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Abstract

Let D be a non-negative integer-valued random variable and let G = (V, E)
be an infinite transitive finite-degree graph. Continuing the work of Deijfen
and Meester [5] and Deijfen and Jonasson [4], we seek an Aut(G)-invariant
random graph model with V as vertex set, iid degrees distributed as D and
finite mean connections (i.e. the sum of the edge lengths in the graph metric
of G of a given vertex has finite expectation). It is shown that if G has either
polynomial growth or rapid growth, then such a random graph model exists
if and only if E[D R(D)] < ∞. Here R(n) is the smallest possible radius
of a combinatorial ball containing more than n vertices. With rapid growth
we mean that the number of vertices in a ball of radius n is of at least order
exp(nc) for some c > 0. All known transitive graphs have either polynomial
or rapid growth. It is believed that no other growth rates are possible.

When G has rapid growth, the result holds also when the degrees form
an arbitrary invariant process. A counter-example shows that this is not the
case when G grows polynomially. For this case, we provide other, quite
sharp, conditions under which the stronger statement does and does not hold
respectively.

Our work simplifies and generalizes the results for G = Z in [4] and
proves e.g. that with G = Z

d, there exists an invariant model with finite
mean connections if and only if E[D(d+1)/d] < ∞. When G has exponential
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†Göteborg University
‡jonasson@math.chalmers.se



growth, e.g. when G is a regular tree, the condition becomes E[D log D] <

∞.
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model, mass-transport principle, unimodular graph, polynomial growth, in-
termediate growth, exponential growth.
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1 Introduction

In recent years there has been an increasing interest in the use of random graph
models as models for different complex structures. For such applications the orig-
inal Erdős-Rényi model will not do. One reason for this is that the degree distri-
bution of these structures is widely different from what one gets from the Erdős-
Rényi model. Therefore it has been a natural step to construct models, where the
degrees of different vertices are iid random variables with a given desired distribu-
tion F . A handful of models of this type have been proposed by different authors,
see [5] and [4] and the references therein.

A second reason for the need for new random graph models is that many of
the networks one wants to model, exhibit a notion of geography; the vertices have
a well-defined position in space. Therefore it is natural to ask for models which
are, in addition to the above, also geographically invariant in some proper sense.
This problem was introduced by Deijfen and Meester [5], who constructed an
invariant model on Z (i.e. a random graph model on the vertices of Z whose edge
configuration is invariant under the automorphisms of Z). Their model leads to
well-defined graphs, provided that F has finite mean. However, the expected edge
lengths, and hence the expected total edge length of a vertex, turn out to be infinite
for any F . This leads to the question if one can construct models where this is not
the case and, if so, what is a necessary and sufficient condition on F for this to
be possible. A first answer came in [4] where an invariant model on Z with finite
expected total edge length of a vertex, was constructed under the condition that
F has finite second moment. It is easily seen that finite second moment is also
necessary.

The present paper is a natural continuation of [4]; we seek to extend the re-
sults from there to other geographies. We will do this in the most general sense
possible. Let G = (V,E) be an infinite transitive finite-degree graph with either
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polynomial or rapid (for definition, see the next section) growth. (In fact, it is
believed, but still not confirmed, that no other growth rates are possible.) We will
prove the existence of an Aut(G)-invariant model on G, with finite expected total
edge length per vertex, when E[D R(D)] < ∞. Here R(n), n = 1, 2, . . ., is the
radius of the smallest possible combinatorial ball with more than n vertices and
D is distributed according to F .

In the polynomial growth case, our model will be based on a discrete version
of a “stable marriage of Poisson and Lebesgue” of Hoffman, Holroyd and Peres
[7]. For G = Z this model is similar in spirit to the one in [4], but it turns out to
be more amenable to generalization. For G = Z

d, d ≥ 1, R(n) is of order n1/d so
the condition E[D R(D)] < ∞ becomes E[D(d+1)/d] < ∞. When G is a regular
tree of degree at least 3, we get E[D log D] < ∞. The latter condition also applies
to some more exotic geographies such as the Trofimov graph, the Diestel-Leader
graphs (see e.g. [3]) or the lamplighter groups (see e.g. [9]), all of exponential
growth. If G is the Grigorchuk group (see [6]) whose growth rate is known to
be between exp(

√
n) and exp(n0.768) (see [1]) we get that E[D(log D)2] < ∞ is

sufficient and E[D(log D)1.302] < ∞ is necessary for the existence of an automor-
phism invariant graph with finite mean connections.

It will also follow, for graphs of rapid growth, that there exists a model, that
gives finite expected edge length per vertex under the same condition, as soon
as the degrees form any automorphism invariant process. On the other hand,
we demonstrate that the same condition does not apply when G has polynomial
growth. In this case we provide other, quite sharp, conditions for when a model
of the desired type does and does not exist.

For a longer and fuller introduction to the subject we refer to [4] and the ref-
erences therein.

In the next section, the necessary concepts and tools are introduced. In the
third, and final, section, we state and prove the main result (i.e. we construct an
analyze the promised models.)

2 Preliminaries

Let G = (V,E) be a graph. We will write distG for the graph metric on G, i.e.
for two vertices, u and v, distG(u, v) is the minimum number of edges of a path
between u and v.

An automorphism on G is a bijective map g : V → V such that {gu, gv} ∈ E
if and only if {u, v} ∈ E. We put Aut(G) for the group of automorphisms on
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G. The graph G is said to be transitive if, for every u, v ∈ V , there exists a
g ∈ Aut(G) such that gu = v.

Assume from now on that G is infinite, transitive and of finite degree. Fix
an arbitrary vertex, o, henceforth to be thought of as the “origin”. Let, for n =
0, 1, 2, . . ., V(n) be the number of vertices in the combinatorial ball, B[o, n] :=
{v ∈ V : distG(v, o) ≤ n}, of radius n at the origin, and let A(n) := V(n) −
V(n − 1) with A(0) = 1. Put R(x) := min{n : V(n) > x}, x ∈ [0,∞) and let
R : [0,∞) → [0,∞) be the concave hull of R (i.e. the smallest concave function
greater than or equal to R). Note that since V(n) increases with n at at least linear
rate, |R(x) − R(x)| < 1 and R(n) = R(n) for every n in the range of V . Thus
finiteness of E[D R(D)] is equivalent to finiteness of E[DR(D)]. It should also
be kept in my mind that R is the inverse of a suitable extension of V . (The reason
for introducing the function R is that later on we will need this concavification of
R in order to apply Jensen’s inequality.)

We will make use of a few, among graph theorists well known, facts about the
possible behavior of V(n); for background information, see [8] and the references
there. The function V(n) grows either at rate nk for some integer k ≥ 1, at rate
at least ecn for some constant c > 0 or at a rate such that for any k < ∞ and any
c > 0, nk < V(n) < ecn for all sufficiently large n. These possible growth rates
are referred to as polynomial growth, exponential growth and intermediate growth
respectively. The existence of transitive graphs with intermediate growth is highly
non-trivial. The first example was found by Grigorchuk [6] in the early 1980’s;
his example is nowadays known as the Grigorchuk group (or Grigorchuk’s first
group). It is today widely believed that there exists c > 0 such that no transitive
graph of intermediate growth can have a growth rate lower than ec

√
n.

We will say that G has rapid growth if, for some c > 0, V(n) > exp(nc) for
all sufficiently large n. Hence, as the matter stands today, the common belief is
that any G with super-polynomial growth, must grow rapidly.

For v ∈ V , write Sv := {g ∈ Aut(G) : gv = v}, the stabilizer of v. We say
that G is unimodular if, for every u, v ∈ V ,

|Svu| = |Suv|.

Unimodularity is a very mild condition, satisfied by any graph you are likely to
meet in practice. E.g. any Cayley graph of a finitely generated group is unimodu-
lar, see e.g. [3]. The simplest example of a non-unimodular transitive graph is the
so called Trofimov graph, which one gets by identifying a direction in a binary
tree and then drawing an edge from each vertex to its grandparent with respect
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to this direction, see [3] again. A more substantial class of examples, also to be
found in [3], is the Diestel-Leader graphs.

Next we introduce the mass-transport principle. Let X ∈ {0, 1}V be an
Aut(G)-invariant random process and let m : V ×V ×{0, 1}V → [0,∞) be such
that m(u, v, x) = m(gu, gv, gx) for all u, v ∈ V , x ∈ {0, 1}V and g ∈ Aut(G).
The function m is thus a diagonally invariant function and we think of m(u, v, x)
as the amount of mass transported from the vertex u to the vertex v when X = x.

Theorem 2.1 (Mass-transport principle) We have that

E

∑

v∈V

m(u, v,X) = E

∑

v∈V

m(v, u,X)
|Svu|
|Suv|

.

In particular, if G is unimodular, then the expected amount of mass transported
out of a vertex equals the expected amount of mass transported into it, i.e. for any
vertex u,

E

∑

v∈V

m(u, v,X) = E

∑

v∈V

m(v, u,X).

When G is a Cayley graph, the mass-transport principle is almost immedi-
ate. For a proof of the general case, see [3]. We can now prove the following
important lemma, which generalizes Proposition 4.2 of [4]. Since the result may
be of independent interest, we give it, with very little extra effort, in a slightly
more general form than necessary. (Only the case k = 1 will be needed.) Let
again X ∈ {0, 1}V be an automorphism invariant random process. Call a vertex,
v, such that X(v) = 1, a site of X and put Nv(k) for the distance from v to its
k’th nearest site, other than v itself, k = 1, 2, . . .. (Let v make a uniform random
ordering of all vertices at the same distance from v for all distances. In this way
the k’th nearest site is well defined.) Let p := P (X(v) = 1).

Lemma 2.1 There exists a constant K < ∞, depending on X only via p, such
that

E[Nv(k)|X(v) = 1] < KR
(k

p

)

,

Proof. For all sites v, let Cv = Cv(1), the 1-cell of v, be the set of vertices
that are closer to v than to any other site. (I.e. Cv is v’s “discrete Voronoi-cell”.)
In general, define Cv(k), the k-cell of v, k = 2, 3, . . ., as the set of vertices that are
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closer to v than to any other vertex, when the k − 1 nearest sites of v are ignored.
Fix k. Let

m(u, v, x) = 1{u∈Cv(k)}(x),

i.e. let every vertex u send unit mass to every site whose k-cell contains u. Then,
since no vertex will send any mass to any vertex that is not among its k nearest,

∑

u∈V

m(v, u,X) ≤ k.

Now assume first that G is unimodular. We have that

E

∑

u∈V

m(u, v,X) = E

[

|Cv(k)|1{X(v)=1}

]

= pE

[

|Cv(k)|
∣

∣

∣
X(v) = 1

]

.

Hence the mass-transport principle yields

E

[

|C(v)|
∣

∣

∣
X(v) = 1

]

<
k

p
.

However, by definition of R, Nv(k) and Cv(k), we have that Nv(k) < 3R(|Cv(k)|).
Therefore Jensen’s inequality implies that

E[Nv(k)|X(v) = 1] < 3R
(

E

[

|Cv(k)|
∣

∣

∣
X(v) = 1

])

< 3R
(k

p

)

as desired.
In the non-unimodular case, let

a := max
{ |Suo|
|Sou|

: distG(u, o) = 1
}

.

Then a > 1. If Nv(k) ≥ r, then, by transitivity, Cv(k) must contain a path
v0 = v, v1, x2, . . . , vbr/2c where |Svi+1

vi|/|Svi
vi+1| = a for every i. Hence,

∑

v∈V

m(v, u,X)
|Svu|
|Suv|

> 1{X(v)=1}

bNv(k)/2c
∑

i=0

ai > 1{X(v)=1}e
bNv(k)

for b > log(a)/3. The mass-transport principle now gives

E[ebNv(k)
∣

∣

∣
X(v) = 1] <

k

p
.
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Taking logarithms and using Jensen’s inequality gives

E[Nv(k)|X(v) = 1] <
1

b
log(

k

p
) ≤ log(d − 1)

b
R
(k

p

)

.

(In fact, R is indeed logarithmic; any non-unimodular graph is nonamenable and
hence grows exponentially, see [3].) Taking K = 3 log(d − 1)/ log a finishes the
proof. 2

For the next lemma, let again X be an Aut(G)-invariant {0, 1}V -valued ran-
dom process and p := P (X(v) = 1). Recall that a matching of a set of elements
is a graph having these elements as vertices, for which the degree of every vertex
is 1. In a partial matching every vertex has degree 0 or 1.

Lemma 2.2 If G has at least quadratic growth, then there exists an Aut(G)-
invariant matching of the sites of X such that

E[distG(o, wo)1{X(o)=1}] < 10KpR
(1

p

)

,

where wo is the vertex matched with o and K is the constant from Lemma 2.1.

Proof. Since V(n) grows at least quadratically, R(x) grows at most at rate√
x.

Put X1 = X and p1 = p. Construct a random directed graph on the sites of
X1 by drawing a directed edge from each site to its nearest other site. In order to
break ties, let Wv, v ∈ V , be iid uniform[0,1] random variables, to be thought of as
weights. Then, if the nearest site is not unique, pick the one of the candidates with
the largest weight. Call a site whose in-degree, in the resulting digraph, is positive
a stem site. It is clear that a.s. the digraph will consist of finite components, whose
underlying graphs are trees and whose stem sites are connected to each other by a
directed path ended with two sites pointing to each other.

By Lemma 2.1, the expected distG-length given that o is a stem site of X1, of
a uniformly chosen directed edge pointing to o, is bounded by KR(1/p1). (This
is so, since choosing a typical directed edge amounts to choosing at random an
edge pointing to a typical stem site.) Since the edge pointing away from o is at
most as long as the shortest one pointing to it, the bound also applies if we choose
among all the directed edges incident to o.

Now we partially match the sites in the following way. Fix a given component
and consider the underlying tree. If the tree consists of only two sites, then match
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these to each other. If not, then for each of the stem sites, match its neighbors
to each other at random, as far as possible (in the sense that if the number of
neighbors is odd, then a randomly chosen one is left out.) Then at least 2/3 of
the sites have been connected to some other site. The length of a connection is
bounded by the sum of two uniformly chosen directed edges incident to a stem
sites. Thus the expected length of a connection of a given site on the event that
it exists, is bounded by 2Kp1R(1/p1). Now, what we produced may not be a
partial matching of the given component, since some paths of more than two sites
may have formed. If so, then remove randomly every second connection of such a
path. Then the same bound obviously still applies and still at least 4/9 of the sites
are matched. Letting B1 be the event that o is a site and gets matched by the this
procedure, we have shown that

E[dist(o, wo)1B1 ] < 2Kp1R
( 1

p1

)

.

Next, define a new invariant process, X2(v), v ∈ V , by letting the sites of X2

be the sites of X1 that were not matched. Let p2 := P (X2(v) = 1) ≤ 4p1/9. Now
repeat the matching procedure above with X2 replacing X1. The same arguments
tell us that the probability that a site of X2 gets matched is also at least 4/9 and

E[dist(o, wo)1B2 ] < 2Kp2R
( 1

p2

)

,

where B2 is the event that o is a site of X2 and gets matched when the matching
procedure is applied to X2.

Repeat this recursively, by letting each new process Xn consist of the sites of
the previous process Xn−1 that do not get matched when the matching procedure
is applied to Xn−1. Then a.s. every site of X = X1 will get matched eventually,
and we get

E[distG(o, wo)1{X(o)=1}] =
∞
∑

i=1

E[dist(o, wo)1Bi
]

< 2K
∞
∑

i=1

piR
( 1

pi

)

= 2Kp1R
( 1

p1

)(

1 +
∞
∑

i=2

piR(1/pi)

p1R(1/p1)

)

.

Since pi ≤ (5/9)i−1p1 and R(x) grows at most at rate
√

x,

1 +
∞
∑

i=2

piR(1/pi)

p1R(1/p1)
≤

∞
∑

i=0

(

√
5

3

)i

< 5.
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Inserting into the above formula completes the proof. 2

3 Main results and proofs

Fix an arbitrary infinite transitive finite-degree graph G. Consider an Aut(G)-
invariant random graph model on the vertices of G, where the degree process,
{Dv}v∈V , is distributed according to an automorphism invariant measure on Z

V
+.

Let D = Do be the degree of the origin, distributed according to the given distri-
bution function F . We will write f(n) := 1 − F (n − 1) = P (D ≥ n). Put T
for the sum of the edge lengths for the edges having the origin as one of its end
vertices. Of course, we measure edge lengths with the distG-distance between its
end vertices.

Let R := R(D) − 1. We have

T ≥
∑

v∈B[o,R]\{o}
distG(o, v) =

R
∑

n=1

nA(n) = RV(R) −
R−1
∑

n=1

V(n)

≥ 1

2
RV(R) ≥ 1

2
D(R(D) − 1)

where the first inequality follows from the (super)linear growth of V . Hence if
E[D R(D)] is infinite, then so is ET . This proves the only if-parts of the following
results.

Theorem 3.1 Let G be an infinite transitive finite-degree graph of either poly-
nomial or rapid growth. Let F be a probability distribution supported on the
nonnegative integers and let D be a random variable with distribution F . There
exists an Aut(G)-invariant simple random graph model on G, with iid degrees
distributed according to F and ET < ∞, if and only if E[DR(D)] < ∞.

A more general, partly stronger and partly different result is:

Theorem 3.2 If the degree process {Dv}v∈V forms an arbitrary automorphism
invariant process, where the individual Dv’s are distributed according to F , then
the only if-part of Theorem 3.1 still holds.

The if-part holds if G grows rapidly, but fails if G has polynomial growth. In
the polynomial growth case with V(n) = Θ(nd), d ∈ {1, 2, . . .}, the following
holds.
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(i) If d = 1, then for any k < ∞, there are invariant degree processes for which
E[Dk] < ∞, and for which ET = ∞ for any invariant random graph on V .

(ii) If d = 2 and α > 0, then

E[D(d+1)/(d−1)+α] < ∞

is sufficient to guarantee the existence of an invariant random graph model
with ET < ∞. On the other hand, there are examples of invariant degree
processes with E[D(d+1)/(d−1)−α] < ∞ for which T necessarily has infinite
mean for any invariant random graph model on V .

The rest of the paper will be concerned with proving the if-parts of Theorem
3.1 and Theorem 3.2.

3.1 Graphs of rapid growth

We will repeatedly use Lemma 2.2. Assume that the Dv’s form an arbitrary
Aut(G)-invariant process. Define invariant {0, 1}V -valued processes X1, X2, . . .
by letting Xn(v) = 1{Dv≥n}. Note that P (Xn(v) = 1) = f(n). First, match the
sites of X1 according to a matching satisfying Lemma 2.2. Next, color the sites of
X2 with a uniformly chosen 2-coloring such that whenever two sites of X2 were
matched in the matching of X1, they get different colors. Let Y 1

2 and Y 2
2 be the

invariant processes consisting of the sites of X2 with the two different colors re-
spectively. Now match the sites of each these two processes among themselves ac-
cording to a matching satisfying Lemma 2.2. Note that P (Y k

2 (v) = 1) = f(2)/2.
Keep on doing this recursively; after having defined and matched the pro-

cesses Y 1
k , . . . , Y k

k , k = 1, . . . , n − 1, color the sites of Xn with a uniformly cho-
sen n-coloring, such that any two sites matched earlier get different colors. Let
Y 1

n , . . . , Y n
n consist of the sites of Xn with the n different colors respectively, and

match the sites of each of these among themselves according to a matching satis-
fying Lemma 2.2. This leads to a graph with the desired degrees and the coloring
procedure makes sure it becomes simple. Note that P (Y k

n (v) = 1) = f(n)/n.
If Dv ≥ n, then put wn

v for the vertex v gets matched to in the matching of
Xn, and if Dv < n, then put wn

v = v. Then, by Lemma 2.2,

ET =
∞
∑

n=1

E[dist(o, wn
o )] < 10K

∞
∑

n=1

f(n)R
( n

f(n)

)

. (1)

10



So far, we have not used that G grows rapidly. This means that (1) can (and
will) be used also when G grows polynomially. However, since G does grow
rapidly here, there exists some c < ∞ such that R(n) ≤ (log n)c. Now either
1/f(n) grows at super-polynomial rate, in which case the right hand side sum of
(1) trivially converges, or 1/f(n) grows polynomially, in which case R(n/f(n))
and R(n) only differ by a constant and convergence follows from the hypothesis
that E[DR(D)] < ∞.

3.2 Graphs of polynomial growth

First we give an example of an invariant degree process on G = Z for which
E[Dk] < ∞ for a given k < ∞ and for which it is not possible to have ET finite.
Let X be a random variable with support on the positive odd integers, such that
E[Xc] = ∞ for every c > 0. Define the degree process {Dv}v∈V in the following
way. First make a realization of X . Then, given X = x, make an invariant
partition of Z into intervals of length x. For each interval, give the center vertex,
which is well defined since x is odd, degree x1/k (for simplicity assume that this
number is an integer) and the other vertices degree 0. We have

E[Dk|X] =
1

X
(X1/k)k = 1

and hence ED = 1 < ∞. However, given X = x and D > 0, we must necessarily
have

T ≥ 2x

bx1/k/2c
∑

n=1

n >
1

5
x1+2/k.

Thus
ET ≥ 1

5
P (D > 0)E[X1+2/k|D > 0].

However
P (X = n|D > 0) =

1

P (D > 0)
n−1P (X = n).

Hence

ET ≥ 1

5

∞
∑

n=1

n2/kP (X = n) = E[X2/k] = ∞.

This proves part (i) of Theorem 3.2.
Now we modify the given example to G = Z

d in order to prove the second
part of (ii). Let X have the same distribution as for d = 1. Make a realization of
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X and, given X = x, make in invariant partition of Z
d into d-dimensional cubes

with side length x. For each cube, give the center vertex degree xd(d−1)/(d+1)+β

for a β > 0 less than, say, α/10. Then

E[D(d+1)/(d−1)−α|X] =
1

Xd
Xd−d(d−1)α/(d+1)+(d+1)β/(d−1)−αβ ≤ 1

so that
E[D(d+1)/(d−1)−α] ≤ 1.

However, given X = x and D > 0, we must have

T ≥ x

R(xd(d−1)/(d+1)+β)
∑

n=1

nA(n) ≥ Cxd+γ

for constants C, γ > 0. Hence

ET ≥ CP (D > 0)E[Xd+γ|D > 0].

Since
P (X = n|D > 0) =

1

P (D > 0)
n−dP (X = n)

we get

ET ≥ C
∞
∑

n=1

nγP (X = n) = CE[Xγ ] = ∞.

Next we prove the first part of Theorem 3.2(ii). Assume thus, that G has
growth of order nd, d ≥ 2. Then R(x) is of order x1/d. Assume that

E[D(d+1)/(d−1)+α] < ∞.

This is equivalent to
∞
∑

n=1

n2/(d−1)+αf(n) < ∞.

By (1), finiteness of ET follows if it can be shown that
∑∞

n=1 f(n)R(n/f(n)) is
finite, i.e. if

∞
∑

n=1

n1/df(n)(d−1)/d < ∞.
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However, by assumption and Hölder’ss inequality,
∞
∑

n=1

n1/df(n)(d−1)/d =
∞
∑

n=1

n−(1+(d−1)α)/d(n2/(d−1)+αf(n))(d−1)/d

≤
(

∞
∑

n=1

n−(1+(d−1)α)
)1/d(

∞
∑

n=1

n2/(d−1)+αf(n)
)(d−1)/d

< ∞.

This finishes the proof of Theorem 3.2.
Remark. One can easily show that if one settles for a random multigraph

model without loops instead of a simple graph model, then instead E[Dd/(d−1)+α] <
∞ suffices for ET < ∞ being possible. This is done by skipping the coloring part
of the proof of Lemma 2.2. One can also easily modify the above arguments to
show that E[Dd/(d−1)−α] < ∞ is necessary.

It remains to prove Theorem 3.1 for G’s of polynomial growth. Observe that
the polynomial growth entails that there is a constant C < ∞ such that for all n,
1/C ≤ V(2n)/V(n) ≤ C. Fix the integer t so large that EHv < 4−d/C, where
Hv = H t

v := Dv1{Dv>t}. Say that a vertex is high if Hv > 0 and low if not. We
will first connect each high vertex v to Dv low vertices, in such a way that no low
vertex gets connected to more than one high vertex, and so that that the mean total
edge length per vertex is finite. After this has been done, then the “remaining”
degrees, i.e. 0 if v is high, Dv − 1 if Dv ≥ 1, v is low and was connected to a high
vertex, and Dv otherwise, are bounded by t and form an invariant process. Thus
an application of the arguments of Section 3.1 finishes the proof.

The procedure for connecting the high vertices to low vertices is the following
stepwise algorithm, which is a discrete version of the “stable marriage of Poisson
and Lebesgue” of Hoffman, Holroyd and Peres [7]. It will be obvious from its
definition that the algorithm is automorphism invariant. For convenience we start
by “disturbing” the positions of the vertices a little, i.e. regarding v ∈ V as
having a position at distance Mv from its actual position, along a uniformly chosen
incident edge. The Mv’s are iid random variables in [0, 0.1]. This is simply in
order to make sure that every vertex has a unique nearest vertex, a unique second
nearest vertex etc.

Now, in Step 1 of the algorithm, every high vertex claims its Hv nearest low
neighbors. Then every low vertex that has been claimed by at least one high
vertex, is connected to the nearest one of the high vertices that has claimed it.
After this each high vertex will be connected to, say, Hv(1) low vertices, where
Hv(1) ≤ Hv with equality iff v was connected to every vertex it claimed.
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In Step 2, every high vertex v for which Hv(1) < Hv, claims its Hv − Hv(1)
nearest low neighbors which are not yet connected to some high vertex. Then
every now claimed low vertex is connected to the nearest one of the high vertices
claiming it. After this every high vertex is connected to, say, Hv(2) low vertices,
where Hv(2) ≤ Hv.

In Step 3, every high vertex v for which Hv(2) < Hv, claims its Hv − Hv(2)
nearest low neighbors which are not yet connected to some high vertex etc.

This goes on recursively. We must now show that this algorithm a.s. leads to a
well defined edge configuration. For simplicity, we will assume that P (D = 0) =
0, only noting that removing this condition is straightforward.

On the event that v is high, put Rv for the distance between v and the far-most
vertex v gets connected to. Put R = R0 and H = H0. Since no vertex outside
B[o, 2n] can influence whether or not a high origin gets connected to a given low
vertex in B[o, n], we have

P (R ≥ n) ≤ P
(

∑

v∈B[o,2n]

Hv ≥ 1

2
V(n)

)

≤ P
( 1

V(2n)

V(2n)
∑

k=1

Xk ≥ 1

C2d+1

)

,

where X1, X2, . . . are iid and distributed as H . (The 1/2-factor in the second
expression is needed since high vertices are connected only to low vertices. How-
ever if the sum of the Hv’s in a given region is less than half the number of vertices
there, then also less than half the vertices are high.)

Hence

ER ≤
∞
∑

n=1

P
( 1

V(2n)

V(2n)
∑

k=1

Xk ≥ 1

C2d+1

)

.

The expression on the right hand side is finite if and only if
∞
∑

n=1

n−(d−1)/dP
( 1

n

n
∑

k=1

Xk ≥ 1

C2d+1

)

is finite; this follows from an integral approximation and a suitable substitution.
Now recall that EXk = 4−d/C < 2−(d+1)/C. Hence, by a standard result of
Baum and Katz [2] on convergence rates in the law of large numbers, finiteness of
the last expression is equivalent to finiteness of E[X

(d+1)/d
k ] = E[H(d+1)/d]. This

establishes that our model is well defined. Since, obviously, T ≤ HR, it also
almost proves the main result that ET < ∞. The problem is that H and R are
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not independent. However, given that HR is large, R turns out to essentially only
depend on Hv, v 6= o. We now formalize this. We have

P (R ≥ n|H) ≤ P
(

∑

v∈B[o,2n]

Hv ≥ 1

2
V(n)

∣

∣

∣
H
)

≤ P
(

H +

V(2n)
∑

k=1

Xk ≥ 1

2
V(n)

∣

∣

∣
H
)

,

where the Xk’s are iid, distributed as H and independent of H .
The last expression is of course bounded above by 1 and when n > 4R(H), it

is bounded by

P
(

V(
n

4
) +

V(2n)
∑

k=1

Xk ≥ 1

2
V(n)

)

≤ P
(

V(2n)
∑

k=1

Xk ≥ 1

4
V(n)

)

.

We get

E[R|H] =
∞
∑

n=1

P (R ≥ n|H) ≤ 4R(H) +
∞
∑

n=4R(H)+1

P
(

V(2n)
∑

k=1

Xk ≥ 1

4
V(n)

)

≤ 4R(H) +
∞
∑

n=1

P
( 1

V(2n)

V(2n)
∑

k=1

Xk ≥ 1

C2d+2

)

.

The sum on the right hand side is independent of H and finite by the same Baum-
Katz argument as above; denote it S. Hence

ET ≤ E[HR] = E[H E[R|H]] = E[H(4R(H) + S)]

≤ 4E[HR(H)] + S EH < ∞.

We are done.

Concluding remarks

• Other properties. It would be interesting to find out what other properties
our random graph models have, apart from finiteness of ET . For example,
could the volume growth of the random graph, H say, on the geography G,
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be fundamentally different from that of G? Of course, if G grows super-
polynomially, then H will in most cases grow at a higher rate, but when
VG(n) grows like nd, then the situation is not so clear. Letting µ := ET , it
follows from Markov’s inequality that for any number C ≥ 1 and any n,

P
(

VH(n) ≥ (Cµ)dVG(n)
)

≤ 1

C
.

However, it could still for example be the case that lim supn VH(n)/VG(n)
is infinite a.s.
Another interesting question is how simple random walk on H behaves.
For G of exponential growth, could one have some unexpected behavior of
SRW on H? For example, could a heavy tail in the distribution of D cause
the drift to be very low or even 0?

• Finite-graph versions. The models in this paper rely heavily on the fact
that G is infinite. If G instead was finite, then of course the degrees of H
could not be completely independent, since that would with possible prob-
ability lead to an impossible degree sequence with respect to the number of
vertices of G. (E.g. the sum of the degrees could be odd.)
It is not clear what a finite-graph version would mean. One suggestion is
that if G has n vertices, one asks for a model which with probability 1−o(1)
for iid even degrees produces a random graph, for which ET is bounded in
n. Then of course one needs to let G grow in some natural way. One way to
do this is to let G be infinite as before and then let Gn = B[o, n]. Let H be a
random graph defined on G as before, and let Hn be the induced subgraph of
H on the vertices of Gn. Then some of the vertices of Hn will have fewer
edges than prescribed. Hopefully this could then be compensated before
by connecting these vertices to each other or to other vertices at the cost
of deleting other edges. In case G is amenable (i.e. has zero isoperimetric
constant) it is easily seen by a Markov inequality argument, that this can
indeed be done in such a way that the desired properties are satisfied and
so that the edges of o are in the resulting random graph with probability
1 − o(1) exactly as in H . In the nonamenable case, however, the problem
seems to be more involved.
Another, less general, way to let G grow naturally, is to let G be a d-
dimensional torus. In this case, it is likely, but not obvious, that a modi-
fication of our model on the d-dimensional lattice could lead to an invariant
model of the desired kind.
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