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@ DATA INTEGRATION - NETWORK MODELING

© MODELING STEADY-STATE MRNA LEVELS AS A
FUNCTION OF CorPY NUMBER
@ CNA-driven network modeling
@ Estimation
@ Choice of regularization

© APPLICATION

@ Analysis of glioblastoma
@ Validation

@ SOFTWARE
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ENDOGENOUS PERTURBATION ANALYSIS OF
CANCER

GOALS

@ Construct regulatory network and predictive models for
cancer pathways

o ldentify disease-specific key regulators and their targets

@ Relate the network structure to patient survival

N, @ ’

# ‘
) - . @ Data now available at multiple
@ @ * levels (genetic seq,

transcription, proteomics,...)
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EPoC

ENDOGENOUS PERTURBATION

@ We view each tumor’s Copy Number Aberration (CNA)
profile as a system perturbation that simultaneously
affects multiple genes, and

@ the mRNA profiles as the steady-state response to that
perturbation

. @ b

S \

@ CNAs tend to appear in a patient-specific manner -
ideal for network construction

@ Ongoing projects like TCGA means massive amounts of
mRNA/CNA data are available
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DATA - 186 TUMORS FROM THE CANCER
GENOME ATLAS CONSORTIUM (TCGA)

I. Tumor 2.Arrays,
samples sequencing

3. Molecular
profiles

1 Agilent
Affymetrix
Hliumina
Solexa
etc.

RNA

4

Genetic profile
~10s of mutations affecting protein seq
~100s of copy-number altered genes

Epigenetic profile
~100s of hypermethylated promoters

Transcriptional profile
~100s-1000s altered message RNA levels
~10s-100s altered micro-RNA levels

JORNSTEN. EP0OC

OUTLINE

DATA
INTEGRATION -
NETWORK
MODELING
MODELINC
STEADY-STATE

RNA LEVELS AS
A\ FUNCTION Ol
Copry NUMBER
CNA-DRIVEN
NETWORK MODELING
ESTIMATION
CHOICE OF
REGULARIZATION

APPLICATION
ANALYSIS OF
GLIOBLASTOMA
VALIDATION
Experimental
Structural

Pathway
enrichment

Prognostic

SOFTWARI

Concr ION AND
FUTURE WORK



DATA - 186 TUMORS FROM THE CANCER
GENOME ATLAS CONSORTIUM (TCGA)

Tumors
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A MODEL FOR CNA-MRNA INTERACTION

indirect

/\eﬁects /\
2Ay 1 2 Ay, 2 Ays
A

After some manipulation, we can write

AAy + Au=T

where y is the mRNA levels and u the CNA.

@ The elements of A, aj;, capture the direct causal
influence of transcript j on i.

o [ is the 'noise’ (non-CNA specific effect on mRNA).
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JORNSTEN. EP0OC
TRANSCRIPTIONAL NETWORK

AAy +Au=T

@ A is called the transcriptional network.

@ [ includes all the tumor-specific differences, unmeasured
environmental effects, SNPs etc. e
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CNA-DRIVEN NETWORK

Ay = GAu+T’

e G =—A"1is called the system matrix, or CNA-driven
network.

@ G represents the system gain: where the genetic
variation (system input) shows up as amplified (positive ONA-DRIVEN

. . . . NETWORK MODELING
or negative) signal in the mRNA expression (system e

output).

@ G thus detects transcriptional modules under CNA
control

@ whereas A contains both direct effects of the CNA as
well as mMRNA-mRNA regulation that may be
non-disease specific.




A VS G JORNSTEN. EPoC
AAy =u+T
Ay = GAu+T’

@ A is difficult to estimate due to strong correlations
between mRNAs in related pathways.

@ The correlation structure among the CNAs is much
lower, making robust estimation of G an easier task.
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EstimMaTING G

The system matrix G is n x n, where n = 10000+
genes.

We have only T = 186 tumors/samples.

Need to use regularized estimation techniques.

L1 PENALIZED REGRESSION

CNA-DRIVEN

NETWORK MODELING

i AY - GAU 2 )\ G ([ ESTIMATION
min| [2+23 16l

CHOICE O

[;AJ REGULARIZATION

A is the regularization parameter that controls the
degree of sparsity (number of non-zeroes) in G.

We don’t penalize the diagonal elements of G since
direct CNA-mRNA for each gene is assumed to always
be present.
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CHOOSING A\ - THE NETWORK SIZE
@ We want the networks to be interpretable and sparse
@ No "spurious” edges should be included

@ How do we validate the results?

VALIDATION STATISTICS

We consider two different evaluation measures; o

ET ODELING
ESTIMATION

@ Network structure consistency - Kendall's W Crorcs or

REGULARIZATION

@ mRNA prediction - minimum average prediction error
ANALYSIS O

@ A robust, final network is obtained from repeated VALmATION
bootstrap simulations - only edges that appear
consistently across bootstrap samples are kept in the
final network model.

Expe




NETWORK CONSISTENCY JGRNSTEN. EPOC

@ Compare networks obtained from two random data
subsets using Kendall's W - more appropriate
correlation measure when any number of distinct
outcomes (edge weights) can occur.

@ Wis 1 if all networks agree, and 0 if the network
agreement is essentially random.

@ Most consistent networks contain ~ 400 edges.

structure prediction
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MRNA PREDICTION JORNSTEN. EPOC
@ We use k = 10-fold cross-validation and
pseudo-bootstrap.

@ We construct the network leaving out 1/10th of the
data

@ We use the network model to predict the mRNA levels
from the CNA levels on the leave-out data.

@ Minimum mRNA prediction errors for networks with ‘
~ 10000 edges.

CHOICE OF

mRNA prediction REGULARIZATION

ANALYSIS OF
GLIOBLASTOMA

VALIDATION

-
o
=
:
s

relative error
‘

o
©
©
:
‘

—_
o
-
o
-
o
-
o

network size



GLIOMA NETWORK ANALYSIS TomxsTeN. BPOC

. OUTLINE
The overall network contains St i
a number of well-established

regulators and markers ‘
A
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EXPERIMENTAL VALIDATION

A. Functional annotation of models, regions of interest

—
Early differentiation markers controlled by
PDGFRA, CHIC2, NDN ?

B. Validation by direct experiments

NDN+ growth phenotype NDN, EGFR and PDGFRA target genes
3000000 JKONMB 2:FGFY  283:FGFS 4 CPNED
= il +
2000000 T g . [
1000000 ] a . OGF ST

IING  USTHS  UaamG  TEEG
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NETWORK CONSISTENCY

We compare network consistency across network sizes and

between competing methods.

A

Inconsistency (1-W)

Network consistency between two
independent glioblastoma data sets
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OVERLAP WITH PATHWAY DATABASES

<)

Derived model
(EPoC, ARACNE

etc)

Pathway databases
(IntAct, Reactome, NCI)

Fold enrichment

Enrichment of known PPl and pathway
interactions (HPRD, IntAct, NCI, Reactome) Key
12
-._ EPoC (G)
107 '@' EPoC (A)
8 glasso
6 remMap
B e
4 8 o
2 -n— ARACNE
-n— GeneNet
0
10' 10*

Network size

@ We map networks
to pathway
repositories HPRD,
Reactome, Intact,
and NCl-nature.

o Compare pathway

links to the shortest
paths in networks.

@ EPoC-G is clearly

enriched for short
or direct paths cmp
other methods.

JORNSTEN. EP0OC

CNA-DRIVEN
NETWORK MODELING
ESTIMATION
CHOICE OF
REGULARIZATION

ANALYSIS OF
GLIOBLASTOMA

VALIDATION

St
Pathway
enrichment
Prognostic



PREDICTING PATIENT SURVIVAL JomsTEN. ER0C

DECOMPOSITION OF G
@ Genomic data = 10000 by 186, Survival data = 1 by
186 - how relate?

The SVD decomposition of G = CADT has the
following meaning:

o leading columns of D are directions of CNA o
perturbations that are amplified by the system. E LY ORK JHODELIN
o leading columns of C are directions of mRNA Crore o
transcripts most affected by the directions in D.
Write AY = GAU = CADTAU
— CTAY =ADTAU
Projecting mRNA onto columns of C = output,
Projecting CNA onto D = input, A = amplification.

Prognostic

Projection scores = same or similar dimensionality as
survival data.



PREDICTING PATIENT SURVIVAL

DECOMPOSITION OF G

\
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CTAY =ADTAU
Consider the leading

projections (first columns
of C and D).

mRNA profiles of individual
patients are projected onto
C: Z,=CTAY and CNA
profiles are projected by
Z,=DTAU

Compare the survival

of the patients using

these projected scores.
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PREDICTING PATIENT SURVIVAL JomsEN. EPOC

DECOMPOSITION OF G VS A AND DATA

Survival curve based on singular vector score
CNA mRN_A

1 = Group A
—— Group B ; —— Group B

*

G matrix
*

CNA-DRIVEN
0 | NETWORK MODELING

0 2000 4000 ESTIMATION
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Data matrix




PREDICTING PATIENT SURVIVAL

DECOMPOSITION OF G

@ We can color-code the
networks using the leading
SVD components.

o Identifies disease driving
perturbations and their
targets

0.0 1.0
Transcript-specific response

Key:

@) high gain CNA perturbations
@ high gain mRNA responders

—p interaction
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EPOC R PACKAGE JORNSTEN. EPOC

> install.packages(’epoc’)
> library(epoc)

> G <~ epocG(y,u)

> summary (G)

Call:

epocG(Y =y, U = u)

Models: pr——
R2 Cp BIC RSS 1links /o
lambda=1 0.0783 10088.244  95.4035 8526.760 2
lambda=0.8 0.0943  9920.825 -46.5724 8379.271 5
lambda=0.512 0.1097 9760.655 -176.1815 8236.298 9
lambda=0.4096 0.1186 9681.121 -188.2727 8154.101 18
lambda=0.3277 0.1345 9575.735 -23.0230 8006.640 56
lambda=0.2621 0.1606 9517.561  820.2891 7765.579 180 rognostic
lambda=0.2097 0.1552  9897.528 2517.8707 7815.453 357  Sortwame
lambda=0.1678 0.1735 10021.138 3945.4843 7646.480 523



EPOC R, PACKAGE JORNSTEN. EP0OC

> plot.modelsel(G)
> plot(G, k = which.min(G$BIC))

389 117 21 10 6 5 2 1
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EPOC R PACKAGE JORNSTEN. EP0OC

> W <- epoc.validation(type = "concordance", y, u
+ , repl = 20)

> plot (W)
485 156 43 20 10 5 2 1
T I | 1 1 1 1 1 1
st network size T AT TR c ettt ieris s e e
""" CNA-DR
n NETWORK DELI
’; - ESTIMATION
CHOICE O
REGUI IZATIO!
_ | s*=18
IS} i
2
lambda*= 0.4174
o ;
©o
(=}
SOFTWARE
o
©o 4
(=}
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EPOC R PACKAGE JORNSTEN. EP0OC

epoc.bootstrap, epoc.final,..
We arrive at a final network G which we can use for survival
analysis.

> G.svd <- epoc.svd(G.final, C = 3, numload = c(10, 10,
+ 10))
> epoc.svdplot(G.svd, C = 1)

SOFTWARE




EPOC R PACKAGE JORNSTEN. EP0OC

> G.surv <- epoc.survival(G.svd, y, u, surv, C = 1, type = "G")
> summary(G.surv)
In

Call:
survdiff (formula = Surv(surv) ~ sign(sc.in))

N Observed Expected (0-E)~2/E (0-E)"2/V
sign(sc.in)=-1 98 98 78.1 5.09 9.12
sign(sc.in)=1 88 88 107.9 3.68 9.12 CNA

Chisq= 9.1 on 1 degrees of freedom, p= 0.00253 REGULARIZATION

Out
Call:
survdiff (formula = Surv(surv) ~ sign(sc.out))
N Observed Expected (0-E)~2/E (0-E)~2/V
sign(sc.out)=-1 96 96 72.1 7.93 13.7 yost
sign(sc.out)=1 90 90 113.9 5.02 13.7 SIOF VA

Chisq= 13.7 on 1 degrees of freedom, p= 0.000209



EPoC R PACKAGE

> plot(G.surv)
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JORNSTEN. EP0OC

CONCLUSIONS

@ EPoC scales to 10000 genes and produces stable
network estimates

@ Attained network models exhibit good agreement with
pathway databases e

o Experimental validation of novel hubs identify Crorc o
interesting therapeutic targets |

@ The EPoC network provides clinical stratification into
long- and short-term survival, whereas competing .
methods do not.

CONCLUSION AND
FUTURE WORK
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FUuTUuRE WORK

e Extend EPoC to tumor subtype identification (promising
results already)

@ Common and subtype specific network modules oNa
(ongoing work with PhD students in my group) ESTIMATION

Include multiple data sources (e.g. miRNA, methylation)

(]

Methodological work - supervised prognostic network
estimation

CONCLUSION AND
FUTURE WORK
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