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Part 1: Endogeous Perturbation Analysis of Cancer

Goals:    * Develop computational tools to construct 
predictive models of cancer pathways.

* Predict key regulators & downstream targets

Network and pathway modeling:
•Experimental approach: knock out individual genes 
/transcripts & observe how the system responds. 

CON: $$$, limited data,  PRO: precise Q investigated

•Reverse engineering: uses no perturbations, e.g. network 
construction based on (partial)correlation of gene 
expression.                                                                       

CON: limited information, PRO: lots of data available



Network and pathway modeling:
•Here, we view each tumor’s 

DNA copy number aberration (CNA) profile as a 
system perturbation

that simultaneously affects multiple genes, 

•and the corresponding
mRNA profile as the steady-state response to that 
perturbation.

PRO: large-scale and high-quality experimental CNA   
and mRNA expression data available.

CON: we don’t get to choose the perturbations.



Data: CNA and mRNA data from 180 glioblastoma
tumors from the Cancer Genome Atlas Consortium 
(MSKCC, Broad, and other centers).

Typical numbers for 
glioblastoma
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Modeling direct and indirect 
regulatory effects in primary 
tumors.





Network matrix A
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We tried estimating A directly vs G.

Estimation of G leads to more stable and reproducible 
results.

Network matrix A



Estimating G -> A.

•We use an L1-penalty and estimate the rows of G 

•Penalty parameter?   We investigate two goals:

*network 
reproducibility

*predictive 
power



Estimating G -> A.

To choose the penalty parameter, we resample 
tumor pairs repeatedly and investigate 
a) network agreement, b) mRNA prediction.

For structure 
prediction –
stable network 
with ~500 
interactions 
among 10000 
genes

For mRNA 
prediction –
network with a 
large number 
of interactions 
(~3/per gene).





The overall network contains 
a number of well-established 
regulators and markers



Nelander lab, together with Dr. Linda Lindahl at Sahlgrenska





Part 2: Dynamic clustering of gene expression.

•A.       Extension of Part 1 – underway. 



Part 2: Dynamic clustering of gene expression.

•B.  Mixture modeling with Glasso

Previous work by Wei Pan et al. 2009

Here,
* We investigate the selection of penalty 
parameters for different clusters.

* We view the mixture component InvCov
estimates as providing a dynamic bi-clustering. 



Example: 4 clusters – InvCov with non-zero entries 
highlighted.

* Stable gene cluster – any edges present across 
all tumor clusters.

* Dynamic gene cluster – any edges that are 
present for only a subset of tumor clusters.
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Dynamic clustering of gene expression.

Modelselection problem – sparsity of clusters
- number of clusters

one can affect the other…

•How to penalize the complexity of different 
clusters? 

•Here, we build on Jornsten 2009 using            
Rate-Distortion to select penalty parameters for 
each cluster.



Dynamic clustering of gene expression.

Rate-Distortion :

trade-off
between 
Complexity and 
fit (Deviance)
is the same for 
all clusters.



Dynamic clustering of gene expression.

Rate-Distortion :
Single tuning-
parameter search:

The Slope
vs.

Having to search
over a multivariate
grid.

Performance much
improved cmp
using same penalty for alll



Dynamic clustering of gene expression.
Algorithm (Given K number of clusters)

* For Slope Constraint S = Smin,…,Smax

o For B random splits into TrainData and TestData
o On the TrainData…

 Run EM-Glasso with small common penalty
 For k=1,…,K – for cluster k

 Run Glasso with different penalties and 
compute the RD-curve

 Pick point on curve with slope S and ID 
corresponding penalty

 Run EM-Glasso with different penalties
o Compute the CV predicted likelihood on the TestData

*   Choose the Slope Constraint Sopt that minimized predCV
* Run EM-Glasso on full data with selected penalties.  
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• The prediction CV error is minimized for 4 clusters. 
• The prediction CV is smaller when using different

penalties for the different clusters 

Same penalty

Different 
penalties



The InvCov complexity varies for the 4 tumor clusters.

…. But some gene-gene interactions appear to be present 
in all or the majority of clusters, others are unique.



The 4 tumor clusters overlap in 
part with consensus clusters 
found by Verhaak et al, 2009



*Some oncogenes
appear as hubs across all 
clusters.
*Some hubs are 
particular to a subset of 
clusters.

*Some interactions are 
stable across all or some 
clusters.

We are in the process of investigating this further for a larger set 
of genes, and regularizing toward similar magnitude and/or sign 
of the interaction across clusters .



Conclusion & Future Work

•EPoC scales to networks ~10000 nodes.
•Performance better than other popular methods.
•Extension:  *to subclasses of tumors and class-specific 

networks.
*to include multiple data sources, e.g.  
methylation.

•Dynamic clustering – using Glasso to detect tumor 
subclasses and dynamic/stable gene clusters.
•Extension to larger and multiple data sets + investigating 
more avenues of regularization between/within clusters.
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