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Abstract

We consider a dynamical variant of Dvoretzky’s classical covering problem of
the unit circumference circle, where the centers of the arcs are updated according
to independent Poisson processes of unit intensity. This dynamical model was in-
troduced (in greater generality) in Jonasson and Steif (2008), where is was shown
that when the length of the n’th arc is 4,, and we write u,, := [z _;(1 — £), then
lim inf, n(logn)u, < oo implies that the whole circle is a.s. covered at all times,
whereas if 3, efi Tt /(n2logn) < oo, then a.s. there are times at which the circle
is not fully covered.

In this paper we modify the former condition to lim sup,, nu, < oco. In partic-
ular this takes care of the natural border case £, = 1/n; no exceptional times exist.
More generally, with the parametrization ¢,, = ¢/n, there is no ¢ for which there are
exceptional times for which the model behaves differently than for the static case.
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1 Introduction

We first briefly introduce the classical static circle covering model. Let C' denote the circle
with circumference 1 and consider a decreasing sequence {/,},>1 of positive numbers
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approaching 0. Let I, be the open arc of C' of length ¢, with a center chosen uniformly
at random independently of the other arcs. Let £ := limsup,, [,, and F' := E°. By the
the Borel-Cantelli Lemma, for each z € C, P(z € E) = 1ifand only if Y~ ¢, =
oo. Fubini’s Theorem yields immediately that in this case F' has Lebesgue measure O a.s.
Dvoretzky (1956) raised the question of whether in the ) /¢, = oo case it was possible
that /' was nonempty and gave examples where this was indeed the case. There were
a number of contributions to this question with the final result proved by Shepp (1972).
(Kolmogorov’s 0-1 law tells us that P(F = @) € {0,1}.)

Theorem 1.1. (L. Shepp). P(F = 0) = 1 if and only if
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In particular if £, = c¢/n for all n, then P(F = () = 1 if and only if ¢ > 1.

The special cases ¢, = c¢/n for a constant ¢ were known earlier, see Kahane (1959),
Billard (1965) and Mandelbrot (1972). For a fuller introduction, see [5].

Jonasson and Steif (2008) extended the classical model by including time dynamics.
Two different models were considered. In the first of these, the centers of the arcs perform
independent Brownian motions on C, each with variance 1. In the second model, one
associates independent Poisson processes, or jump pocesses, with the different arcs, where
the Poisson process associated with the nth arc has intensity ¢, for some parameter o >
0. At the jump-times of the nth arc, I, is given a new center, chosen uniformly on C,
independent of everything else. It was then asked, for each of these two models, if there
are exceptional times at which we see different covering behavior from that which is seen
in the earlier static model. Various results were shown. In the present paper, however, we
will only focus on the latter model, i.e. the one with Poisson updating. Indeed, we will only
be concerned with the perhaps most natural variant, namely with o = 0, i.e. each arc has
updating intensity 1. In Jonasson and Steif (2008), the following result was shown. Here,
of course, E} is the set of points of C that are covered by infinitely many arcs at time ¢, and
F, = E.

Theorem 1.2. Consider the Poisson updating model with o = 0. Assume that there are
constants 0 < My < M; < oo such that for all n, My/n < £, < Mi/n. Let u, :=
[1i_; (1 —¢x). Then

(i) Ifliminf, n(logn)u, < oo, then P(3t € [0,1] : Fy # () = 0.



(ii) If
o0 efl +lo+...4+Ly

< o0
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~ n logn

then P(3t € [0,1] : F; # 0) = 1.

This result is of course satisfying in the sense that it proves that there are /,,’s for which
circle is fully covered at any fixed time but where there are exceptional times at which this
fails. This e.g. happens for £, = 1/n — 1/(nlogn). On the other hand, it is unsatisfying
since it does not, for the original and most natural parametrization ¢, = ¢/n, tell us what
happens for the critical case ¢ = 1. The point of this paper is to modify part (i) to the
following result, which e.g. tells us that for £, = 1/n, there are no exceptional times.

Theorem 1.3. Iflimsup, nu, < oo, then P(3t € [0,1] : F; # () = 0.

There is still a very narrow gap between what is covered by Theorem 1.2(ii) and The-
orem 1.3, e.g. when £, = 1/n — 1/(nlognloglogn). It would of course be interesting to

settle what happens for any {/,,}.

Remark on measurability. It is not immediately obvious that the set {3t : F; # (0} is
measurable. If the £,,’s are such that P(F' # ()) = 1 for the static case, then the complement
of the interesting set is contained in a null set and hence measurable (after a completion of
the probability space if necessary). We may thus assume that P(F # () = 0 for the static
case. Now note first that

(Ft:F#0y={3t:(J () L) #0} =3t : [) L) # 0}

n m>n m>n

Hence it suffices to show that the set {3t : N, 1, (¢)¢ # 0} is measurable. Letting S, :=
{(z,t) € C x[0,1] : © € I,(t)°} and S = N,S,, this set can be written as {S # 0}.

Observe that by compactness,
{NnSn # 0} = ({NiLiSa # 0}
N

Now, the whole dynamical model can be defined in a straightforward way (as in Jonasson
and Steif (2008), page 2-3) in terms of a set {Xij};?j-:l of independent C-valued random
variables (the center-points of the arcs) and a set {Y;}75_, of independent exponential
random variables (the times between updatings). The set {N)_, S, # ()} can then clearly
be expressed as a countable union of events expressed in terms of these random variables.
Therefore this set is measurable and hence so is {N,S, # (}. Finally the set S and

NnS, may differ only on sets of the type I¢ x {t,} where ¢; is a jump time for some
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arc. The number of such sets is countable, and each of them is almost surely empty since
P(F # () = 0 for the static case. Hence, possibly after a completion of the probability
space, {S # 0} is measurable.

2 Proof of Theorem 1.3

Consider the static model. Let u be Lebesgue measure on C' = R/Z, let U = N2, I,
i.e. the set of points of C that are not covered by any arc, and let U, = N}_,I;. Itis
easily seen that P(F # ()) = 1 if and only if P(U # () = lim, . P(U, # 0) =
lim,, oo P(11(U,) > 0) > 0. The key ingredient in the proof of Theorem 1.1 is the fact
that E[u(U,)|U, # 0] > LE[u(U,)|0 € U,]. This follows from the lemma on page 146 of
Kahane (1985) in the following way.

B Eu(U,) Eu(Us)
2E[p(Un)|Un # 0] = TP(u(Uy) > 0) = P(a(Un 1[0, 1)) > 0)
> E[u(U,)|0 € U,

where the last inequality follows from the lemma applied with ¢ = 1/2. Hence, with
A, ={z € U,},

Eﬂ(Un) Q]E/’['(Un)
PO D) = G U, 20 < Ba(U,))0 € U]

T [LP(AAydz [, P(A, N Ag)dx
where the last two equalities follow from Fubini’s Theorem.

Now consider the dynamical model on the time interval [0, h]. Let, for each n, Z,, =
Z,(h) be the indicator that arc I,, does not update during the time interval [0, h]. Let
I' = Z,I,(t) and let U, = N_,(I})¢ and U’' = N, U],. Then clearly, if U, is empty, then
so is U, (t) forevery t € [0, h]. Now, given the Z,,’s, the U},’s correspond to a static model
with some of the original arcs removed. Hence, putting A), := {z € U,,} and writing Pz
for conditional probability given Z;, Zs, . . ., we have

Py(Ap)?

Pz (u(U,) > 0) < Cq

We also have

2 (AL NAY) =[] — 26, + (6 — 2)7)%.
k=1



Observe that for any a € (0,1/2],
1—20,+a>1—4) +a>1—£4)*(1+a)
> (1 —4)%(e" — a®) > (1 — £;)%e (1 — a?).
Since My/k < £, < M, /k, it follows that

n VA n
Py(A,n 4y > ] ((1 — )2 DT (1 - ﬁi)) * = const Py(A)2eXi-1 Zelta)*
k=1
where the constant is independent of n. By the condition My/n < ¢, < M;/n,

Var iznen = (i 2)VarZ, < oo.
n=1

n=1
Therefore Chebyshev’s inequality and the fact that EZ;, = e " > 1 — h imply that
| Mo/z]|An | Mo/z

n |
N Zully—2)T > Y Zibe—Mi>(1—h) > b — M,
k=1 k=1 k=1
with probability tending to 1 as n — oco. Hence

P > 0) <o) o |

Since lim sup,, nu, < oo, we have sup, nu, > M for some constant M. Therefore
ehit-+t > M~1n and hence

1
LMy /]
/ M Ep=t"" Mgy const/ 2~ "M dz = const - A1,
c 0

[Mo/z] -1
o(1—h) LY Ek—Mldx)

Thus
P(u(U) > 0) < o(1) + Ch

for a constant C' independent of n, and hence, by letting n — oo,
P(u(U') > 0) < Ch.

Thus, with B(h) = {3t € [0,h] : U(t) # 0}, we have P(B(h)) < Ch. This entails
that, for any positive integer k, the expected number of time intervals [(j — 1)/k, j/k),
j =1,2,..., k that contain a time point ¢ for which U (¢) occurs, is bounded by C. Putting
N, for the number of such time intervals and 7 for the set of ¢’s for which U (¢) occurs, it
is easy to see that |T'| < liminf, /V,,. Hence by Fatou’s Lemma, 7 is a.s. finite. However,
since the process studied (i.e. the whole dynamical circle covering model) is a reversible
Markov process, we conclude, by combining Theorem 6.7 in Getoor and Sharp (1984) and
(2.9) in Fitzsimmons and Getoor (1988), that 7" is a.s. empty. O
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