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Introduction
R,

0 Analysis of gene expression data ‘group genes across experimental
conditions. In this work we view clustering as a more dynamic problem.

0 Tumors ‘ N(ﬂ,Z) where Q = > will exhibit a sparse structure. Here we
are interested in finding tumor clusters that reveal a change in gene-gene
dependency.

0 We assume a Gaussian mixture model for our data set and use a
modification of the maximization step of the EM algorithm.

0 We allow for specific penalization to each one of the inverse covariance
matrices.



Example: 4 clusters — InvCov with non-zero entries highlighted.
* Stable gene cluster — any edges present across all
mmm'umor clusters. ...
* Dynamic gene cluster — any edges that are  present for
only a subset of tumor clusters.
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The algorithm

Data set Y=(y,, y,,...,y7) with T tumors

for(i in 1:K) and G genes

rar<initialFar Given an initial clustering of the tumors
T,, T,,..., Ty, we estimate

for(j in 1:maxCV) Q,Q,,...,Q
applying glasso to each oné of 'the *
Mod <~ EM(data,Par) members of the initial partition.
Mod,Par <-CV(Mod,Par) We then update the clustering using
different penalties for glasso using a
endfor modified EM algorithm.

lterate until convergence.

endfor




Model selection
]

0 We use successive refinement of an initial interval for the penalties.

0 The used criteria to select optimal penalties and number of clusters are
minimization of the BIC or maximization of the predictive likelihood.




Example: real data

0 60 patients with glioblastoma multiforme tumors form the Cancer Genome
Atlas (TCGA) network.
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0 Only 100 genes with largest variance




Results
R,

0 BIC tends to choose the largest penalties, stabilizing the inverse covariances
matrices into almost diagonal matrices.

0 Cross validation chooses a smaller penalty.

0 In both cases the models with 3 or 4 clusters have the almost the same BIC or
predictive likelihood.

0 No large overlap with the Verhaak classification was found.



Sparsity structure of the inverse

covariance matrices
]

0 The optimal solution for a 20-fold cross validation results in different sparsity
levels for the covariance matrices.

0 The predictive likelihood values for 3 and 4 clusters were very close.
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Gene dependencies

[ ]
0 Some gene dependencies are preserved across clusters, some are unique.
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Example: simulated data
I

d

d

Chain networks (tridiagonal inverse covariance matrices).

The (i,[)-th element is computed as s,-,.=exp[-(s,--si)/2] where s,<s,<...<s; and
s-5,=U(0.5,1),i,j=2,3,...,G.

Heterogeneity introduced by replacing pairs of symmetrically located pairs
of zeros with a value uniformly generated from the interval

[-0.1,-0.01]U[0.01, O.1].

We consider three settings of three clusters with different levels of spasity.



Example: simulated data

o All three clusters with the same
level of sparisity: 782 non-
zero entries.

0 Mildly dissimilar levels: 782,

1268 and 2238 non-zeros
respectively.

RPN AEE G

0 Very dissimilar levels: 298,
1268 and 3208 non-zeros
respectively.
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Example: simulated data
I

0 For the same level of sparsity both criteria choose the right number of
clusters.

0 Again, BIC tends to choose large values for the penalties; cross validation
penalizes less.

0 For very dissimilar levels of sparsity cross validation performs better.



Conclusions and future work
.y

0 Resolve computational limitations to be able to process a large number of
genes.

0 Regularize structure of networks between the clusters as well as within.

0 Investigating the results from a biological perspective.
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