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Part 1: Endogeous Perturbation Analysis of Cancer

Goals: * Develop computational tools to construct
predictive models of cancer pathways.
* Predict key regulators & downstream targets

Network and pathway modeling:
*Experimental approach: knock out individual genes

/transcripts & observe how the system responds.
CON: SSS, limited data, PRO: precise Q investigated

*Reverse engineering: uses no perturbations, e.g. network
construction based on (partial)correlation of gene
expression.

CON: limited information, PRO: lots of data available



Network and pathway modeling:

*Here, we view each tumor’s
DNA copy number aberration (CNA) profile as a

system perturbation
that simultaneously affects multiple genes,

*and the corresponding
MRNA profile as the steady-state response to that

perturbation.

PRO: large-scale and high-quality experimental CNA
and mRNA expression data available.

CON: we don’t get to choose the perturbations.



Data: CNA and mRNA data from 180 glioblastoma
tumors from the Cancer Genome Atlas Consortium

(MSKCC, Broad, and other centers).

2.Arrays,
sequencing

|. Tumor
samples

3. Molecular
profiles

Typical numbers for

glioblastoma/
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Agilent
Affymetrix
lllumina
Solexa
etc..

Genetic profile ‘/

~10s of mutations affecting protein seq
~100s of copy-number altered genes

Epigenetic profile
~100s of hypermethylated promoters

Transcriptional profile

~100s-1000s altered message RNA levels
~10s-100s altered micro-RNA levels




Data: CNA and mRNA data from 180 glioblastoma

tumors from the Cancer Genome Atlas Consortium
(MSKCC, Broad, and other centers).
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White: unchanged, Red: gain/upregulation, Blue: loss/downregulation



MODEL WITH MULTIPLICATIVE EFFECTS

dy; wjj Vij
EZU;‘@;H}@ —ﬁfnyj
J j

@ where y; is the mRNA expression of transcript /, and u;
the copy number.

@ Elements wj and vj; denote the effect of transcript j on
i during synthesis/degradation respetively.

@ The a; and ; denote "environmental effects (non-CNA
perturbations)”
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STEADY-STATE SOLUTION

o We take CNA profiles from two tumors, v and &, and
likewise for mRNA y, ¥.

o Define Au; = log(u;) — log(&;), Ay; = log(y;) — log(¥;)

@ At steady-state we can write:

Au; + Z(ng — v 1Y
+(log(a;) — log(a;)) — (log(8:) — log(B;)) = O

e We denote the direct causal influence of transcript j on
i by ajj — Wy — Vjj.

@ [he term involving as and &s by ;.

For the whole system we can write

AAy + Au+T =0



STEADY-STATE SOLUTION

@ A is called the network matrix, our parameters of

Interest.

@ [ includes all the tumor-specific differences, unmeasured

AAy + Au+T =0

environmental effects, SNPs etc.
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,&i i/
Z.Pecular %ﬁles

Network matrix A

X

mRNA (AY)
il

-3
- .
A
- oew
patients

rd

-+

genes

DNA (AU)

q -
--------
L 8

-
i

BEEEEER
EEEEE a

patients



ALTERNATIVE REPRESENTATION

Ay = GAu+ T

o G =—A"1is called the system matrix.

@ G includes both direct and indirect effects, but this
representation is more in line with the biological dogma
of causal order AND in this formulation the input is
much less correlated which helps with estimation.
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We tried estimating A directly vs G.

Estimation of G leads to more stable and reproducible
results.
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Estimating G -> A.
*We use an L1-penalty and estimate the rows of G

*Penalty parameter? We investigate two goals:

strucure prediction

*network
reproducibility
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Estimating G -> A.

To choose the penalty parameter, we resample

tumor pairs repeatedly and investigate

a) network agreement, b) mRNA prediction.

strucure prediction
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The EPoC model of grade |V glioblastoma is
based on |46 patients from the Cancer Genome Atlas study

Circles are genes (HUGO symb-ols shown) .9-"
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The overall network contains
a humber of well-established
regulators and markers

Stem cell module
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Testing hub genes: is NDN a previously

overlooked glioblastoma tumor suppressor?

Nelander lab, together with Dr. Linda Lindahl at Sahlgrenska
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EPoC is faster and more consistent than a
set of alternative methods
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Part 2: Dynamic clustering of gene expression.

*A.  Extension of Part 1 — underway.

—Initial grouping of patients
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Part 2: Dynamic clustering of gene expression.
*B. Mixture modeling with Glasso
Previous work by Wei Pan et al. 2009
Here,

* We investigate the selection of penalty

parameters for different clusters.

* We view the mixture component InvCov
estimates as providing a dynamic bi-clustering.



Example: 4 clusters — InvCov with non-zero entries

highlighted.

* Stable gene cluster — any edges present across
all tumor clusters.
* Dynamic gene cluster — any edges that are
present for only a subset of tumor clusters.
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Dynamic clustering of gene expression.

Modelselection problem — sparsity of clusters
- number of clusters
one can affect the other...

*How to penalize the complexity of different
clusters?

*Here, we build on Jornsten 2009 using
Rate-Distortion to select penalty parameters for
each cluster.



Dynamic clustering of gene expression.

Rate-Distortion :

300

trade-off
between
Complexity and
fit (Deviance)

is the same for
all clusters.

Deviance
250

200

150

Complexity



Dynamic clustering of gene expression.

Rate-Distortion :

Single tuning-
parameter search:
The Slope
VS.
Having to search
over a multivariate
grid.

Deviance
250 300

200

150

Performance much

improved cmp
using same penalty for alll AR



Dynamic clustering of gene expression.
Algorithm (Given K number of clusters)

* For Slope Constraint S = Smin,...,Smax
o For B random splits into TrainData and TestData
o Onthe TrainData...
*** Run EM-Glasso with small common penalty
** Fork=1,... K—for cluster k
" Run Glasso with different penalties and
compute the RD-curve
" Pick point on curve with slope S and ID
corresponding penalty
% Run EM-Glasso with different penalties
o Compute the CV predicted likelihood on the TestData
* Choose the Slope Constraint Sopt that minimized predCV

* Run EM-Glasso on full data with selected penalties.

Repeat until convergence
]




 The prediction CV error is minimized for 4 clusters.
 The prediction CV is smaller when using different
penalties for the different clusters

Same penalty

predCV

Different
penalties

|

8680 8700 8720 8740 8760 8780 8800
L

slope



The InvCov complexity varies for the 4 tumor clusters.

0.8

0.4

0.0

00 02 04 06 08 1.0 00 02 04 06 08 10

.... But some gene-gene interactions appear to be present
in all or the majority of clusters, others are unique.




part with consensus clusters
found by Verhaak et al, 2009
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*Some oncogenes
appear as hubs across all
clusters.

*Some hubs are
particular to a subset of

& - p4 clusters.
i P v @ *Some interactions are
stable across all or some
clusters.

fasmet

We are in the process of investigating this further for a larger set
of genes, and regularizing toward similar magnitude and/or sign
of the interaction across clusters .



Conclusion & Future Work

*EPoC scales to networks ~10000 nodes.
*Performance better than other popular methods.
*Extension: *to subclasses of tumors and class-specific
networks.
*to include multiple data sources, e.g.
methylation.

*Dynamic clustering — using Glasso to detect tumor
subclasses and dynamic/stable gene clusters.

*Extension to larger and multiple data sets + investigating
more avenues of regularization between/within clusters.
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