line. The definition is obviously patterned after that of
optional times, for general such work in partially ordered index sets cf. Helms
{1938, Hurzeler (1986), Kurtz {1980) and Neveu (1975}, Note, however that by the
tree structure any random sef always containing the common ancester 0 satisfies

(J<LI2i0<Li=8Sx0 cF,,

for any L= [, and so must be optional.

Here are some exampies of random sets of individuals:

a. Y, ={xel, o, =1} is the set of realized individuals by 7. Since 0e ¥, the set
is optignal.
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b. Obviously the set R={xec /o, <} of ever realized individuals is also
optional,

c. Assume that A1 2 -R. is a [ife span. Write A, = A » U, as agreed, for x’s life
iength. Those alive at 1,

Fo={xel, o, Si<lo, A}

is neither optional, nor a line.
d. But the coming generation at 1,

Fo=dxeclio=i<o, <X}
is both, since it is obviouslty a stopping line and, for any L< [,
{f,<Li={V¥xel, ke 1< <x}eF.

e. Define the nth individual X, appearing, n=0,1, ..., by ordering individuals
according to their birth times, and by some geneslogical rule guaranteeing that
mothers precede daughters, if several individuals are bora simultanecusly. Since
{X,} i3 a singleton it is trivially a stopping line and since

{Xn = L} = {V.Y': h.l. Ek; mkx = X,,,}E (?:[_’

it is also optional.

f. The realized nth generation N" @ ={xe N", o, <0} is an optional line.
Following the text-book pattern we define for any optional set ¢ the pre-$-algebra
Fy by

AcF, o VLol Arn{f<licF,.

It is easy to check that #; is really a o-algebra and that several other simple facts
hoid:

Proposition 4.1. If {# < L}e &, for all finite L, then ¥ is optional, If ¥ is optional
then A F, & An{#<Lie %, for all finite L.

Proof. Let finite L, 1 L. Since L., 2L, L, <L, %, <%, and F =0}, F .
Thus {7 < L, }< %, for all n impiies that

(< Lh=M{F=<L}e 5.

The second assertion foliows in the same manner.

Proposition 4.2. [f ¥ =M {a constant set =1}, then & is optional and F,=F,,.
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Proposition 4.3. For any oprional § and any L< L, {F<LieF, 13
Propositien 4.4. If f, F are optional and 3 < §, then F, = %, L

Lemma 4.5, If # is an optional line, then ¥ € F, in the sense that, forallxc I, {xe ¥}«
F, Also {xe $le F,..

Proof. Take any x e [ Clearly {x& J}={F < x}\{F < mx}e F, by Proposition 4.3.
By optionality the same set belongs to #,, since F,, = F,. L[]

i

Note that Lemma 4.5 is not valid for general optional sets. E.g. {x& ¥} ={o, =t}
and

IxeWim{¥W <mxi={o, St}#F ...

Proposition4.6. Forany optional line & and any set L of individuals, (L= F} € F,  Fy
and {F< Lie %,

Proof. Since L is countable,

{Ledi= ) {xedicF,

X L
Since ¥ is a stopping line,

Lo st={) {s<Linld<mxt)
v k.

But as each { # <mx} e F, by Lemma 4.5, the whole intersection must be in #,.
Similarly

(Fell={L'cgl={xedVeF,.
v

Corollary 4.7. For #, L as above { # = L}c F,.

F, Lol thenAn{#=Le

Proposition4.8. [/ #isanoptionallineand A ¢ F or A
;\,‘ i v:;?;[' .

F, the corollury directly vields A ¥ =

Proof. In the first case, A«
and then

Arig=Ll=Anid=Linii<LlicF,

The case Ac F, follows similarly.

Lemma 4.9, If | J,) is a sequence of oprional lines siemming from one another,

Foor = G then $=hi_} Pr#, is an opiional line and F, =07 F, .

Pr

Proof. For any finite Lo [

(#<Li={La P g =UILePrd )= U fd, < Lie F,,

#f iz B
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showing that .# is optional by Proposition 4.1. It is a stopping line by definition.
Since J <., for all r, F, <} F; . But for finite L and Ac( |, F,_,

1

An{d=<Li={JAn{s, <L}eF,

proving that Ac #, and hence F, ={) #, . [
Proposition 4.10. The inrersection af an optional line with a fixed set of individuals
remains an optional line.

Proof. We must only check optionality. Take finite K, L= J and write # for the
optional line. Then
{FnK<Ii= ) {IMc$lc#

Mo K
Mo

since each {M < ¢} &, = F,_ by Proposition 4.6. But for general K there are finite

sets K, P K, SnK, o <FmnK,and $nK=hi) PrInK,

Propositien 4.11. If ¥ is oprional, so is ¥ ~ 4.

Proof. {Frm@<Li=( _, i im'xecdlnio, <xteF .

Note. Obviously Propositions 4.10 and 4.11 are special cases of an assertion about
Fr #, where ¥ should have some property like {xe #}e F forxe LUAn L Lo L
I the sequel we often write P or £ for P, E,, 55 S.

Lemma 4.12. Let ¢ S% Q' >R, be measurable, L.< 1, and 5 an optional line, Then,
en { =1},

Elel 7: 1 =Elel # 1.

Proof. The set # of ¢ such that B¢l %, 11,,.,,¢ #, is obviously closed under
differences and increasing limits. By Corollary 4.7, T¢ # By Theorem 3.1 it holds

for Ae ¥, and measurable ¢, =0, x = L, that

E{1a4 H &y 5\ F =1, HEETN I a‘?{%}@ | S EE E;i‘r‘?}
s f SN X
It L is not a stopping line equality still holds, since both sides vanish,
By Proposition 4.8, A {# = Lic F, . As the measurability of s - [¢, 7 is well
established, Proposition 4.5 yields that the right-hand side of the equalitv is measur-
able with respect to F; and hence that all functions, A= 7,

],n”& ?; P © Sx'€ #.
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By the closure argument known as Dynkin’s lemma it follows that all E[e! F 1., .,
must be measurable with respect to F; {¢ assumed integrable}.
Now let A€ %, Then, An~{# =L}« %, and thus

E[E[¢] 1Ly 03 AJ=E[E[¢] ] An{F = L] =E[gs An{d = L}]
“_“{E{‘Pib‘ .,,i_}; A]v

proving the lemma, as {F=L}e F,. []

Corollary 4.13. Let ¢ be as above and % an optional line that can equal only countably
many sets, ' being the class of these. Then

EleiFs]= Y Elel#Fllis. 0

In particular this holds with ¥ the class of finite subsets of I if # is finite, ]

Let us now consider such a finite optional line ¥ and a ¢ of the form

Then, by the corollary and Theorem 3.1,

E{QB‘\J‘U];E II E{a\[q’.\}}wi.—w Il Eg:‘[q’-x}

L xel x4 F

Now, do not any longer ask that # is necessartly finite, and assume 0= ¢, =1 to
avoid some nuisance. Then for finite sets K, 7 1.4, =.# ~ K,, will be finite optional
lines such that J,.,<#, and h(_J, Prd, =h(J, #~ K,)=h(F)=7 Hence, by
Lemma 4.9, F, =1 #, . By backwards martingale convergence {cf. Neveu, 1975,

p. 118 e.g.) it follows that, as n -,

[ ELedb 1 B Lo =Ele) %, ] Elol 5,

X Fo

Thus, the strong Markov branching property is proved:

Theorem 4.14. Let # be an optional siepping line and ¢ : §x 17 =10, 11, x &  measur-
able functions. Then, s 5,

5. The intrimsic martingale

We shall now single out for study the wide class of popuiations that wrn out to

grow in a Malthusian manner, e exponentially, thereby also stabilizing their
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composition, as we shall see. The crucial rble in this analysis belongs to the
reproduction kernel

il

wis, AXB)= ; (A X Bia)Pls, da)

o5
=E [EAXBY, 58, A=Y, Be 3,

and iis Markov renewal propertics. Not to get off the main track we give notation
and conditions for this theory rather quickly, following mainly Niemi and Nummelin,
1986. This means that we shall work with spread-out-ness and in the coupling
tradition rather than folfowing the analvtic, Feller-style approach. Markov renewal
theory for general state spaces in the latter style has been developed by Shurenkov
{19841,

For any A € B we define

At

g, dsxdu) =e ulr dsxdu).

The composition operation "= denotes Markov transition on § and convolution on

K., so that

;.c";‘?'(s, Ax BY= wsul{s, AXB)= { wir, Ax{B—wuiuls drxcdug.

o M

Further any kernel 1o the #-power $is 14, 5ds, 0 giving all mass 1o {5, 0}. The renewal
WIEASLIes are

and it is assumed throughout that the Malthusian parameter o,

o= ind{a; v.{s § peoon for some s 8

is finite. The kernel wl -, xR} should aiso be o-irreducible for some sigma-finite
measure , 7w denoting the maximal such measure (of. Nummelin, 1984, p. 130, and
it should be what Niemi and Nummelin call a-recurrent, e, v (s, AXR, =0 for
alt s 8§ and A< ¥ with #{A4) > 0. (For some discussion about when this might be

the case of. Jagers, 1984.}
If alf this holds there is {Nummelin, 1984, p. 70} & strictly positive and w-almost
everywhers finite eigenfunction k,

Aisiu, (s dsx

By

and « can {and will) be also taken as invariant for u,,

N

b AXE wids) = w4

e
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Further we require even strong a-recurrence, namely that
G = [ e M h{siuir dsxdrimidr) <,
FEPE RN

meaning in branching process parlance that the mean age at child bearing is finite
and positive. Then (cf. Nummelin, 1978, p. 124) h¢ L'l w1 so that we can {(and shall}
norm to

r
| as)midsy=1.
JE

Ulearly then hdr is the stationary probability measure of the Markov transition
kernel Q(s, AR} s¢ 5, Ac ¥, defined by

(r,dsxdry=his)e ™ uir.dyxdti/hir).
) “

All these conditions wiil be summarived by saving that the population considered
is Malthusian. I the Malthusian parameter o

=0, the population 1s supercritical
being critical or subcritical according as o« =0 or o << {.

As mentioned we shall Turther ask that the kernel is spread ous, e, that for each
s, ¥ s, isTor some r non-singular with respect to the product of » with Lebesgue
fmeasure,

From now on we consider enly Malthusian populations {though for some resulis
this is unneccessarily restrictivel, The imfrinsic pracess or (superimartingale
fwy Mo [} is defined o be

wa = Lo T R(py).
o A

Note that wy, = wy, ... For lines L, {w.} is clearhv adapted to the filtration !

To formuiate the martingule property of {w,, | we need a definition: A stopping line
M covers L if M > L and any individual stemming from L either stems from A or
has progeny in M. M covers the ancestor it may simply be called covering. The
clasy of covering stopping lines will be denoted by % We also write giMi=
SUpP .. ar 2{x5

The origin of this intrinsic process is the real time martingale

Yoo ehip, 1eR.,

N

mtroduced by Nerman {1984). In our terminclogy Nerman's martingale is fw, 14

B} Indeed #, -< 4., if =1, and they are optional iines.

Theovem 5.5, ff L A are stopping lines, then
jong A P e B
D W g s

M with gl M <000 covers L, egualite holds.
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Proof. We consider first the case of inequality for finite M and use induction over
the generations foilowing L: I M < [, then obviousty LM and

Efwagl F = Elwy F )= wy

Make the induction hypothesis that if
et
Mo Lx |} N¥
Ko ()

then the inequality asked for holds, and consider an M included in

FE
Lx ) N¥

ke
so that
Elwar Frl = Elwas il i n sl FLI B el F03
Write

A={mx,xe M~ {Lx N"L
Since L< Lx N"™' F, < F, . o, and

[Ei Wag i Lan J Fri=HE Warirn

“E| ¥ e X E,[e " hip)] f‘}
LxeA ig N

: \ |
=El Y e '&{,{J e ‘”h(..\‘)f{;(d(\‘xd!)} ' 5‘"‘5}
Sz,

L 1
=fF] ¥ c""“’\j e ‘”h(s};&{phésxda‘}].&?;j
Lo

3 |
~aa‘h{p$)

-
,?LJ::E{H&;

15
i

But (M ~(Lx{_] | N*31U A must be a stopping line included in Lxi_Jl NS

i

So the induction hypothesis vields that

i

Lt wa T

iy d

=

L Wag 15 [ Wasomi oo

&

A general M can always be approximated from within by finite M, § M. Monotong
convergence concludes the prool of the ineguality. The covering case is harder
because no finite covering lines exist, besides {0}, However, the proof will follow
from the subseguent lemmas.
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Lemma 5.2. The class of covering sfopping lines is a lattice in the sense that if L, M < €,
there is a *‘first” element Lv M in € such that L<LvM and M <Ly M, and
L<K, M~ Ke€=Lv M<K Similarly, there is a “last™ element L » M in €, such

that L and M both stem from L M.

The proof {ollows {rom consideration of sets
Ly={xel;3ve M x<v}, Lo={xe L; M-<x}

and the corresponding partition M,, M. of M. The asked for sets are L. M. and
Lo M, O3

Lemma 5.3, If Le € and g{L)=sup,., gix}<o, then T fw, 1=his}, s 8

Proof. For any k< N repeated use of the eigenfunction property of h yields

L ELe T h(pol= LT EfeEe T hipe S0 F]]
ve NS va N e N

_ 2‘ [Es {ie = S iE,.,![e '.vr(-,}h(pi)é.l
e :\";\ ; fa N . J
= Y Ede " h{p)]=---=his).
xa NTT!

For any xe 1 and n= g{x) therefore

Edfe ™ hip)]=E, [e AR N % h(p;)]J

e NTE

e EEK {e e E_: V E{{? e w5 h( I S\H L;‘]}

e NIRRT
= L Bfe"vh(poil.
[N

poanel

Now let L be a covering stopping line and write I, =1{_] |, N* for short. By the
proved part of Theorem 5.1,

Risi=E[wa]=E[w, ]= ¥ EJe " h{pJ]

AlsizE [wol=lim Y Efe " hi{p}]
et oo N7
X £,

i

}. £ fem f?{p,i}j:- Bisi,
vaa N

if only giL) < o0, so that finally all x& N7 stem from L.
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Now we can finish the proof of Theorem 5.1: Assume that M with g{M )<
covers L. Then, foreach x & L, {¥; xy € M} is covering with finite maximal generation.
Lemma 5.3 yields

Elwy F =L e ™ L Ee " hip,o SO F]

St

ye b yixyE M

. }; e .<xr!_‘§E‘”\§ ‘4!{_\-‘:,\_\'-, ,\'?}} e E;

e R p) e i
xi kL xe b
In terms of €,, the class of covering stopping lines with finite maximal generation,
we can state the obvious

Corollary 5.4. {w;, L& 6.} is a mariingale with respect 1o {5, Le 4.}

6. Uniform integrability and convergence of the intrinsic martingale

Since {w;; Le %} is thus a non-negative martingale, any sequence L, < L,. ¢ €,
vields a.s. convergence of w; to some limit. Convergence of the whole martingale
itself is slightly harder to establish (¢f. Neveu, 1972, p. 93ff). Indeed, L'-convergence
is what we should hope for. It turns out that uniform integrability is guaranteed by
the classical x log x criterion, which now takes the following form:

Define

= J e “his)Eldsxdn)
S

and write E, for expectation with respect to ﬂ, P{s, dwim(ds} The x log x condition

i3

E.[€log" §]< e

Theerem 6.1. Consider a Malthusian branching population, satisfving x log x. For
almost all 52 ST, {w,: Le €01 is untformly P -integrable.

Proof. Take any £ % and some K = I with g{K =020, and any set Ae F. Write
L,={x= L; glx}= r}. By monotone convergence

E[we,: AT ELw; A]
and by Theorem 5.},

et AT Elsup wa AL

i

Efw, ; AJsElw -~y AlST

Since the sigma-algebras F, with g(K )< generate ¥ x & ', it follows that w, =
{91 s ¢ 8 Therefore the claimed uniform integrability would

sup, was abmostsurely
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follow from sup, wx=€ L'[P,], 7r-almost all s S. This will be proved by one of
Asmussen’s methods (Asmussen and Hering, 1983, p. 23113,
Write

nx"_‘xg\:—h(px}: '\‘Eﬁ{’
= E“’“h(ﬁg}),
d(s.t)=e"E[n;[ni>e"], se8§,

E, being integration on {2 with respect to P(s,-} for p, = . Decompose

WN““E . : e— wer E e—wnr;n‘;( h( o, © S,‘}
xa N ja N

e "y b war,

5
=
and

8oy, o b

: R - N T
Wiy o1 e Wy = l (ﬁ, nl}'{ -

ceir

(e n\'iihi.gi:-c"”‘}_3(10,\'3 U“c})

o

5
=gt b,
say. Since
Eln;inl=el=—e"8(s 1),
Ha,,,]=8a, . Fur]=E[b, | =E[b,. | Frrl= 0

Further

ﬁ“ar[ G l,] = [El-';\"&ri—ai -+ 1 j‘;\ ”]] - \JHF[E[CI,{ it | ';;\ " J] = E{Q”ar{aﬂ + 1 5 ‘\;\ ’H

E[ Yo E [y t’];}

N ) )

in the notation :
YiAxBl=#ixel, p.o A o, ¢ BL

$¢ that

ELYiAxBi= Y u%(s, AxBi=2(s Ax B},
e I
thus
b= 5 Warfa,.. = % e TUE g i m e el dy o diry
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If we could replace e " w(r, dsx di) by its Markov renewal theory hmit, as t =0,
we would obtain, but for constants,

J e""’”Eﬁ{nz;inéa"em]?r(ds}dtEJ{ w{dS}E;[n:‘j ¢ " dr]
Sxi ot

=FE_[ini}= Eﬂ{ﬁ*’f Alsimwids=< o,

b

By assumption. But there is (cf. Jacod, 1971, p. 98 e.g.) a unique measure Gon S xR,

G(AXB}WJ" Qls, Ax(t, o) Yh{sym{ds) di/ 3

S=h
;J {[. h{r)u...-i-\:-dfxif,fi)}ﬁ(d-ﬂdf;"&
Sx i - A
such that

G ¥ Q7 =(hm®A,

=g

here A stands for Lebesgue measure,

hmiA)= —[ hdar,

A

and @ was defined in Section 5. Since

e hi{s)p(rdsxdry/hiry = Y QFir dsxdiy,

n oy

J- {J e E [ nT inpi=e ol ds xdr-—u)}{l;‘h(r})(}‘(drxéu}
L= S=R,

zJ {J e -.,x{!-,-:(éﬁ-“{ni; E?Fé}te{-,!}
SxEL ML

X {1/ hish }“ Q% (r dexdr- u)}(}{erda}
£ i

£

i
- ixf I
= ‘ { {‘ e "Efn ]
x(1/hisn ¥ f‘*‘"z:jr_,df5<d;«~~3;}jk{§i<§r><éia}
3 i

- J e EInt ini= e Imidsy dr <o,
N
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as we have already seen. Hence a.e. [ G,

0> e EpT inl=e™lp{r, ds xdr —u
KIS . s
SR,
;J e., EMH'”"Ei'T}Z; Eni&;emmm}y(f’ dSde)
S

;‘fe..-zan '{ e..._f‘(uE.s[??l; §n|?§€(:m]v{r’ d.\‘XdI}.
S,

tt follows that a.e [#],

E r
Y Varfa,.]= J e E L5 Il = e Tulr, ds xdi) <o
A =g} Sk,

and by a basic martingale result (Neveu, 1975, p. 68 e.g.},

]
S P \‘_. Ay
n ne=Q

isin L[P, ], re Sinl.
We proceed to {b,.,} in the decomposition:

0 '{‘S.. Ibm i lE = }d: e gn\'l1%5*}@--"‘»““"'}38(ﬁxs (}"\,E,
" xaf

to he called £ Since

48( pn (}-\")é = e T E;:\UTIL i"?: = e!“‘- %i—"—'«r\ = E[e wa\|n.\'§1551?_\="'CW"}! 'E;Fx']v

it follows that

et .!
o

”7?\\1?;\ e ‘}j

f e E{inl; In)> e™w(r, ds x do).

As before, if mtegration with respect 1o e “w(r, dy xdr) could be replaced by

integration with respect to the limit measure we would have an expression propor-
tional to

e mids) di = | Efintloginl in> m(ds)/a

¥ &

~

=2 J E.éllogi£ ] =(ds),
Y

si1ice CE+ his), EJE1=h{sy, and by Jensen’s inequality. Thus, through con-
valution with G we may again conclude that a.e. [ G,

gl e™ M eir, ds xdi) = o,

SR N ]
( e TE g

W SRR
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e

el Elinne

iR

e = B ]

RS L S A S S B TS b BN I VR BT T
el ElnT inie ie =

-

We have already seen that the second term has an integral that s s.e. [ G finite. It

follows that again a.c. [w],
@[L b, } =2 ( e“Efinliini e rir dsxdrie
7 SR

Finally,

= sup wao = A{ pot +sup

}
[ " i [

From one-type branching processes, it is clear that x log x 13 the best possible
condition. A blemish on our theorem is however that its conclusion s only valid

for ¥ in an unspecified subset of S, albeit of full 7 measure. In default of anvihing
better this can be mitigated by an “x{log x;' "7 condition plus spread-out-ness:

Theorem 6.2. If the population is Malthusian and spread owt and satisfies
E1&log" &' =

for some e O, then {w,, L& €o} is uniformly integrabie with respect to any |
20,

o AlsY =

Sketch of proef. The procedure is as in the preceding proof up 1o the two integrails
B p P ap P &

Eln’ inise™ v dyxdi)

and

igl= e forlr dy xdin

il

Jsxu,

Since x/{log xi' 7 increases for x &

Also

The convergences

v ir, A{B+nti=hirialAVALBY/ B
valid for any A ¥, Be 2 iF h(ry= o0 i Niemi and Nummelin, 19586}, conciude the
proof.
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Under the conditions of these theorems L'-convergence for martingaies with a
directed index set {Helms, 1938, cf. Neveu, 1973, p. 94} yields that for aimost all
se 8, or all v with gy <o, there s & w, such that

and as L filters to the right (<) in ¥,

in LI}, In particular this holds for any sequence {w, }. with L, < £, . and

S J-COnvergence as

L ﬁ}iah 10 the right { xf course means that 1o any £ > 0 there is an £, such that

Lo L=sEiw, —wl<e

i, g(x) - o0, which also must converge a.s. P as n—=o0 L

It may seem discomforting that there is a w, for each P, However w, is & function
S ' R, and if we can show that s only enters this way w, ¢an be idensified
i

with a w on §x 7 2 forcing the first coordinaie of the argument to be 5. And
actualiy,

fon sl we = w

1

exists evervwhere, {wy ! 18 & non-negative martingale under any P, and therefore

3

(t. These last conclusiony deserve 1o be summarized

Theorem 6.3. Under the conditions of Theorem 6.1 {or 6.2 there is a random variable

v such that for weatmost all s € 8 {or all s such that h{s)~ o0}

b Ly < L,
£, such thar x has pre}ng}f iR, wy e ow, a8 om0, also as P

and wy - s w, as Le €, filters {= © &, and o any x o

sinted in s ;}fé;*?;@rzé&%%{iﬁ‘;k the intrinsic martingale has particular interest when
:

evaluated at certain random sets of individuals, like the coming generation gt i .4,

in

or the {realized) nth generation, &, =

Lemma 6.4, Lot 7 and L be
(g P~k T [y

aptional and a fix stopping line, respeciively. Then, on
= w,. I L covers F oand Lo

is finite, then equalite holds.

Note, N"rv @ ep., s findie if only PISSXRE, o x) = & & Weak conditions on
the reproductions kernel

vis, Sx[6, 1]

The Brieness of any ¥ combined with that of £1§ xR

Wi

b, 1o be hinite, as
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Proef. First assume # finite and use that the set f7 of Anite subsets of I has only
countably many members. Corollary 4.13 and Theorem 5.1 yield

Efw, F, }1{:; w LB T }.4 E{ Wy 3 ‘i'}}::\-i]k{J - M}(.L"& by Wag b

it
A

i Mot
Af o Lo A Lo

= Wy ligop g,

equality holding in the covering case.
For .# general, let K, T I be finite sets and write Fn K, =4, Then ¥ < f,., <%,
and {Lemma 4.9)

¥t

By backwards martingale convergence {Neveu, 1975, p. 118},
Elwe
But since L9 is finite, {F, < L&} 1 {¥ < L%} Hence

4 L = R
Elwe | Fo Wi voomy < Blwi | F0 T cma (=) wo g cimans
W Liguma,
with equality if L covers #

We shall now widen the definition of covering slightly, saying that % covers f if
F covers ¥ ~ @ in the old sense. Thus only realized individuals enter the definition.

Theorem 6.5. Assume the conditions of Theorem 6.1 and that, for all s= 8, P (&5 %
R, )< oc) = 1. If ¥ is a covering optional stopping line with g{ %} < ¢, then for w-almost
all 52 8,

Efwi# ]=w,[P]
Proof. if g(.9)=< n, then certainly F < N" ~ 3. Hence by Lemma 6.4 In the case of
equality

E{ War i F }ily iy T Wy ]g} IETE

As n-500, bpe T 1 and wae = w as and in L7, vielding

Flw:
(We allow ourselves to omit the a.e. » and a.s. P, qualifications.}
Corollary 6.6. Under the assumptions of the preceding theorem w, —» w {glmost all

Lig
gl Fy<oo, If {4,} is a sequence of such elements §, < %, tending to infinity in the

s €Sy oas F filters (2% in the class of covering optional stopping lines with

sense that for any x ¢ 9 there Is an n such that x has progeny in J,, then w; -~ wa.s.
9.1 and in L' ]
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Lemma 6.4 makes it possible to exhibit the submartingale structure also at optional
stopping lines:

Theorem 6.7. If & < ¢ are covering optional stopping lines with g{ §) < x_ then
B[] 7, 1= w,.

(Under the conditions of Theorem 6.5 equality holds.)

Proof. Arguing as above we write
Wy ligisimnt = Efwayn j?y‘-]l{gw‘n P E[E[ wan] cf“”; 1 E ?Z; }i{g{'.]}ﬁ “i

=Efwy Lgoprn | Fa Wigispmam VELE W ] 55 T g simns L #5 1

—

Let n-oc.

Genera optional sampling theorems for martingales with partially ordered indices
have been given by Kurtz {1980) and Hiirzeler (1986}

7. Asymptotics in real time

‘The—non-Markovian—development in real time of some aspect of a branching
population (like the total number of births, y, = # %, the number of individuals
“alive”, or the number below some age at time ¢ may be followed through so called
random characteristics {Jagers, 1973, Jagers and Nerman, 1984}, These are additive
functionals formed from a measurable function

yiSx xB-R

S}

the characteristic. This one is assumed to vanish if its last argument {interpreted as
agej is negative (or —o), and also to have realizations which are right continuous
and have left limits in this argument (i.e. are D-valued). The y-counted population
at time ¢, z7, is then defined by

i

xe g xa
Thus x, is the caracteristic pertaining to the individual x < I But note that y, need
not be determined by x’s life only. Characteristics which are 5o, i.e. can be writien

xtp, Us, 1o}, are calied individual For examples of processes thus arising, cf.
Jagers {1973},

I .# is an optional stopping line and x an individual, we shaill write x< # if x
precedes f strictly in the sense that it does not itself belong to .# but has descendantis
in it. For any covering § a fundamenial equation holds,

i VxS, -0 Y b, e 8

L e ¥
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We assume throughout this section that the population is Malthusian. Then we
can norm the fundamental equation by ¢ h(s). With notation

So=e ™Mz h(pe),  @s ()= L x(S, 1= o)/ i pe),
c il F

X

we then obtain that

et

L= (00 Y &y s See ™ R p/ B po).

in terms of

walAXBy= ¥ e " h(p)/hipoh
xi Af
Py AT EB

this feads on to

B[ 1, =e "E[e; (D1 F, '}+J

E 4 Jwa (dsxdu)
and the Markov renewal equation holding for means,

Mm—»e“’a[gc,-.umj EL8 JEDws (ds x du)],

8w,
A classical form of this is obtained by the choice Z,= N~ & for ¥ Then
s = Y/ hipe), w,yldsx du)
e h{ E(ds xdu) R pod, B w, {dy x dud]

Analysis of this, or direct arguments as in Nerman (1984}, yields the asymptotic
mean behaviour, as tme passes:

Theorem 7.1. Consider a spread-out supercritical Mualthusian branching poptilation
counted by a characteristic y such that sup, e ""E [ y{1)] is integrable with respect to
moe “Ex()] is so with respect 1o m@ A {A being Lebesgue measure on By, and
lim, ..e "Efx{1Y]=0. Then, for w-almost afl s€ 8, as 1=,

e “Efzili- his) i\ e e fvluimidridu/B = h(5)E [ ¥{a}]/ a8,
o SWFE
in an obvious notation for Laplace wransform. { The mean age of childbearing, B, was
infroduced in Section 5.}

Nete. I sup,, e “FIx(r1l/ hisi< o0, then the first integrability condition helds, as
Thdmr=1.1f sup,, FIy(11]/ hisr< oo also the second must be satisfied. As pointed
out, the theorem can be reformulated, essentially by replacing spread-out-ness by
direct Riemann integrability of expected characteristics (¢f. Shurenkov, 1984}

Note also thar the convergence ¢ “E v, 1-h(siz(8)/afi{y, = z/=) does not
follow from this, unless inf h > 0
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Proof. In terms of
YiIAx By=#{xel, p.c A, o,.¢ B}

Wwe Can write

E,[Z?]:if{ 3 iE[xx(!“Ux)J;?‘E]} xﬁr[ z Q.JX““‘TJ]}
Lxal

xe i

i

E[J E‘{X(rmu)]Y'(dsxdu)}
Sxife,

:J’ EJx(t—uilvir, dsxdu).
S ER
Hence
e M”[E,.[ZX} e J e f!zsl—fu)[EA{X(! . u)}f/(rﬁ ds Xdu)
Swb

and the assertion follows from Niemi and Nummelin (1986) and Nummelin (1978,
p. 133). O

From this first asymptotic result we proceed to weak L'-convergence, then conver-
gence in distribution, in probability and, finally, in L'. {Weak L'-convergence may
not be a terribly popular concept in probability theory—it means that expectations
over any set converge, of. Neveu, 19635, p. 118.)

Theorem 7.2. Add x log x, finiteness of ¢(S xR}, and inf h >0 to the assumptions
of Theorem 7.1 and assume that, for each fixed 1, v, is uniformly integrable over its
starting 1ype po=s< 8. Then, as 1 -0,

e i B wE, [ (a)]/ of
weakly in L'(P ) for almost all s€ § {#).
Note. Under our general assumptions the uniform integrability condition that, for
fixed 1,

limEfy vy >ul=0

uniformly in s is trivially satisfied in the single- {or finite-) type case. For short we
shall refer to this condition by calling the branching population itself uniformly
integrable.

Proof. Assume that x{¢} vanishes for 1 > n and choose for 1= t,> n, ¥ as
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Then, in the fundamental equation above, ¢, (1) =0 provided ¢> 21, and, since
weids x dul only gives mass to a finite number of points,

i, 1 #, = J' EALws (dexduy>E [ ¥{a)]w./aj,

as r-»o¢ (Theorem 7.1} For any As ;'3?7;,-!!] therefore
B4 Al EX(e)]ELws ; Al aB =E IX () JE[w; A]/af.

But {#, ;1,7 n} generates all of 7 x sf g
Now assume for the time that y is bounded by n and write x = inf h > 0. Then,
since x> #,_,=>i—o,<n, we have (F=5,_)

g:' = :: em“a\ h(px)nyn ¢ Sx/! Kh([)(}).

R

We shall show that ¢, is uniformly integrable. Therefore let = >0 be given. By the
uniform integrability of the y, = S, x I, there is a 3 > 0 such that P{(A|F, )< é=
Ely,° S.; AlF, 1< ex/n’. (Recall that the vy, S, given ¥ are distributed like a
bunch of v,( pe) for different starting types py.)

Now consider an A with P.(A) < §,, the latter to be chosen shortly. If

B={P(A|F,}< 8},
then
8> P (A)=P (A~ B)= 8P {B).

Hence, with prime for complement,

khiEJ AT=E, [E[ SoeT"vh(pdny, 85 A i ;_5%]; B’}
e

+E, [E[ Soe T h(pany,° S AL Py } B}
xg H

<E,[eww, |+, [ S e R p By, o S F): B]

XS

= exh(s)+nsupk, [y, g fw,; Bl

7

This can be made arbitrarily small by choice of §, smail encugh {by Theorem 6.5},
proving the uniform integrability [#,] of £, and thus of e %'z} for 1= 1,.

By the Dunford-Pettis theorem {Neveu, 1965, p. 118, or Dunford and Schwarz,
p. 289} these e "'z are weakly L'-compact, and the weak L'-convergence follows,
for y:s of the kind assumed.

The general case follows by truncation: Let ¢ 1 Sx 27 =0, 1] be measurable and
write for a given y,

¥ s w =l x(s L wan,
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~ for minimum. By the special case considered

Ele ™2F" @1 h(sE welE [¥ ()] aB.
Writing ¢, [¥""(a)] for this limit, we see that

Ee "zip]—cE[¥ () i=Ele "(z¥ — 2 Del+E e 2 o]

= e [ e+ e{F LR (a) ]~ EL[ 5 a) 1.

The first term is majorized by

Ee 28 =B e 28 > h{oEfi(a) ~ ¥ () o
by Theorem 7.1. By choice of n large and monotone convergence this can be made

arbitrarily small. The same applies to the fast term, whereas the middle one is the
case treated. [

We consider now again a y of the special kind considered in the proof and write
m.v(f)xEx‘{;(}s nr$§z~"15(l)-
For any > ¢ > n consider

(B 7, )= LA e e Seem, (t=adbe T b p/ hipo)

Sy

= }_. Mo, ® S\' e " h( Px):jh(ﬁc'z)-
xa g

reg

This is a sum of random variables, which are independent and have expectation
zero under the conditional law P(-} Fy ). Forany v>0,re§,

L OPneo o Sde™ h(p )/ hipy) > vl F, )

XE T,

- j Poling, o= ve™h(ry/h{s) e™/h{s)w, (dsxdu)

S=iT,
= f Edly ol >0 e™lw, (duxds)/v,
Sxi,

where "= vh(r}. Butsince y = n, x4, =>r—o,<c andinf h{s}=x >0, the n,_,
are uniformly integrable. Thus for & >0 given choose f large enough, so that
we=o . zi-c xed_ . and, for all re §,

T [ : RN ot
Er[?’?r---zsis [ 13- u§>b < }<{'L

Then
Polime e o Sefe ™ hip )/ hipy) > v

“a dEW,, L

By the a.s. convergence of any subsequence of {w, ; 1= 0}, any subsequence of {,}
under P(F, 1 is not only a sum of uniformly asymptotically negligible summands
but must even have canonical limit measures without mass outside [ 1, v]. And
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since v was arbitrary, the only possible limits are infinitely divisible with canonical
measures, which can only have mass in the origin {cf. Feller, pp. 383-588 or Loéve,
in particular p. 3171

To check this mass consider, for any v >,

Y OE[ge RN p )/ ok ines e T hipo Blpgi =
e,

I

e T pg/ Rl pe)

= R ( E v dw, (dsx®Vh{pd=ensupE[y.lw,. JR(p)
& s &

Since F.y.] is bounded by the uniform integrability assumption, it follows that no
r>0o0, can have any mass canonical messure mass at the

weak limit of 00 F, ..,
origin either, Thus, for almost all s 8[#7], uc®,
Plé Bl F . Jsui=E[Pin=u P )]~ 1 {uh
It follows that, for w-almost all s 8 and any ¢=n,
L-E[EF -0

in P, -probability.
However, if we write

y=ELf ()} af

for lim,. . m{t} by Theorem 7.1, then

(= uy—viw, (dsxdu)+viw, —wi

.

R=1Y Q"
o *
o

the expectation on w, satisfies

Elw, (A B/ his)= Qlr, Ax Br(r—u, 1 R{s, drxdul.

~ S=if sl

By strong recurrence {and the other conditions for the Markov renewal theory
already assumed) this converges as {0 o

[Q{g AxBo{noobhisiaidside/ B

[
&
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(Nummetlin, 1978, p. 133) and if we write 7 for 1 ~¢,

{ im vt o) - viE [w, (ds xdu]
Hxiz.,

can be made arbitrarily small for farge 7 by choice of ¢ large. By Corollary 6.6 the
same is true for w-almost all L' j-norms of B[ ¢, i #._.]1—yw. The convergence

{:; YW
it probability follows for almost all P,. Since it holds also L'-weakiy by Theorem
7.2 it holds even strongly in L'(8,), a.e. = {cf. Zaanen, 1967, p. 383).

The approxirmation argument used in the proof of Theorem 7.2 can now be used
o extend this £'-convergence to e “'z¥ for characteristics not necessarily bounded
or vanishing outside some bounded interval. In conclusion:

Theorem 7.3, Consider a branching popuiation and a characrerisiic such thar the
conditions of Theorem 7.2 are satisfied. Then, for wr-almost all s& 8,

e M2y - i E [l w/ aB

strongly in L'(F ), as i =00, (]
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