# LARGE-SCALE NETWORK AND PROGNOSTIC ANALYSES OF GENE EXPRESSION AND COPY NUMBER ABERRATION

### Rebecka Jörnsten

Mathematical Sciences, University of Gothenburg/Chalmers

jornsten@chalmers.se

May 26, 2011

### OUTLINE

Data Integration Network Modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

Software

Conclusion and Future work

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

# **1** Data Integration - Network modeling

- 2 Modeling Steady-State MRNA levels as a function of Copy Number
  - CNA-driven network modeling
  - Estimation
  - Choice of regularization

### **3** Application

- Analysis of glioblastoma
- Validation

# 4 Software

5 Conclusion and Future work

### OUTLINE

DATA INTEGRATION · NETWORK MODELING

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

Software

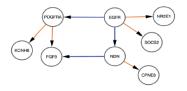
Conclusion and Future work

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

# ENDOGENOUS PERTURBATION ANALYSIS OF CANCER

# GOALS

- Construct regulatory network and predictive models for cancer pathways
- Identify disease-specific key regulators and their targets
- Relate the network structure to patient survival



 Data now available at multiple levels (genetic seq, transcription, proteomics,...) JÖRNSTEN. EPOC

### Outline

Data Integration -Network Modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### Application

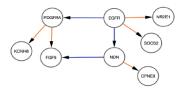
ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

Software

# EPoC

### ENDOGENOUS PERTURBATION

- We view each tumor's Copy Number Aberration (CNA) profile as a system perturbation that simultaneously affects multiple genes, and
- the mRNA profiles as the steady-state response to that perturbation



- CNAs tend to appear in a patient-specific manner ideal for network construction
- Ongoing projects like TCGA means massive amounts of mRNA/CNA data are available

### Outline

Data Integration -Network Modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

Software

# DATA - 186 TUMORS FROM THE CANCER GENOME ATLAS CONSORTIUM (TCGA)

JÖRNSTEN. EPOC

### Outline

DATA INTEGRATION -NETWORK MODELING

Modeling Steady-State MRNA levels as a function of Copy Number

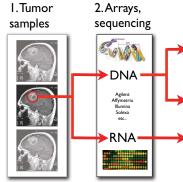
CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

#### Software

Conclusion and Future work



# 3. Molecular profiles

Genetic profile

- $\sim$ 10s of mutations affecting protein seq
- ~100s of copy-number altered genes

Epigenetic profile

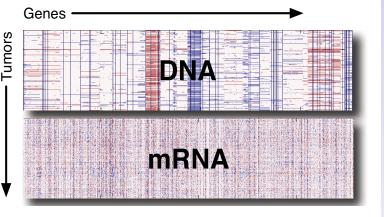
~100s of hypermethylated promoters

Transcriptional profile

- ~100s-1000s altered message RNA levels
- ~10s-100s altered micro-RNA levels

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

# DATA - 186 TUMORS FROM THE CANCER GENOME ATLAS CONSORTIUM (TCGA)



JÖRNSTEN. EPOC

OUTLINE

Data Integration -Network Modeling

Modeling Steady-State mRNA levels as a function of Copy Number

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### APPLICATION

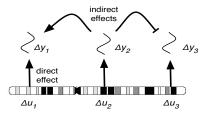
ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

Software

Conclusion and Future work

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨ - のへの

# A model for CNA-mRNA interaction



After some manipulation, we can write

 $A\Delta \mathbf{y} + \Delta \mathbf{u} = \Gamma$ 

where  $\mathbf{y}$  is the mRNA levels and  $\mathbf{u}$  the CNA.

- The elements of *A*, *a*<sub>*ij*</sub>, capture the *direct* causal influence of transcript j on i.
- Γ is the 'noise' (non-CNA specific effect on mRNA).

JÖRNSTEN. EPOC

### OUTLINE

Data Integration Network modeling

### MODELING STEADY-STATE MRNA LEVELS AS A FUNCTION OF COPY NUMBER

CNA-driven Network modeling Estimation Choice of Regularization

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

### Software

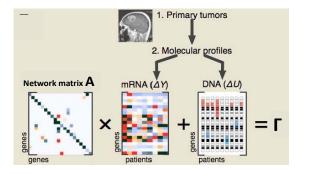
Conclusion and Future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### TRANSCRIPTIONAL NETWORK

 $A\Delta \mathbf{y} + \Delta \mathbf{u} = \Gamma$ 

- A is called the *transcriptional network*.
- Γ includes all the tumor-specific differences, unmeasured environmental effects, SNPs etc.



JÖRNSTEN. EPOC

### OUTLINE

Data Integration -Network modeling

MODELING STEADY-STATE MRNA LEVELS AS A FUNCTION OF COPY NUMBER

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

Software

Conclusion and Future work

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

### CNA-DRIVEN NETWORK

$$\Delta \mathbf{y} = G \Delta \mathbf{u} + \Gamma'$$

- *G* = -*A*<sup>-1</sup> is called the *system matrix*, or *CNA-driven network*.
- *G* represents the *system gain*: where the genetic variation (system input) shows up as amplified (positive or negative) signal in the mRNA expression (system output).
- *G* thus detects transcriptional modules under CNA control
- whereas A contains both direct effects of the CNA as well as mRNA-mRNA regulation that may be non-disease specific.

### Outline

Data Integration -Network Modeling

Modeling Steady-State MRNA levels as a function of Copy Number

#### CNA-driven Network modeling

ESTIMATION CHOICE OF REGULARIZATION

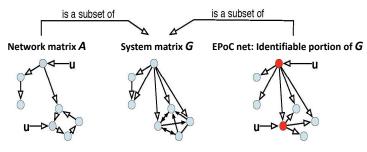
### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

### Software

# A vs G $A\Delta y = u + \Gamma$ $\Delta y = G\Delta u + \Gamma'$

- A is difficult to estimate due to strong correlations between mRNAs in related pathways.
- The correlation structure among the CNAs is much lower, making robust estimation of *G* an easier task.



### JÖRNSTEN. EPOC

### Outline

Data Integration Network modeling

Modeling Steady-State MRNA levels as a function of Copy Number

#### CNA-DRIVEN NETWORK MODELING

Estimation Choice of regularization

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

Software

# ESTIMATING G

- The system matrix G is  $n \times n$ , where n = 10000+ genes.
- We have only T = 186 tumors/samples.
- Need to use regularized estimation techniques.

### L1 PENALIZED REGRESSION

$$\min_{G} \|\Delta Y - G\Delta U\|_{F}^{2} + \lambda \sum_{i \neq j} |G[i, j]|$$

- λ is the regularization parameter that controls the degree of sparsity (number of non-zeroes) in G.
- We don't penalize the diagonal elements of *G* since direct CNA-mRNA for each gene is assumed to always be present.

### Outline

Data Integration -Network modeling

MODELING STEADY-STATE MRNA LEVELS AS A FUNCTION OF COPY NUMBER

CNA-driven Network modeling

ESTIMATION CHOICE OF REGULARIZATION

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

Software

## Choosing $\lambda$ - the network size

- We want the networks to be interpretable and sparse
- No "spurious" edges should be included
- How do we validate the results?

## VALIDATION STATISTICS

We consider two different evaluation measures;

- Network structure consistency Kendall's W
- mRNA prediction minimum average prediction error
- A robust, final network is obtained from repeated bootstrap simulations - only edges that appear consistently across bootstrap samples are kept in the final network model.

### OUTLINE

Data Integration -Network modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-DRIVEN NETWORK MODELING

Choice of regularization

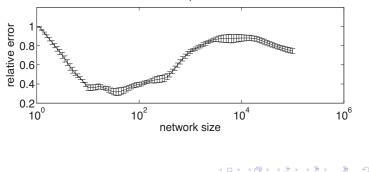
### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

### Software

### NETWORK CONSISTENCY

- Compare networks obtained from two random data subsets using Kendall's W - more appropriate correlation measure when any number of distinct outcomes (edge weights) can occur.
- W is 1 if all networks agree, and 0 if the network agreement is essentially random.
- Most consistent networks contain  $\sim$  400 edges.



structure prediction

### JÖRNSTEN. EPOC

### OUTLINE

Data Integration -Network Modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

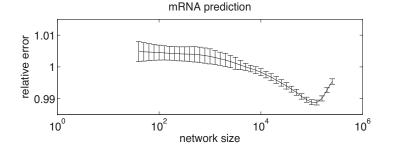
### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

Software

### MRNA PREDICTION

- We use k = 10-fold cross-validation and pseudo-bootstrap.
- We construct the network leaving out 1/10th of the data
- We use the network model to predict the mRNA levels from the CNA levels on the leave-out data.
- $\bullet\,$  Minimum mRNA prediction errors for networks with  $\sim\,$  10000 edges.



イロト 不得 トイヨト イヨト

-

### JÖRNSTEN. EPOC

### OUTLINE

Data Integration -Network modeling

Modeling Steady-State MRNA levels as a function of Copy Number

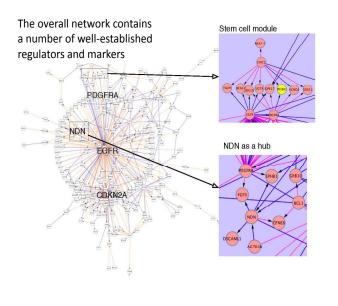
CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### APPLICATION

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

Software

# GLIOMA NETWORK ANALYSIS



#### OUTLINE

Data Integration -Network Modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-driven Network modeling Estimation Choice of Regularization

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental

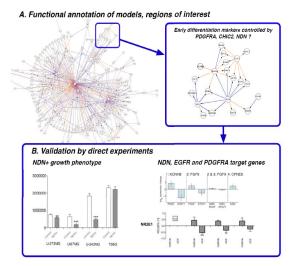
Pathway enrichment Prognostic

Software

Conclusion and Future work

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨ - のへの

# EXPERIMENTAL VALIDATION



### OUTLINE

DATA INTEGRATION NETWORK MODELING

MODELING STEADY-STATE MRNA LEVELS AS A FUNCTION OF COPY NUMBER

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### APPLICATION

Analysis of glioblastoma Validation

### Experimental

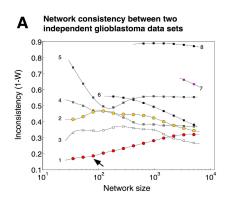
Structural Pathway enrichment Prognostic

Software

Conclusion and Future work

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We compare network consistency across network sizes and between competing methods.





### OUTLINE

Data Integration -Network Modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural

Pathway enrichment Prognostic

Software

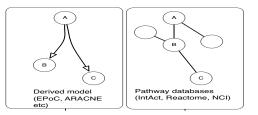
Conclusion and Future work

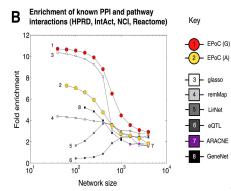
▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨ - のへの

# OVERLAP WITH PATHWAY DATABASES

irNet

BACNE





- We map networks to pathway repositories HPRD, Reactome, Intact, and NCI-nature.
- Compare pathway links to the shortest paths in networks.
- EPoC-G is clearly enriched for short or direct paths cmp other methods.

Pathway

enrichment

### DECOMPOSITION OF G

- Genomic data = 10000 by 186, Survival data = 1 by 186 how relate?
- The SVD decomposition of  $G = C\Lambda D^T$  has the following meaning:
  - leading columns of *D* are directions of CNA perturbations that are amplified by the system.
  - leading columns of *C* are directions of mRNA transcripts most affected by the directions in *D*.

• Write 
$$\Delta Y = G \Delta U = C \Lambda D^T \Delta U$$

• 
$$\rightarrow C^T \Delta Y = \Lambda D^T \Delta U$$

- Projecting mRNA onto columns of C = output, Projecting CNA onto D = input,  $\Lambda =$  amplification.
- Projection scores = same or similar dimensionality as survival data.

### Outline

### Data Integration -Network Modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-driven Network modeling Estimation Choice of Regularization

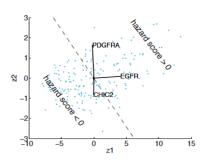
### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Promostic

### Software

# PREDICTING PATIENT SURVIVAL

### DECOMPOSITION OF G



# • $C^T \Delta Y = \Lambda D^T \Delta U$

- Consider the leading projections (first columns of *C* and *D*).
- mRNA profiles of individual patients are projected onto  $C: Z_y = C^T \Delta Y$  and CNA profiles are projected by  $Z_u = D^T \Delta U$
- Compare the survival of the patients using these projected scores.

### OUTLINE

Data Integration -Network Modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

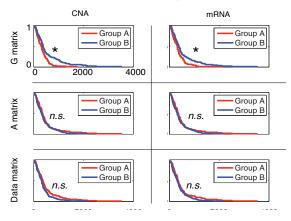
### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

# PREDICTING PATIENT SURVIVAL

## Decomposition of G vs A and data

### Survival curve based on singular vector score



### JÖRNSTEN. EPOC

### OUTLINE

Data Integration -Network modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment **Prognostic** 

### Software

Conclusion and Future work

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

# PREDICTING PATIENT SURVIVAL

# Decomposition of G

- We can color-code the networks using the leading SVD components.
- Identifies disease driving perturbations and their targets







### JÖRNSTEN. EPOC

### Outline

Data Integration -Network modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

### Software

Conclusion and Future work

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

# EPOC R PACKAGE

```
> install.packages('epoc')
> library(epoc)
> G <- epocG(y,u)
> summary(G)
Call:
epocG(Y = y, U = u)
```

Models:

|               | R2     | Ср        | BIC       | RSS      | links |
|---------------|--------|-----------|-----------|----------|-------|
| lambda=1      | 0.0783 | 10088.244 | 95.4035   | 8526.760 | 2     |
| lambda=0.8    | 0.0943 | 9920.825  | -46.5724  | 8379.271 | 5     |
| lambda=0.512  | 0.1097 | 9760.655  | -176.1815 | 8236.298 | 9     |
| lambda=0.4096 | 0.1186 | 9681.121  | -188.2727 | 8154.101 | 18    |
| lambda=0.3277 | 0.1345 | 9575.735  | -23.0230  | 8006.640 | 56    |
| lambda=0.2621 | 0.1606 | 9517.561  | 820.2891  | 7765.579 | 180   |
| lambda=0.2097 | 0.1552 | 9897.528  | 2517.8707 | 7815.453 | 357   |
| lambda=0.1678 | 0.1735 | 10021.138 | 3945.4843 | 7646.480 | 523   |

### OUTLINE

Data Integration Network Modeling

Modeling Steady-State MRNA levels as a function of Copy Number

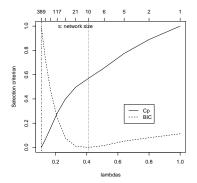
CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

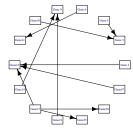
### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic SOFTWARE

# EPOC R PACKAGE

- > plot.modelsel(G)
- > plot(G, k = which.min(G\$BIC))





### OUTLINE

Data Integration Network modeling

MODELING STEADY-STATE MRNA LEVELS AS A FUNCTION OF COPY NUMBER

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

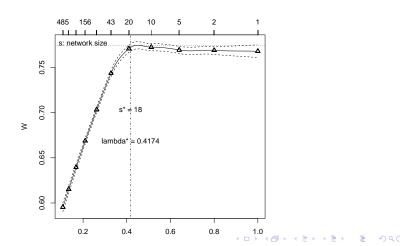
### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

### Software

Conclusion and Future work

# EPOC R PACKAGE



### JÖRNSTEN. EPOC

### Outline

Data Integration -Network Modeling

MODELING STEADY-STATE MRNA LEVELS AS A FUNCTION OF COPY NUMBER

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### Application

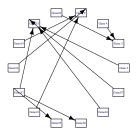
ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

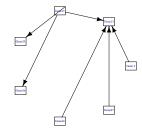
### Software

# EPoC R package

epoc.bootstrap, epoc.final,.. We arrive at a final network G which we can use for survival analysis.

- > G.svd <- epoc.svd(G.final, C = 3, numload = c(10, + 10))
- > epoc.svdplot(G.svd, C = 1)





### Outline

Data Integration -Network MODELING 10,

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### Application

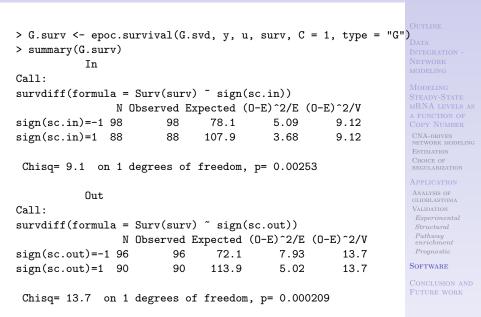
ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

### Software

Conclusion and Future work

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

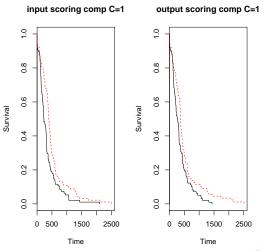
# EPOC R PACKAGE



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

# EPOC R PACKAGE

> plot(G.surv)



### JÖRNSTEN. EPOC

#### Outline

Data Integration -Network modeling

MODELING STEADY-STATE MRNA LEVELS AS A FUNCTION OF COPY NUMBER

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

### Software

Conclusion and Future work

- EPoC scales to 10000 genes and produces stable network estimates
- Attained network models exhibit good agreement with pathway databases
- Experimental validation of novel hubs identify interesting therapeutic targets
- The EPoC network provides clinical stratification into long- and short-term survival, whereas competing methods do not.

### Outline

Data Integration -Network Modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-driven Network modeling Estimation Choice of Regularization

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

Software

Conclusion and Future work

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Extend EPoC to tumor subtype identification (promising results already)
- Common and subtype specific network modules (ongoing work with PhD students in my group)
- Include multiple data sources (e.g. miRNA, methylation)
- Methodological work supervised prognostic network estimation

### Outline

Data Integration -Network Modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-driven Network modeling Estimation Choice of Regularization

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

Software

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Sven Nelander
- Tobias Abenius
- Teresia Kling, Linnea Schmidt, Bodil Nordlander, Erik Johansson, Torbjörn Nordling, Chris Sander, Björn Nilsson, Peter Gennemark, Keiko Funa, Linda Lindahl
- Cancerfonden, Barncancerfonden, Vetenskapsradet, BioCare, Sahlgrenska-CMR, NB-CNS

### OUTLINE

Data Integration -Network Modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-driven Network modeling Estimation Choice of Regularization

### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

Software

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

#### Outline

Data Integration Network modeling

Modeling Steady-State MRNA levels as a function of Copy Number

CNA-DRIVEN NETWORK MODELING ESTIMATION CHOICE OF REGULARIZATION

#### Application

ANALYSIS OF GLIOBLASTOMA VALIDATION Experimental Structural Pathway enrichment Prognostic

#### Software

Conclusion and Future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ