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IntroductionIntroduction

 Analysis of gene expression data          group genes across experimental 
conditions. In this work we view clustering as a more dynamic problem.

 Tumors                       where            will exhibit a sparse structure  Here we 1 N Tumors                       where            will exhibit a sparse structure. Here we 
are interested in finding tumor clusters that reveal a change in gene-gene 
dependency.

 ,N

 We assume a Gaussian mixture model for our data set and use a 
modification of the maximization step of the EM algorithm.

 We allow for specific penalization to each one of the inverse covariance  We allow for specific penalization to each one of the inverse covariance 
matrices.



Example: 4 clusters – InvCov with non-zero entries highlighted.
* Stable gene cluster – any edges present across all g y g p

tumor clusters.
* Dynamic gene cluster – any edges that are present for 

only a subset of tumor clusters.
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The algorithmThe algorithm

for(i in 1 K)  Data set Y=(y1, y2,…,yT) with T tumors for(i in 1:K)

Par   InitialPar

f (j i  1 CV)

(y1, y2, ,yT)
and G genes. 

 Given an initial clustering of the tumors 
T1, T2,…, TK, we estimate               for(j in 1:maxCV)

Mod    EM(data,Par)

T1, T2,…, TK, we estimate               
applying glasso to each one of the 
members of the initial partition. 

 We then update the clustering using 

K ,,, 21 

Mod,Par CV(Mod,Par)

endfor

 We then update the clustering using 
different penalties for glasso using a 
modified EM algorithm.
I  il endfor  Iterate until convergence.



Model selectionModel selection

 We use successive refinement of an initial interval for the penalties. 

 The used criteria to select optimal penalties and number of clusters are 
i i i i  f h  BIC  i i i  f h  di i  lik lih dminimization of the BIC or maximization of the predictive likelihood.



Example: real dataExample: real data
 60 patients with glioblastoma multiforme tumors form the Cancer Genome 

Atlas (TCGA) network. 

 mRNA profiles,  the intersection for both the Affymetrix and Agilent 
platforms. 

 Only 100 genes with largest variance due to computational restrictions.
 Verhaak et al sub-classification of 

tumors available.



ResultsResults

 BIC tends to choose the largest penalties, stabilizing the inverse covariances
matrices into almost diagonal matrices.

 Cross validation chooses a smaller penalty Cross validation chooses a smaller penalty.

 In both cases the models with 3 or 4 clusters have the almost the same BIC or 
predictive likelihood.

 No large overlap with the Verhaak classification was found.



Sparsity structure of the inverse
covariance matricescovariance matrices
 The optimal solution for a 20-fold cross validation results in different sparsity 

levels for the covariance matrices.

 The predictive likelihood values for 3 and 4 clusters were very close.
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Gene dependenciesGene dependencies

 Some gene dependencies are preserved across clusters, some are unique. Some gene dependencies are preserved across clusters, some are unique.

 Relevance of preserved/dynamic hubs?



Example: simulated dataExample: simulated data

 Chain networks (tridiagonal inverse covariance matrices)   Chain networks (tridiagonal inverse covariance matrices). 

 The (i,j)-th element is computed as sij=exp[-(si-sj)/2] where s1<s2<…<sG and 
si-sj=U(0.5,1), i,j=2,3,…,G.j

 Heterogeneity introduced by replacing pairs of symmetrically located pairs 
of zeros with a value uniformly generated from the interval 
[−0 1 −0 01]U[0 01  0 1][ 0.1, 0.01]U[0.01, 0.1].

 We consider three settings of three clusters with different levels of spasity.



Example: simulated data

 All three clusters with the same 

Example: simulated data

 All three clusters with the same 
level of sparisity: 782 non-
zero entries.

 Mildly dissimilar levels: 782, 
1268 and 2238 non-zeros 

i lrespectively.
 Very dissimilar levels: 298, 

1268 and 3208 non zeros 1268 and 3208 non-zeros 
respectively.



Example: simulated dataExample: simulated data

 For the same level of sparsity both criteria choose the right number of 
clusters.

 Again, BIC tends to choose large values for the penalties; cross validation
penalizes less.

 F  di i il l l f it  lid ti f b tt For very dissimilar levels of sparsity cross validation performs better.



Conclusions and future workConclusions and future work

 Resolve computational limitations to be able to process a large number of 
genes.genes.

 Regularize structure of networks between the clusters as well as within.

 Investigating the results from a biological perspective.g g g p p
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