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Abstract

The strong Rayleigh property is a new and robust negative dependence

property that implies negative association; in fact it implies conditional neg-

ative association closed under external fields (CNA+). Suppose thatX1, . . . , XN

and Y1, . . . , YN are two families of 0-1 random variables that satisfy the

strong Rayleigh property and let Zi := Xi + Yi. We show that {Zi} con-

ditioned on
∑

iXiYi = 0 is also strongly Rayleigh; this turns out to be an

easy consequence of the results on preservation of stability of polynomials

of Borcea & Brändén (2009). This entails that a number of important πps

sampling algorithms, including Sampford sampling and Pareto sampling,

are CNA+. As a consequence, statistics based on such samples automati-

cally satisfy a version of the Central Limit Theorem for triangular arrays.
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uniform spanning tree

Short title: Negative dependence in sampling

1 Introduction

Suppose that in a population ofN units, each unit i is equipped with some quantity

of interest, yi. In order to estimate some interesting function of the yi’s, e.g. the

population total T =
∑

i yi, we want to draw a sample of n units. With no other

information, we would typically pick this sample uniformly among all n-subsets

of [N ]. However in many situations one has access to auxiliary information in the

form of some quantity ai, which is believed to be roughly proportional to yi. This

extra information could e.g. be older data. In this situation it is easy to argue that

in order to get higher precision of estimators, one should pick different items with

different probabilities; indeed one should take πi = P(Xi = 1) = Cai. (Here

Xi is the indicator that item i is in the sample and the normalizing constant is

chosen so that
∑

i πi = n.) This is easily argued from the form of the standard

Horvitz-Thompson estimator of T :

T̂ =
∑
i

yi
πi
Xi

which gets zero variance if yi is exactly proportional to ai.

Hence it is of interest to consider how to best go about picking a sample

of fixed sample size n and prescribed inclusion probabilities πi, so called πps-

sampling. It turns out to be surprisingly difficult, indeed in fact impossible, to

find a πps-sampling method which is “best” from all points of view. This has led

to a large number of suggestions; indeed Brewer & Hanif (1983) contains more
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than fifty different πps sampling methods. A more recent reference that treats

sampling algorithms extensively is the book by Tillé (2006).

The most important properties on the wish list for a sample are simplicity, ef-

ficiency (it should not take a computer too long to determine the sample), high

entropy and statistical amenability. With statistical amenability, we mean that a

Central Limit Theorem, like Proposition 1 below, or something similar holds. Tra-

ditionally, one has had to establish this for each method separately. However by

Proposition 1, this follows automatically for most reasonable estimators if it can

be shown that the sample is negatively associated. Here it will be demonstrated

that simple applications of a new method, based on generating polynomials, es-

tablish that all of the most common πps-sampling methods are in fact negatively

dependent in a very strong sense and in particular negatively associated.

2 Negative association and generating polynomials

A family X = (X1, . . . , XN) of random variables is said to be positively associ-

ated (PA) if

E[f(X)g(X)] ≥ E[f(X)]E[g(X)]

for all increasing functions f and g. We say that X is negatively associated (NA)

if the reverse inequality holds for all increasing f and g such that there exists I ⊆

[N ] := {1, . . . , N} such that f depends only on XI := {Xi : i ∈ I} and g only

on X[N ]\I . Positive association and negative association are very useful properties

for drawing conclusions on correlation inequalities and limit results. For example,

either of the two properties implies versions of the central limit theorem under

mild additional assumptions, see e.g. Yuan et al. (2003) and Patterson et al.
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(2001) and the references therein. For example, Theorem 2.4 of Patterson et al.

(2001) states the following.

Proposition 1 Let {Xn1, . . . , Xnmn}, n = 1, 2, . . . be a sequence of NA families

of random variables with EXnk = 0 and write s2n := Var(
∑mn

k=1Xnk). Assume

that s2n →∞, s−2n
∑

j

∑
i<j Cov(Xni, Xnj)→ 0 and, for any δ > 0,

1

s2n

∑
k

E[X2
nk1{|Xnk|>δsn}]→ 0.

Then
1

sn

∑
k

Xnk
D→ Z

as n→∞, where Z is standard normal.

In general, it is often very difficult to check if a given family of random vari-

ables is PA or NA. The situation improves considerably if one restricts attention to

0/1-valued random variables. In practice, this does not need to be a severe restric-

tion. For example in a sampling situation, a typical estimator (of e.g. the popula-

tion total or some other quantity of interest) is a sum of fixed positive quantities

attached to the individuals of the sample. Hence Proposition 1 is applicable.

By the FKG inequality (see e.g. Grimmett (1999), Section 2.2) positive asso-

ciation follows from the so called positive lattice condition (PLC)

P(XI∪J ≡ 1, X(I∪J)′ ≡ 0)P(XI∩J ≡ 1, X(I∩J)′ ≡ 0) ≥

P(XI ≡ 1, XI′ ≡ 0)P(XJ ≡ 1, XJ ′ ≡ 0)

for all finite index sets I and J , where S ′ denotes the complement of S. Since

this condition is local, it is often easier to check than PA directly. Unfortunately
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the corresponding negative lattice condition (NLC) does not imply negative asso-

ciation. Therefore, NA has turned out to be very difficult to prove and has been

established only in a handful out of many situations where it is believed to hold. In

a pioneering paper, Pemantle (2000), called out for a search for a useful theory of

negative dependence. Since then, the topic has attracted a considerable interest in

statistics, computer science, combinatorics and discrete probability, not only for

its usefulness, but also for the mathematical challenge it presents. As for statistics

in particular, the interest in negative association in fact goes back even further, to

the very influential paper of Joag-Dev & Proschan (1983).

Until recently, progress has been made in small steps and has mainly consisted

of case studies. However, the recent paper of Borcea et al. (2009) provides some

significant steps forward for the general theory. One of the key concepts in that

paper is the strong Rayleigh property of a set of (integer-valued bounded) random

variables. The property is defined in terms of the generating polynomial ofX . For

x ∈ ZN+ , write µ(x) := P(Xi = x1, . . . , XN = xN). The generating polynomial

of µ, or of X , is given by

F (z) = Fµ(z) = FX(z) = E[zX ] =
∑
x

µ(x)zx

where z = (z1, . . . , zN) ∈ CN and zx =
∏N

i=1 z
xi
i . Recall that µ is pairwise

negatively correlated (NC) if

P(Xi = Xj = 1) ≤ P(Xi = 1)P(Xj = 1),

for all 1 ≤ i < j ≤ N . In terms of the generating polynomials NC translates to

that the inequality

F
∂2F

∂zi∂zj
≤ ∂F

∂zi

∂F

∂zj
(1)
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holds for z = (1, . . . , 1) and all 1 ≤ i < j ≤ N . A measure µ is NC+ if it is

NC when an arbitrary external field, or exponential tilting, is introduced i.e., if

for all a ∈ RN
+ , the measure obtained by replacing µ(x) by axµ(x)/

∑
y a

yµ(y)

is NC. In terms of generating polynomials NC+ translates to that (1) holds for all

z ∈ RN
+ and all 1 ≤ i < j ≤ N . Due to the interpretation of (1) in electrical

network theory Wagner (2008) called NC+ the Rayleigh property. It was believed

and conjectured, see Pemantle (2000) and Wagner (2008), that the Rayleigh prop-

erty implies several other important negative dependence properties. However

many of these conjectures were disproved in Borcea et el. (2009) and Kahn &

Neiman (2010). Surprisingly, if the Rayleigh property is innocently altered in the

following manner one gets a very robust and useful negative dependence property.

Definition 1 A measure µ is strongly Rayleigh if (1) holds for all z ∈ Rn and all

1 ≤ i < j ≤ N .

A reason for the robustness of the strong Rayleigh property is the following

alternative definition due to Brändén (2007).

Proposition 2 LetX1, . . . , XN be 0-1 random variables and µ the corresponding

probability measure. Then µ is strongly Rayleigh if and only if the generating

polynomial, F , is stable in the following sense:

F (z) 6= 0 whenever =zi > 0 for all 1 ≤ i ≤ N.

Using the geometry of zeros of multivariate polynomials, the following im-

portant result was proved in Borcea et el. (2009).

Proposition 3 All families X = (X1, . . . , XN) of 0-1 random variables with the

strong Rayleigh property are CNA+.
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Here CNA stands for conditional negative association, i.e. the property that X is

NA also if we condition on XI = x for arbitrary I ⊆ [N ] and x ∈ {0, 1}I . The

property CNA+ of course means that CNA holds also when an arbitrary external

field is introduced. Using this result, the authors of Borcea et el. (2009) show e.g.

that the symmetric exclusion process with strong Rayleigh initial distribution is

strong Rayleigh for all positive times.

It is not easy to get an intuitive feeling for why the result of Proposition 3 is

true. However, in the light of Proposition 2 it is actually not difficult to prove. A

short summary goes as follows.

Sketch proof. In terms of the generating polynomial, the operation of projec-

tion, i.e. regarding only a subset of the Xi’s, amounts to setting zi = 1 for i’s

corresponding to the variables that are disregarded. The operation of inversion,

i.e. considering 1−X instead of X , amounts the replacing the zi’s with z−1i . Con-

ditioning on that one variable Xi is 0 amounts to considering ∂F/∂zi|zi=0. Using

this, it follows easily from Proposition 2 that the SR property is closed under pro-

jections and inversions. Closure under external fields is immediate. Applying the

Gauss-Lucas Theorem, the elementary theorem that states that the set of zeros of

the derivative of a univariate polynomial (with real or complex coefficients) is al-

ways contained in the convex hull of the set of zeros of the polynomial itself, it

also readily follows that SR is closed under conditioning. Hence, once one has

checked that SR implies NC for N = 2, then this also holds for all N . This

however follows from elementary calculations.

Now if X is a fixed size sample, the argument is finished via an appeal to

the elementary Feder-Mihail result which in particular states that for such a sam-

ple, conditional pairwise negative correlations implies CNA. (See Feder & Mihail
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(1992).) For the general result (which is not needed in this paper), one also needs

to know that any SR measure is the projection of some fixed size SR measure, see

Borcea et el. (2009). 2

Another key result is the following proposition, first proved in Choe et el.

(2004). It states that the operation of throwing away nonlinear terms of a stable

polynomial preserves stability. This result was extended in Borcea & Brändén

(2009) (Theorem 2.1), to a precise criterion for when a linear operation on poly-

nomials with complex coefficients preserves stability. We give here a short proof

based on the Gauss–Lucas theorem.

Proposition 4 (Choe et el. (2004), Prop. 4.17) If P (z) =
∑

α∈Nk aαz
α is stable,

then

Q(z) =
∑

α∈{0,1}k
aαz

α

is stable or identically zero.

Proof. Write P (z) =
∑K

j=0 aj(ẑ)z
j
1, where ẑ = (z2, . . . , zk). Clearly it suffices

to prove that a0(ẑ) + a1(ẑ)z1 is stable or identically zero. Since the operation

z1 7→ −z−11 maps the upper half-plane to itself, the inverted polynomial F (z) :=∑K
j=0 aj(ẑ)(−1)jz

K−j
1 is stable. It follows from the Gauss–Lucas theorem that

∂F/∂z1 is stable or identically zero. Hence, by iterating K − 1 times,

R(z) := ∂K−1F/∂zK−11 = (K − 1)!(Ka0(ẑ)z1 − a1(ẑ))

is stable or identically zero. By inverting again and rescaling the variable z1, we

see that a0(ẑ) + a1(ẑ)z1 is stable or identically zero as desired. 2

Here is our main result.
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Theorem 1 Let X = (X1, . . . , XN) and Y = (Y1, . . . , YN) be two independent

strongly Rayleigh families of 0-1 random variables and let Z = X + Y . Then the

law of Z given that
∑

iXiYi = 0 is also strongly Rayleigh.

Phrased in terms of samples, Theorem 1 states that the union of two strongly

Rayleigh samples, conditioned on these being disjoint, is strongly Rayleigh.

Proof. Let F and G be the generating polynomials of X and Y respectively.

LetH be the generating polynomial ofZ given thatX and Y are disjoint. We want

to show thatH is stable. However, the generating polynomial of the unconditional

distribution of X+Y , i.e. for the convolution of the two corresponding measures,

is FG, which is obviously stable. Now H is (up to a constant) derived from FG

by removing all terms that are not multi-affine. Hence stability of H follows from

Proposition 4. 2

Another result that will be of use is the following, which states that if an item in

a strongly Rayleigh sample is with a certain probability replaced with a new item

previously not in the population, then the new sample is also strongly Rayleigh.

Proposition 5 Let X = (X1, . . . , XN) be a strongly Rayleigh family of 0-1 ran-

dom variables such that P(X2 = 1) = 0. Let I be a 0-1 random variable inde-

pendent of X and let Y = (Y1, . . . , YN) be given by Y1 = IX1, Y2 = (1 − I)X1

and Yj = Xj , j = 3, . . . , N . Then Y is strongly Rayleigh.

Proof. This is in fact a special case of Borcea et el. (2009), Theorem 4.20.

However, since this special case has such a simple proof, let us give it here. If

F = F (z1, z3, z4, . . . , zN) is the generating polynomial of X , then the generating

polynomial of Y is given by G = pF (z1, z3, . . . , zN) + (1 − p)F (z2, z3, . . . , zn)
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where p = P(I = 1). Fixing z3, . . . , zN , we can write F = az1 + b so that

G = a(pz1 + (1− p)z2) + b. Hence if G has a zero z′ with =z′i > 0 for all i, then

F has the zero (pz′1 + (1 − p)z′2, z′3, . . . , z′N). In other words, if G is not stable,

then neither is F , a contradiction. 2

The next section is devoted to πps sampling applications.

3 Applications to sampling

Consider the following rejective πps-sampling method in terms of balls and bins.

We have n balls and N bins and we let each unit i in the population correspond

to a bin and each choice of an individual for the sample correspond to a ball.

Randomly place the balls in the bins independently but with possibly different

distributions for different balls; more precisely, let ball number i go to bin number

j with probability θij . Finally condition on that no two balls go into the same

urn. The sample is then defined to consist of the units corresponding to bins that

contain one ball. More formally

P(X = x) = C
∑ n∏

i=1

N∏
j=1

θ
xij
ij

where the sum is over all {xij}i∈[n],j∈[N ] ∈ {0, 1}Nn such that
∑n

i=1 xij = xj for

each j and
∑N

j=1 xij = 1 for each i and C is a normalizing constant. Taking inspi-

ration from the pioneering study Dubhashi & Ranjan (1998), we call a sample of

this kind a conditional balls-and-bins sample, CBAB sample for short. Since any

sample of exactly one unit is clearly strongly Rayleigh, it follows from Theorem

1 by induction that:
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Theorem 2 Any conditional balls-and-bins sample is strongly Rayleigh.

Here are the most important special cases.

• Conditional Poisson sampling. Assign to each unit a probability parameter

pi and let each unit be contained in the sample with probability pi indepen-

dently of other units, but condition on that the number of chosen units is

exactly n. (So in the end, of course, the units are not independent.)

An equivalent way of describing this is to pick n units independently ac-

cording to the probabilities cpi/(1−pi) and condition on that all the chosen

units are distinct.

It is well known that CP sampling gives maximum entropy under the result-

ing inclusion probabilities. CP sampling is simple, but not efficient. The

main problem is that the pi’s do not coincide with the resulting conditional

inclusion probabilities. Finding the correct pi’s for the desired inclusion

probabilities means to solve a huge system on non-linear equations, which

is time consuming and can usually only be done numerically. (Numeri-

cal algorithms for finding approximate solutions are efficient, but if one for

some reason insists on the exact right inclusion probabilities, this is indeed

a problem.) Also, given the correct pi’s, there is the issue of implementa-

tion. However, using the straightforward rejective method, the number of

attempts one has to make to get exactly n units in the sample, is of order
√
n, which is not a big problem (unless the size N of the population is of a

much higher order).

That CP sampling is CNA+ was observed in Dubhashi et el. (2007). The

strong Rayleigh property now follows immediately from Theorem 2, since
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CP sampling is the special case of CBAB sampling where the balls have

equal probability distributions over bins.

• Sampford sampling. This method goes back to Sampford (1967). (See

also Bondesson & Grafström (2011) for a recent extension.) This ingenious

method consists of two choices and one conditioning step. First pick an

item according to the probabilities πi/n. Then pick a CP sample of size

n − 1 according to the parameters cπi/(1 − πi) (c normalizing) and finally

condition on that the CP sample does not contain the first unit. The resulting

sample is then the union of the first unit and the CP sample. Formally,

P(X = x) = C
N∑
i=1

(1− πi)xi
N∏
j=1

( πj
1− πj

)xj
.

The ingenuity lies in the far from trivial fact that this method actually gives

the correct inclusion probabilities πi. Sampford sampling has very close

to maximum entropy and is simple. It is clearly more efficient than CP

sampling since no parameters need to be calculated. It now follows that

Sampford sampling is also strongly Rayleigh. This follows directly from

the definition, the strong Rayleigh property of CP sampling and Theorem 1.

Alternatively, one can observe that Sampford sampling is a CBAB sample

where one of the balls has bin distribution {πi/n} and the others have bin

distribution {cπi/(1− πi)}.

Remark. Sampford sampling can be very inefficient if it is implemented in

the way of placing balls in urns until no urn gets more than one ball. Indeed

the expected running time will be exponential in n. However, a Sampford

sample should be implemented as described above, i.e. as a CP sample and
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one additional item conditioned on being disjoint. This algorithm will need

order
√
n attempts to succeed. (To optimize efficiency, one should start with

the ”additional” item and then start the Poisson sample with that item, so

that one can abort the attempt at once if that item gets chosen again.)

• Pareto sampling. This method, introduced by Rosén (1997), is commonly

used in practice. Let U1, . . . , UN be iid uniform (0, 1) random variables, let

Vi = Ui/(1− Ui) and Wi = Vi/τi, where the τi’s are parameters, which are

to be adjusted so as to give the desired inclusion probabilities. The sample

consists of the items with the n lowestWi’s. Since the Vi’s have distribution

function x/(1 − x) and density 1/(1 − x)2, conditioning on the index and

value of the n’th smallest Wi leads to the following expression:

P(X = x) = C
N∑
i=1

ci
τi
xi

N∏
j=1

τ
xj
j

where

cj = τj

∫ ∞
0

xn−1G(x)

1 + τjx
dx

and G(x) =
∏N

k=1(1 + τkx)
−1, see e.g. Traat et el. (2004). Compared with

Sampford sampling, Pareto sampling has the drawback that the τi’s usually

have to be calculated numerically. On the other hand, given the parameters,

the sample comes out very quickly (unless N is very large) and without

rejections.

We see that the form of the probability function of Pareto sampling is the

same as that for Sampford sampling, so that Pareto sampling is also a CBAB

where all balls but one have the same bin distribution.
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A generalization of Pareto sampling is order sampling. Here the Vi’s are iid

random variables of an arbitrary distribution, F , with support on the positive

numbers. Again Wi = Vi/τi and the sample consists of the indices with the

n smallest Wi’s. Order sampling in general is neither a CBAB nor strongly

Rayleigh. Indeed, it may not even be NC; taking the Vi’s to be exponential

leads to the counterexample of Alexander (1989). However if the function

h(τ, x) = F (τx)/(1 − F (τx)) is separable, i.e. can be written on the form

h(τ, x) = a(τ)b(x), then the probability function of the sample becomes

P(X = x) = C
N∑
i=1

ci
a(τi)

xi

N∏
j=1

a(τj)
xj

where

cj = τj

∫ ∞
0

b(x)n−1G(x)f(τjx)

1− F (τjx)
dx

and G(x) =
∏N

k=1(1− F (τkx)). One example is e.g. F (x) = xα/(1 + xα)

for any α > 0.

Remark. A recent variant of Pareto sampling, so called conditional Pareto

sampling, was recently introduced by Bondesson (2010). Intuitively, this

method should also be strongly Rayleigh, but it is not clear to us if the

present methods apply.

Another important and well known πps sampling method is pivotal sampling

(also known as the Srinivasan sampling procedure in the computer science com-

munity). Although it may have low entropy, it is extremely simple and efficient

and, as we shall see, enjoys all the virtues of negative dependence.

The method is defined inductively on the number of items in the population.

In the simplest setting, the items are ordered linearly. Suppose that π1 + π2 ≤ 1.
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Then with probability π1/(π1 + π2) set X2 = 0, π′1 = π1 + π2 and run pivotal

sampling for a sample of size n on the population 1, 3, 4, . . . , N according to

π′1, π3, . . . , πN . With the complementary probability π2/(π1+π2) use the opposite

treatment of items 1 and 2. On the other hand if π1+π2 > 1, then with probability

(1 − π1)/(2 − π1 − π2), set X2 = 1, π′1 = π1 + π2 − 1 and run pivotal sampling

for a sample of size n− 1 on 1, 3, 4, . . . , N . With the complementary probability,

give items 1 and 2 the opposite treatment.

A more general method is achieved by picking a rooted binary tree on 2N − 1

vertices with N leaves and placing the units at the leaves in any desired order.

Pick, in some predetermined way, two units at leaves with a common neighboring

vertex. Then, according to the same formulas as above, determine Xi for one

of the two units, remove the two leaves and place the other unit at the common

neighbor (which is now a leaf of a smaller tree). Then run pivotal sampling on the

new smaller tree.

In Dubhashi et el. (2007), it was shown, with quite some effort, that pivotal

sampling is NC in the general tree setting and CNA in the linear setting. Here it

follows from Proposition 5 and induction that both are in fact strongly Rayleigh.

To see this, assume without loss of generality that the two units picked in the in-

ductive step of the method are units 1 and 2 and that π1 + π2 ≤ 1, and that all

pivotal samples on smaller trees are strongly Rayleigh. If we just postulate that

X2 = 0 and remove the two leafs and put item 1 at the new leaf, then by the in-

duction hypothesis this gives a strongly Rayleigh sample. However, correcting for

the postulation X2 = 0 amounts precisely to the situation covered by Proposition

5.
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Remark. One remedy for the low entropy, in particular under linear order, of

pivotal sampling is obvious: order the items randomly before drawing the sample.

Unfortunately we have not been able to show that this gives a strongly Rayleigh

sample, even though we believe this to be the case. Of course, the sample is

strongly Rayleigh given the order. However in general a convex combination of

strongly Rayleigh measures is not necessarily strongly Rayleigh, indeed not even

NC and not even under fixed sample size and fixed inclusion probabilities.

Let us summarize the results of the present section.

Theorem 3 Conditional Poisson sampling, Sampford sampling, Pareto sampling

and pivotal sampling specified by any rooted binary tree are all strongly Rayleigh

and hence CNA+. This also goes for general order sampling if h(τ, x) := F (τx)/(1−

F (τx)) is separable.
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