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Abstract
A famous result of Bayer and Diaconis [2] is that the Gilbert-Shannon-

Reeds (GSR) model for the riffle shuffle of n cards mixes in 3
2 log2 n steps

and that for 52 cards about 7 shuffles suffices to mix the deck. In this paper,
we study variants of the GSR shuffle that have been proposed to model more
realistically how people actually shuffle a deck of cards. The clumpy riffle
shuffle and dealer riffle shuffle differ from the GSR model in that when a
card is dropped from one hand, the conditional probability that the next card
is dropped from the same hand is higher/lower than for the GSR model. It is
believed that these shuffles mix slightly slower than the GSR shuffle, but still
in order log n steps. However, rigorous results have so far been missing. In
this paper we apply the technique of relative entropy and collisions of Morris
[5], to show that the clumpy shuffle and the dealer shuffle mix in O(log4 n)
steps.

AMS Subject classification : 60J10
Key words and phrases: riffle shuffle, entropy technique, collisions
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1 Introduction
Mixing times for Markov chains is a subject great importance, both from a theoret-
ical point of view and because of its applicability, and has attracted much attention
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over the last decades. A very prominent subclass of mixing time problems is card
shuffling, that is, Markov chains on the symmetric group Sn of permutations of n
items that one can think of as the cards of a deck. Perhaps the most famous of card
shuffles is the Gilbert-Shannon-Reads (GSR) model for the riffle shuffle for which
Bayer and Diaconis [2] proved a remarkably exact result; there is a sharp cutoff at
3
2

log2 n shuffles after which the deck is well mixed and for a standard deck of 52
cards, about 7 shuffles suffices for mixing. Prior to that, Aldous and Diaconis [1]
had proved, via a striking strong uniform time argument, that 2 log2 n shuffles is
an upper bound on the mixing time.

The riffle shuffle is, together with the inefficient overhand shuffle which mixes
in order n2 log n steps (see [7] and [4]), the most common way in which people
actually shuffle a deck of cards. The model for one step of the GSR shuffle is
the following. First the deck is cut into two packets of which one goes into your
right hand and the other into your left hand. The number of cards that go into your
right (or left if you like) hand is a binomial random variable with parameters n and
1/2. Then the cards are dropped from the two hands in such a way that whenever
there are A cards left in your right hand and B cards left in your left hand, the
probability that the next card is dropped from your right hand is A/(A+B).

An equivalent description of the GSR shuffle is as follows. At each step

1. generate a uniform random binary sequence of length n;

2. if the binary sequence has k zeros and n − k ones, cut the deck so that the
left pile has k cards and the right pile has n − k cards, and then interleave
the two piles by reading the binary sequence from left to right, and dropping
from the left pile with each zero and from the right pile with each one.

For example, if n = 6 and the binary sequence is 001110, then we first cut the
deck into two equal piles, then interleave the piles by dropping the first two cards
from the left pile, the next three cards from the right pile, and the last card from
the left pile again.

Note that according to the GSR model, when you drop from your right hand,
you drop a single card with probability 1/2, a pair of cards with probability 1/4,
a triple of cards with probability 1/8, and so on. However, if one analyzes riffle
shuffles of a fresh deck of cards in practice, one finds that the shuffles are finer.
Cards tend to be dropped in a more alternating fashion, especially with experi-
enced dealers; see Remark (e) and open problem (i) of [1]. Such shuffles are
named dealer riffle shuffles in [3] and we stick with this term. On the other hand,
when the deck has been used for a long time and become sticky, the opposite tends
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to occur, namely that cards are dropped in clumps. Hence we call these shuffles
clumpy riffle shuffles.

A model that includes both the dealer and clumpy shuffles as special cases is
the Markovian model, which appears in the “open problems” section of [3]. The
Markovian model is driven by a two-state Markov chain with transition matrix[

p00 p01
p10 p11

]
and the transition rule is as follows. At each step

1. run n steps of the two-state Markov chain in stationarity to generate a binary
sequence of length n;

2. if the binary sequence has k zeros and n − k ones, cut the deck so that the
left pile has k cards and the right pile has n − k cards, and then interleave
the two piles by reading the binary sequence from left to right, and dropping
from the left pile with each zero and from the right pile with each one.

Note that the Markovian model includes the GSR model as a special case. It
is natural to assume a symmetric cut (that is, p01 = p10, so that the left and right
piles have the same expected size) and we shall do this in the present paper. For
p ∈ (0, 1) consider the two-state Markov chain with transition matrix

Kp :=

[
p 1− p

1− p p

]
.

We shall call this Markov chain the two-state chain with parameter p (or simply
the two-state chain) and we define the p-riffle shuffle as the shuffle driven by this
chain. When p < 1

2
we call the shuffle dealer and when p > 1

2
we call the shuffle

clumpy. It is widely believed that clumpy riffle shuffles and dealer riffle shuffles
may mix more slowly than the GSR shuffle, but still at order log n, but rigorous
results have been missing so far. (However for some extremely clumpy shuffles
where p is allowed to grow with n a few facts are known; see [9].) In this paper we
give the first rigorous results for p-riffle shuffles, showing that O(log4 n) shuffles
suffices to mix the deck.

2 The time reversed shuffle and mixing time
Recall that the mixing time of an (aperiodic irreducible) Markov chain is defined
in terms of the total variation distance between the distribution at a given time and
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the stationary distribution: if Xt is the state of the Markov chain at time t and π is
the stationary distribution, then the total variation distance is given by

‖P(Xt ∈ ·)− π‖TV := max
A⊆S

(P(Xt ∈ A)− π(A))

=
1

2

∑
s∈S

|P(Xt = s)− π(s)|,

where S is the state space and P is the underlying probability measure. The mixing
time is then defined by

τmix := min{t : ‖P(Xt ∈ ·)− π‖TV ≤
1

4
}.

As with the GSR shuffle before it, it turns out that the analysis of the p-riffle
shuffle is more conveniently carried out for the time reversed shuffle. Since the
GSR shuffle and p-riffle shuffle are random walks on groups (see [8]) each has the
same mixing time as its time reversal.

For the GSR shuffle, the time reversal can be described as follows. First give
each card an independent 0 or 1 mark, each with probability 1/2. Then put all
cards marked 0 above the cards marked 1, without changing the internal order
among cards with the same mark. If we repeat this process and keep track of all
the markings that have been given to each card, then after k shuffles each card
has an independent iid sequence of 0/1 marks of length k. A moment’s thought
reveals that the first time, τ , when all the cards have distinct mark sequences is a
strong uniform time, i.e., Xτ is uniformly distributed and independent of τ . Since
τ is highly concentrated around 2 logn n, this implies a O(log n) upper bound for
the mixing time. This argument, which first appeared in [1], relies heavily on the
independence between the marks for different cards. The same goes for the more
detailed analysis in [2].

For the p-riffle shuffle, the time reversal has the following transition rule. First,
generate marks by running n steps of the two state Markov chain in stationarity.
That is, the first card is given a mark according to a fair coin flip, and subsequent
cards are given the same mark as the previous card with probability p and the
opposite mark with probability 1−p. Then put all cards marked 0 above the cards
marked 1, without changing the internal order among cards with the same mark.

Our main result is:

Theorem 2.1 Fix p ∈ (0, 1). The mixing time τmix for the p-riffle shuffle satisfies

τmix = O(log4 n).
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Remark. Other models for finer riffle shuffles have been proposed. The most
prominent is perhaps the Thorp shuffle, for which the best known upper bound to
date is of order log4 n and due to Morris [5]. In the special case n = 2d, there is
an upper bound of O(log3 n), also due to Morris [6]. Both of these papers rely on
the same entropy technique from [5] as we do here.

3 The proof
The proof on Theorem 2.1 relies on the entropy technique introduced in [5], so let
us first review the parts needed. For two probability measures ν and π on a finite
space S, the relative entropy of ν with respect to π is given by

ENT(ν‖µ) =
∑
s∈S

ν(s) log
ν(s)

π(s)
.

Here we will only be concerned with the case when π is uniform. In that case one
just speaks of the relative entropy of ν and drops π from the notation, so that

ENT(ν) =
∑
s∈S

ν(s) log(|S|ν(s)).

For a random variable X , we write ENT(X) for ENT(L(X)), where L(X) is the
law of X . The notation ENT(X|Y = y) then of course stands for the entropy of
the conditional law of X given Y = y and ENT(X|Y ) is the random variable that
equals ENT(X|Y = y) when Y = y. The following lemma relates relative en-
tropy to total variation. It can be proved by using Schwarz inequality and solving
a standard optimization problem.

Lemma 3.1 Let π be the uniform measure on S. Then

‖ν − π‖TV ≤
√

1

2
ENT(ν).

Next, recall the chain rule for relative entropies:

ENT(X, Y ) = ENT(X) + E[ENT(X, Y |X)],

which generalizes to

ENT(X1, X2, . . . , Xn) = E[ENT(X1, . . . , Xn|Xi, . . . , Xn)]

+
n∑
k=i

E[ENT(Xk|Xk+1, . . . , Xn)]
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for each i ∈ [n]. Note that the last term in the sum is just ENT(Xn). We will
be concerned with the case when X is a random permutation of n cards. We
will write X(j) for the position of card j (i.e. the card that started in position
j) after applying X . Consequently X−1(j) is the initial position of the card in
position j after applying X . Writing Ej := E[ENT(X−1(j)|Fj+1)], where Fj :=
σ(X−1(j), X−1(j + 1), . . . , X−1(n)), the chain rule takes on the form

ENT(X) = E[ENT(X|Fi)] +
n∑
k=i

Ek.

In particular

ENT(X) =
n∑
k=1

Ek.

The key result of [5] states that applying random permutations that involve colli-
sions decreases relative entropy by a certain factor. For a, b ∈ [n], we write c(a, b)
for the random permutation that equals id with probability 1/2 and (a, b) with
probability 1/2 and refer to this random permutation as a collision of positions a
and b. For permutations X and Y we write XY for Y ◦ X . Let Y be a random
permutation that can be written as

Y = c(a1, b1)c(a2, b2) . . . c(ak, bk)Z

where Z is a random or fixed permutation, the ai’s and bi’s all distinct and the
c(ai, bi):s mutually independent given Z. (However, the identities of the ai:s and
bi:s and the number of collisions typically depend on Z.) Let Y1, Y2, . . . be in-
dependent copies of Y and write Y(t) = Y1Y2 . . . Yt, t = 1, 2, . . . . We say that
the cards x and y collide at time t if there are two positions i and j, such that
Y −1(t−1)(i) = x, Y −1(t−1)(j) = y and Yt contains the collision c(i, j). Fix t and let
T ∈ [t] be a random time independent of the Yi:s. For a given card x, let b(x) = y
if y is the first card that x collides with in [T, t]. If also b(y) = x, then letm(x) = y
(in which case we will also have m(y) = x). Otherwise set m(x) = x. For the
present paper it suffices to note that if x and y collide at time T then m(x) = y.

For each x, let

Ax = max{c : ∀y < x : P(m(x) = y) ≥ c/x}.

Theorem 3.2 ([5]) Let X be a random permutation independent of Y1, . . . , Yt.
Then

ENT(X)− ENT(XY(t)) ≥
C

log n

n∑
k=1

AkEk
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where C is a universal constant.

We will actually use Theorem 3.2 to analyze the time reversed p-riffle shuffle.
Recall that the time reversal has the following transition rule. First, generate marks
by running n steps of the two state Markov chain in stationarity. Then put all cards
marked 0 above the cards marked 1, without changing the internal order among
cards with the same mark.

Fix two cards x and y with x < y. Note that if x and y are given the same
marks then their distance will typically decrease by a factor of roughly one half
after the shuffle. Suppose we associate to each card from x to y a 1 (respectively,
0) if the card is given the same mark as card x, generating a binary sequence of
length y − x+ 1. Call this the agreement sequence. If x and y are given the same
mark, then we continue and define the agreement sequence for the next step, and
so on.

Call a binary sequence successful if it ends in a one, and if V is a binary
sequence, let |V | denote the Hamming weight of V (that is, the number of ones in
V ).

The following Markov chain, which we call the thinning process, models the
process of agreement sequences up until the time when x and y get a different
mark. The state space is the set of binary sequences, and the transition rule is as
follows. If the current state Vk = V , the next state Vk+1 is defined as follows.

1. if V is not successful, then Vk+1 = V ; else

2. let Vk+1 be the binary sequence of length |V | generated by running the two-
state chain starting from a one for |V | − 1 steps.

Note that the unsuccessful states are absorbing. For t ≥ 1 let At be the event
that Vt is successful.

Lemma 3.3 Let V0, V1, . . . be the thinning process and for t ≥ 0 define Lt = |Vt|.
There exists a universal constant γ > 0 and positive integers l̃ and C, which
depend only on p, such that if L0 = l0 and t = blog2 l0 − l̃c then

P(At ∩ {0 < Lt < C}) ≥ γ

l0
.

Proof. First we give an alternate construction of the thinning process. Note that
the trajectory of the two-state chain, starting from a 1, can be generated as follows.
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In the dealer case (respectively, clumpy case), start with a sequence of the form
10101 . . . (respectively, 111 . . . ) whose length is a geometric random variable of
parameter |1 − 2p|. Then in the next step, flip a fair coin to generate the next
state and continue with the usual transition rule after that. (Note that from this
construction it is clear that for all m the expected number of ones among the first
m states is at least m/2.) Let T be time when the fair coin is used to generate the
next state. We shall call this time the forget time.

Suppose that the current state of the thinning process is V , where V is suc-
cessful and define L = |V |. Let Z0, Z1, . . . be the two-state Markov chain con-
structed using the alternate method described above. We write Z for the sequence
(Z0, . . . , ZL−1). Let Z̃ be the sequence obtained from Z by reversing every state
from time T onward, with Z̃ = Z if T > L. Note that Z̃ has the same distribution
as Z. Define the sequence W by

W :=

{
Z if ZL = 1;
Z̃ otherwise.

Note that WL = 1 unless T > L. Let W̃ be the sequence obtained from W by
reversing every state from time T onward,

Now flip a fair coin, which we shall call the deciding coin. The next state V ′

of the thinning process is

V ′ =

{
W if the deciding coin lands heads;
W̃ if the deciding coin lands tails.

Note that V ′ is successful whenever the deciding coin lands heads, unless the
forget time T is greater than L. (Roughly speaking, the deciding coin “decides”
whether the next state will be successful or not.) We call W the good sequence in
the construction of V ′ from V .

The main idea of the proof is to use the second moment method to show that,
under the assumptions of the Lemma, if we condition on the event that the de-
ciding coin repeatedly lands heads (that is, the good sequence W is chosen re-
peatedly instead of W̃ ) then with probability bounded away from zero we have
0 < Lt < C.

Fix a state V of the thinning process, let L = |V |, and let W be the good
sequence in the contruction of the next state V ′ from V . The key step of the proof
is to bound the mean and second moment of S := |W |. We claim that

E(S) ≥ L/2, (1)
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and

E(S2) ≤ L2

4
+ cL, (2)

for a constant c that depends only on p.
First, we verify (1). Since

(1) the sequence W0, . . . ,WT−1 has at least as many ones as zeros;

(2) given T = k where k ≤ L, the value of
∑L−1

i=k Wi has the same distribution
as the number of ones in the first L− k states of the two-state chain starting
from 1;

equation (1) follows. Next we verify the (2). Note that

E(S2) ≤
L∑
i=1

E(Wi) + 2
∑

0≤i<j≤L

(
E(WiWj;T ≤ i) + P(T > i)

)
. (3)

The first sum can be trivially bounded above by L. For the second sum, note that
if T ≤ i then Wi = Wj = 1 only if Zi = Zj = ZL, which occurs with probability[1

2
+

1

2
(p− q)j−i

][1

2
+

1

2
(p− q)L−j

]
,

where q = 1 − p. (Recall that the probability that a coin of bias q has an even
number of heads after m flips is 1

2
+ 1

2
(p− q)m.) Combining this with the fact that

P(T > i) = |1− 2p|i−1 shows that the terms of the second sum in (3) are at most

1

4

(
1 + (p− q)j−i + (p− q)L−j + (p− q)L−i + (p− q)i

)
+ |1− 2p|i−1. (4)

Summing this over i and j with 0 ≤ i < j ≤ L gives at most L2

4
+ c′L, for a

constant c′ that depends only on p. This verifies (2).
Now let V0, V1, . . . be a thinning process constructed using deciding coins and

let E be the event that the deciding coin lands heads for each step up to time t. We
write P̂ and Ê for the conditional probability and expectation, respectively, given
E. For k ≥ 0 define Yk = L2

k. If we define f : [0,∞) 7→ R by f(x) = x
4

+ c
√
x,

then (2) implies that
Ê(Yk+1 |Yk = y) ≤ f(y). (5)

Hence, induction and the fact that f is concave imply that

Ê(Yk) ≤ fk(l20), (6)
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where fk is the kth iterate of f . Another straightforward calculation and induction
imply that

fk(x) ≤ h
( x

4k

)
, (7)

where h(x) = x + B
√
x for a sufficiently large constant B ≥ c (e.g. B = 3c2

suffices), provided that x/4k ≥ 1. It follows that

Ê(L2
k) ≤ fk(l20) (8)

≤ h
( l20

4k

)
, (9)

since l0/2k ≥ 1 as k ≤ t < log2 l0. Finally, note that combining (1) with induction
gives

Ê(Lk) ≥
l0
2k
. (10)

Combining this with (9) and the definition of h gives

V̂ar(Lk) = Ê(L2
k)− Ê(Lk)

2 (11)

≤ BÊ(Lk). (12)

Let Tk be the forget time in the construction of Vk+1 from Vk. Recall that on
the event E, the step is successful unless Tk > Lk. Hence, on E, the step is
unsuccessful only if Bk occurs, where

Bk =
{
Tk >

ak
2

}
∪
{
Lk ≤

ak
2

}
, (13)

where we write ak for l0
2k

. Combining this with the fact that Lt = 0 only if Bt

occurs, we get that P̂(Act ∪ {Lt = 0}) is at most

t∑
k=0

[
P̂(Tk >

ak
2

) + P̂(Lk ≤
ak
2

)
]
. (14)

Since Tk is a geometric random variable with parameter α := |1− 2p|, we have

P̂(Tk >
ak
2

) ≤ αak/2 (15)

≤ D/ak, (16)
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for a constant D. Furthermore, by (10) and Chebyshev’s inequality, we have

P̂(Lk ≤
ak
2

) ≤ 4V̂ar(Lk)

a2k
(17)

≤ 4B/ak, (18)

by (12). Thus, the quantity (14) is at most

t∑
k=0

D + 4B

ak
. (19)

Recall that t = blog2 l0 − l̃c. Thus if l̃ is large enough so that

2l̃ > 4(D + 4B)

then by (10) we have at−k > 4(D + 4B)2−k for all k with 0 ≤ k ≤ t, and hence
the quantity (19) is at most 1

2
. Hence

P̂(Act ∪ {Lt = 0}) ≤ 1

2
(20)

Finally, note that (9) implies that Ê(L2
t ) ≤ β for a constant β that depends only

on p. Choosing C > 2β1/2 gives

P̂(Lt ≥ C) = P̂(L2
t ≥ C2) (21)

≤ 1

4
(22)

by Markov’s inequality. Combining this with (20) gives

P̂
(
Act ∪ {Lt = 0} ∪ {Lt ≥ C}

)
≤ 3

4

and hence the unconditional probability

P(At, 0 < Lt < C) ≥ 1

4

(1

2

)t
(23)

≥ γ

l0
, (24)

for a universal constant γ. 2
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In order to apply Theorem 3.2 to the reverse p-riffle shuffle we need to generate
a step of the shuffle using collisions, and for this we need the following key fact.
For binary sequences M = (M1, . . . ,Mn), let

p(M) = 1
2
Kp(M1,M2)Kp(M2,M3) · · ·Kp(Mn−1,Mn)

be the probability of generating M as a trajectory of the two-state chain. If we
divide M into bM

4
c blocks of length 4, plus possibly one additional smaller block,

then reversing any block of the form ab(1−b)a (e.g., 1011) does not change p(M).
Furthermore, the effect of such a change in markings is to interchange the final
positions of the middle two cards in the reversed block.

Let M be the random binary sequence generated for a step of the shuffle. We
say that positions j and j + 1 interact if

1. j is congruent to 2 modulo 4,

2. Mj 6= Mj+1,

3. Mj−1 = Mj+2.

Let C = {j : j interacts with j + 1}. Note that if Z is the permutation generated
from M , then the permutation Y defined by

Y :=
[∏
j∈C

c(j, j + 1)
]
Z

has the same distribution as Z, so we can define a step of the shuffle to be the
permutation Y .

Now partition the positions in the deck as

Il = {2l−1, 2l−1 + 1, . . . , 2l − 1} ∩ [n],

l = 1, 2, . . . , dlog2(n + 1)e. For each l, let T = Tl be the random time for which
P(T = 1) = 2−l+1 and P(T = l + 1 − r) = 2−r, r = 1, . . . , l − 1, so that
l + 1 − T is a truncated geometric(1/2) random variable. Now let t = dlog2 ne
and let Y1, Y2, . . . be independent copies of Y . The following lemma ensures that
we can apply Theorem 3.2.

Lemma 3.4 In the above notation, with l fixed and T = Tl, there is a constant c
independent of l and n such that

P(m(x) = y) ≥ c

x

for all x ∈ Il and all y < x.
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Proof. Suppose x ∈ Il and y < x and define d = x − y + 1. It suffices to find a
lower bound for the probability that x and y collide at time T , since this implies
that m(x) = y. For k = 0, 1, . . . , let Sk be the set of cards in the set consisting
of y, x and the cards in between them after k shuffles have been performed. Note
that we can couple {Sk : k ≥ 0} with a thinning process {Vk : k ≥ 0} in such
a way that if Vk is successful then |Sk| = |Vk|. It follows that if l̃ and C are
the constants appearing in the statement of Lemma 3.3, then Lemma 3.3 implies
that the probability that x and y are within a distance C from each other after
blog2 dc − l̃) steps is at least γ

d
for a universal constant γ. Furthermore, if x and

y are within distance C of each other, there is probability bounded away from 0
that in the next step all the cards in between them with be removed and that x and
y will collide in the step following that. Since

P(Tl − 2 = blog2 dc − l̃) = 2blog2 dc−l̃−l+1,

it follows that the probability that x and y collide at time Tl is at least

2blog2 dc−l̃−l−3
(γ′
d

)
,

for a universal constant γ′ > 0. This expression is at least c
x

for a constant c that
depends only on p. 2

Now we are ready to apply Lemma 3.4 to the p-riffle shuffle with c = αβ/4
with α and β as in the proof of the lemma. Let X be a random permutation
independent of the Yi:s. Use the chain rule to write

ENT(X) =
n∑
i=1

Ei =

dlog2(n+1)e∑
l=1

∑
i∈Il

Ei.

Since there are at most log2 n+ 1 ≤ 2 log2 n of the Im:s, we must have that∑
i∈Il∗

Ei ≥
1

2 log2 n
ENT(X)

where l∗ is the l that maximizes the inner sum. Hence by Theorem 3.2 and Lemma
3.4 with l = l∗ gives
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ENT(XY(t)) ≤ ENT(X)− C

log n

n∑
k=1

AkEk

≤ ENT(X)− C

log n

∑
i∈Il∗

AiEi

≤
(

1− Cc

4 log2 n

)
ENT(X).

Now iterating this for X = id, X = Y(t), X = Y(2t), . . . and taking γ = Cc/4
shows that

ENT(Y(Bt log3 n)) ≤
(

1− γ

log2 n

)B log3 n

ENT(id)

≤ n−Bγ log(n!) ≤ n1−Bγ log n ≤ 1

8

as soon as, say, Bγ ≥ 2. Then, by Lemma 3.1,

‖P(Y(Bt log3 n) ∈ ·)− π‖TV ≤
√

1

2
ENT(Y(Bt log3 n)) ≤

1

4
.

Since t is order log n we get

τmix = O(log4 n).
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