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Significance

analysis Gene Expression Data

After normalization
Gene expression data on p genes for n samples

MRNA samples

samplel sample2 sample3 sample4 sample5 ...
0.46 0.30 0.80 1.51 0.90
-0.10 0.49 0.24 0.06 0.46
0.15 0.74 0.04 0.10 0.20
-0.45 -1.03 -0.79 -0.56 -0.32
-0.06 1.06 1.35 .09 -1.09

/

Genes

ok WONBE

(log)Gene expression level of gene /in mMRNA sample




Significance

analysis Which genes are “interesting”?
Question: what kind of experimental setup do | have?

— Categorical outcome (e.g. cancer type).
*T-test, ANOVA

— Continuous outcome (e.g. survival).
*Regression models, survival models.

— Time-course
eFunctional data analysis.

Question: do | also have covariates? (e.g. patient’s age,
etc)?

The detection of interesting genes is based on a ““test statistic” - T
- How do we know if an observed value of T is significant?
- We are performing thousands of tests - have to adjust the
critical values for multiple testing.




analysis

Significance | Categorical outcome - Two samples types /\

Let's say we have Ry samples from sample type 1,
and Ry samples from sample type 2.
A natural estimate of differential expression of gene

g Is to take the difference of the two sample means:/\

Hlg+ €19

Cancer

H2g — MHig-

Since errors add up, the associated level of Heg+ €29

uncertainty with this difference is the standard error Notcancer
5 o 51 2

SE — diff =/ 5% 2 75: Where 57 Is the sample

variance of gene g In sample type j.
Our test-statistic is

fio — fiy
SE — diff
How large can T, get just by chance if in fact
f1g = fog!

Tg=




Significance Two samples Al possible array experiments

analysis Cancer Not cancer
We formulate a null hypothesis /\ /\
H2g+ €2 Hig+ €1
Ho @ pig = pog

Under the null, the t-statistic 7, is t-distributed
with degrees of freedom (size of tails) depending on
Ri, Ry as well as the individual variances of gene g's
expression Iin each sample type.

We reject the null if | T,| exceeds a critical cutoff
(based on the tails of the t-distribution).

Note: if the sample sizes Ry, Ry are small - lots of parameters to estimate
here (p1, 2 and the variances). |Cutting costs?




Significance Two samples

analysis

If we are willing to assume that the variances of = [
expression are equal in both sample types N

O1g = Ogg, We can pool the estimates. 7 77
We get a pooled estimate of the sample variance as
2 2
2 (Rl = 1)51g - (RQ — 1)S2g

S —

s R+ Ry —2

We use this pooled estimate in the calculation of
Ty
Under the null, the t-statistic 7, is t-distributed

with degrees of freedom Ry + Ry — 2.
NOTE: if the assumption is incorrect, this test is
invalid!




Significance

analysis
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Example: 20 liver, 20 liver cancer samples

To pool or not to pool?
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Significance Histogram of liver samples and QQ-plot
analysis f - o

Assumptions of the t-test?

Fre
Sample Quantiles

* Independent sampling

e Normal errors

a 2000 4000 6000 8000 10000

T T T T T
4 2 0 2 4

Theoretical Quantiles

Normal Q-Q Plot

QQ-plot after standardization of the
liver data: subtract the mean, divide by
the standard deviation, for each gene

Sample Quantiles
0
|

Theoretical Quantiles



Significance

analysis Linear Models (ANOVA) —another view of the t-test

We can often write our gene expression data In
terms of a regression model.

}5+'51gX1+52gX2+"'+6g

Here, y, Is gene g's expression across samples. The
xs are vectors of array or sample information (e.g.

cancer type, age of patient).
It x1 Is the cancer type, we are particularly interested
in testing the hypothesis 8;, = 0. It turns out, this

s just another way of formulaltlng the t-test.

Impact on expression due

baseline expression ;
P to covariate x1



Signifi . -
ORI inear Models — another view of the t-test

analysis
( 110 \ Cancer type
] covariate x1
1|0
Design matriz X = LE ,X”X — A
] 11 ny Nno
11
not cancer {
V111

Ye = Bog + BigX1 + g = XBg + €
Then, 8, = (X'X)1X'y, is the solution to the

least-squares criterion » . (Ve — Bog — Bigxi)°.

With the above X, one can show that ng — 5
and B1g = flog — fl1g-



Significance | That is, a t-test is the same thing as testing that the
analysis second coefficient in this linear regression model is 0!

Why did we bother rephrasing the t-test as a
regression problem?

Well, we know a lot about estimation in regression.
If Vg = XBg + €5, where ¢, ~ N(0, Wyo7), then
By = (X'X) ' X'y, is an unbiased estimate of the

true O,.
Furthermore, the variance of this estimate can be

expressed as

V(Bg) = o2(X'X) {X' W X)(X'X) T = 02V,



Significance Linear Models — testing
analysis

To test the a null hypothesis B = 0 (kth
coefficient) we use the test-statistic

5gk
\/ OgVgk
Here, vg i1s the kth diagonal element of matrix V.
Under the null, 7, is t-distributed with degrees of

freedom n-K, where K is the number of parameters

In the regression model.
(Note, we can choose to pool or not to pool by
incorporating different weights W, in the error

distribution ¢ ~ N(0, Wgo7).)

=




Significance
analysis

VWhy did we bother reformulating the test-
ing in terms of linear regression?
A) Easier to extend to more complicated
models.

B) Known fixes of certain 'problems’ in lin-
ear regression models.

Example of A) Multiple-factor experiments involv-
ing different tissues, different cell-lines, time, etc.
Example of B) When the sample size is small, s2

)

can be a poor estimate of D'g and this can have an

adverse effect on testing.

More on A) later. What about B)?
Let’'s be Bayesian about it... Let’'s try to
regularize the estimate of oZ.



Significance
analysis

How can we obtain better estimates of crg?
Well, what if we pool strength across genes
g, assuming they have similar variance?

We can think of this as putting a prior on
2.8 o I o
o4t example: = ~ dﬂsgxdo

, _ " dos24-dgas? .
The posterior estimate 52 — %01%% ;5 4
g do+dg

regularized estimate of crgQ.
The bigger d; is, the more we ’'shrink’ sg
toward the common variance estimate s3.

We obtain a new t-statistic




Significance
analysis

Examples of regularized t-tests are

Baldi and Long (where we regularize toward
a common variance defined by the the k nearest
genes to gene g), * Speed and Lonnstedt
(the B-statistic), * Smyth (LIMMA pack-
age in R), * Tibshirani et al (SAM).

Common to all these methods: we use the
data as a whole to regularize our individual
gene estimates. This idea of letting the
prior be guided by data is called empirical
Bayes



Significance  Permutation tests

analysis Group 1 1 1 2 2

Data 0.46 0.30 0.80 1.51 0.90
Permute the labels!

1 2 2 1 1
2 1 2 1 2
2 1 1 2 1
1 1 2 2 2

What do we do if we can’t assume the errors are normally distributed?

By permuting the sample labels we make the null is true! — since labels
are randomly assigned the means of groups 1 and 2 have to be equal.

If we compute the t-statistics with the permuted labels we obtain
the sampling distribution of the t under the null, but we don’t have
to assume normality of errors!

P-value=proportion permutations with [t(permuted)|> |t(observed)|

Reject the null if this P-value is less than some cut-off, say 5%



Significance _ _
analysis Multiple testing

For each gene we obtain test-statistic Tg. We compare each Tg to
the critical cut-off t*, where t* corresponds to the 1-o/2 quantile of
the appropriate t-distribution.

Each test has a probability 1-a of leading to a false rejection (Tg
exceeds t* even when the null is true).

We pick oo small (t* large) to keep the likelihood of a false rejection
under control.

We’re performing many tests (10000s of genes), and each test has a
small probability o of a false rejection.... What will this mean for
the data set as a whole?

If o 1s 0.05, the probability that we make at least one false
rejection is ~ 0.05 for 1 test, ~0.40 for 10 tests
~0.994 for 100 tests, and ~1 for >1000 tests. Hm?



Significance

Multiple testing

analysis
Not rejected Rejected
True Nulls U V MO
True Alternatives T M1
M-R R M

Family-wise error rate FWER=Prob(V>=1), at least one false

rejection

False discovery rate FDR=E(V/R | R>0), proportion of rejections

that are false.



Significance Multiple testing
analysis

Family-wise error rate FWER=Prob(V>=1), at least one false
rejection

False discovery rate FDR=E(V/R | R>0), proportion of rejections
that are false.

Do we care more about FWER or FDR?
*\Well, if any false rejections are unacceptable we go with FWER

o|f we don’t care about a few false rejection, provided that they
make up a small proportion of the total number of rejections, we
go with FDR.




Significance Multiple testing
analysis

To control FWER we can use the classical Bonferroni correction:

Adjust the p-value for gene g by the number of tests performed:
P-adjusted(g)=P(g)*M

To control FDR we can use the Benjamini-Hochberg correction:

Adjust the p-value for gene g by a factor that depends on its rank-
order. If gene g has the k-th smallest p-value:

P-adjusted(g)=P(g)*M/k

(where we make sure adjusted p-values retain the same rank-order
and don’t exceed 1)



Significance Example: 8*2 replicate experiment.

analysis (courtesy: M. Callows, LBNL, technical report UCB statistics)
8 control samples, 8 treatment samples. Compute the t-statistic.

Use permutations of the control/treatment labels to get
adjusted p-values. p-value < .01 significant - found 8 genes.

p-value for lt_r_jl

10 20 30 40 50 20 18 -10 5

/—w ‘raw’ p-values. “‘““““

Histogram,QQ-plot of t-statistics. | - @
> R 1.

-2 0 2

Quantiles of standard normal




Significance
analysis

Raw p-values

Adjusted p-values

sorted pvalues
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Another example from the liver data
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Significance

Examples from liver data: number of genes declared

analysis significant at the 5% level.

Test t-test ebayes ; permutation

Raw 2638 | 2647 2656
o ;
@ BF 420 462 1001
2 BH 216 2206 2198
= 4\ / . -
= 2124 2131
9 /

2103

-
> Raw 208 488 375
@ BF 0 0 216
=1
£ BH 0 66 228
0p) : !




Significance
analysis

What if you have more than one experimental factor
of Interest?

Example: two-factor experiments with time-course
and cell-line.
Model for the data:

Yo = Qeell—line ais 6tf'me o Yeell/ time I €o
Note, models like these can also be reformulated as

a linear regression model with a design matrix X.
Now you can test for cell-line effects (),

time-effects (), and cell-line/time interactions (7).




Significance _
analysis More complex experiments and methods.

For more complex experiments (many covariates, time course
experiments) there are many new statistical methods out there.

Most are some kind of variant of regression, with a twist on
regularization.

See e.g. J. Storey (UWash) for time course modeling, M. Yuan et al
(G.Tech) for detection of differential expression patterns/classes, M.
West (Duke) for Bayesian methods for gene selection, Hongzhe LI
for incorporating pathway information into testing, and many many
more...

New methods vs standard ones....
PRO: More specific answers (differential expression patterns).

CON: Often not as easy to use (R-code or R-packages).




Significance

BRalty More advanced methods - not just declaring a gene

differentially expressed, but say in what sense....
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Design

Design Issues

« Some known sources of non-biological,
systematic errors
— Running the experiment in batches
— Using different technicians, students
— Staggered experimental runs (ordered).

e How to address these Issues

— Make the experiment as uniform as possible
e Same control, same processing, same technician, same chip lot,
same scanner, same scanner setup, same day (if possible)...
— Randomize when uniformity is not possible
« Don’t do all of condition 1 on day 1 and condition 2 on day 2
» Randomize the time a chips sits waiting to be scanner.
* Think ahead — will there be follow-up experiments?



mIRNA array

Design

Normalization cannot fix design problems.@

Normalization can correct for constant
shifts or amplifications (scale), but
design problems rarely have such simple
Impact on the expression data.

éatch 1 ] Batch 2F

iR A

We cannot model the design problem away either. With a poor design,
the parameter of interest and the batch may be confounded and we can’t
tell if observed expression differences are due to one or the other.



|mputation

Should we ignore the missing values? Impute them?
What is the effect on the subsequent analysis?

First ask yourself ‘why do | have missing values?’ Are they
‘missing’ or do they carry information, e.g. saturation, below
detection? If the latter, you should NOT impute but model the
missingness directly (or adjust calibration of scanner).

Ideal  |:
microarray |:
Image |




|mputation
“ROWimpute”, K-nearest-neighbors (KNN), Transform based
methods (SVD, BPCA), and many, many more

So....how do we decide which method to use? Is there a “best
method’ for imputation?

FPRIMETHODMFPR(LinCrmb)
g
|
1
q
]

FRMETHOD

With few values are missing (~1% missing values), forgoing imputation
IS not a bad strategy. If more values are missing, imputing can really
help, but only if you do it right...

Some methods are clearly always a bad choice: kNN and ROWimpute.



Clustering
Clustering = exploratory analysis

We wish to group data units (genes or samples) that are similar, or
partition the data set into dissimilar groups.

*decide on what you mean by similarity (e.g. correlated, close in
an average sense)

*choose an algorithm that uses this similarity metric to group the
data.

These choices are subjective.

We cannot easily say that one clustering outcome Is “better” than
another — different clustering methods focus on different aspects
of the data




Clustering
Using the metric to generate clusters.

To generate clusters based on a metric we have to use a rule for
assigning units to the same/different groups.

A very popular method is hierarchical clustering.

Start with all N units as individual clusters

e Join the two units, or groups of units, that are the most
similar

e Here, the similarity of groups of units is determined via
the *“linkage” function, i.e. how to combine the
dissimilarities between the group members into one
dissimilarity between the groups (e.g. nearest or
farthest neighbor, or average neighbor distance).

* Repeat until only one cluster remains



Clustering
Example:two-way clustering (both samples and genes)

Dendograms: the length of the
branches depicted are
proportional to the
dissimilarity between the
daughter-branches. Long
branches indicate good
separation.

Caution: Hierarchical clustering is
highly non-robust: small
changes to the data can alter
the look of the dendogram
substantially.

Both the choices of linkage and the
dissimilarity metric play a role




Cluster L
L Partitioning methods

Divide the data into K groups such that an objective function is
optimized. Examples:

e Kmeans — partition in order to minimize the distance from each
unit to the closest cluster representative=mean of the cluster.

 Kmedian, PAM - same as above, but using the median
(multivariate) as the cluster representative

e And many more....

Depending on the objective function these methods are more or
less robust. These three methods tend to produce clusters of
equal size and shape.

e Kmeans —simple, intuitive and fast. Non-robust because the mean
IS used as the cluster representative

 kmedian,PAM — more robust than kmeans, also fast




Clustering _
Model-based clustering methods.

|f we are willing to assume that gene expression is
approximately normally distributed, and expression
patterns come from a number of more or less distinct
shapes....
Clustering becomes a reqular statistical modeling
problem!

*\\e assume that there are K types of expression patterns
(or clusters) in the data.

*\Within each cluster we assume that the gene have
expression pattern puk and the cluster has shape Zk.

*\\e assume that a proportion zk of the genes belong to
cluster K.

*\\We need to estimate the parameters (uk, Zk, k)



Clustering

Model-based clustering methods.

*Pro: we’re using a specific parametric model to describe the
gene expression data, and we can check the fit of this model

*Pro: We can use standard statistical model selection
techniques to select the number of clusters K, and the
parameters that defines the pattern of each cluster

«Con: can converge to a local optimum

«Con: we make assumptions on the distribution of the data.



Clustering
2-way Clustering

An example: Spinal cord injury

*There are 3 types of
samples; uninjured T T
tissue, injured tissue
treated with an anti-
Inflammatory drug,
and untreated
Injured tissue.

!
1
L

Henes

two-way
hierarchical
clustering.

*\\e see that the
sample types cluster
together

Y6
W
W5
Y10
W12
W3

AN

Samples



Clustering

An example: Spinal cord injury

1.0

*Here are the selected
gene clusters (9 of them)

0.5
|

*As you can see, a few
cluster models indicate
that the uninjured and
Injured-treated have
similar expression
while the injured- L | —
el /TS Uninjured  Treated Injured
the others (magenta,

red,green)

o- this would suggest that the drug treatment suppresses the
Injury effect!

log exprassion
0.0

0.5

-1.0




Clustering  Another example: cell-lines and time
Cell line 1

*Here is a more complex
example with two-factors in the
cluster model (time & cell-line)

Clustering detects 5 distinct
patterns.

log exprassion

After clustering we can allocate
genes to specific time-course and
cell-line patterns.

o

bt

Cell line 2

time

eLots of current work in this area (Raftery et al. (UWash),
Hongzhe Li (UPenn), W. Pan (UMinn) and many more....) The
goal of these statistically oriented clustering methods is to make

clustering less subjective.




Clusteri Tt i i '
M Stability analysis: how much will clustering

results differ if | alter the data a little?

T Y

20 Genespring

(9 18 |

| /
| /
| i

/68 'Welch F

18 WelchF -
ANOVA - permuted
permuted

Unfiltered | _




Clustering

log ratio

log ratio

log ratio

7| A. GeneSpring ANOVA

Stability analysis: how much will clustering
results differ if | alter the data a little?

T
Uninj

T T T T
Acet Indo MP  NS398 CKIN 4hr

| C. Permuted ANOVA

(6 clusters)

T
Uninj

T T
Indo MP

T T T T
Acet NS398 CKIN 4hr

E. Welch's F-test

T
Uninj

1 T

T T T T
Acet Indo MP  NS398 CKIN 4hr

R

— 2

2 B, Standard ANOVA —3

d — 4

14 —5

i — G
04
=
2

I ] I ] I I I
Uninj Acet Indo MP NS398 CKIN  4hr
2

7| D. SAM (3 clusters)

F. Welch's Permuted

T T T T T
Uninj  Acet Indo MP  NS398 CKIN 4hr

T T T T T
Uninj  Acet Indo MP  NS398 CKIN 4hr



Clustering

.Currently, much focus on combining multiple data sets and
background knowledge into analysis of gene expression data.

Cancer gene expression profiling with DNA microarrays

ssssss miRIMNA Microarray Gene Expression
Hybridization Dataset

. The base models are often very _——

_——
- — ~-

similar to what we have discussed = — ~=— il — / |

—_— Sampl

ata Collection,

1 m - Collection of Cancer Microarray Data Processing,
re ress I O n O e L ase C u S e rl n 40 independent datasets, 15 cancer types MNormalization
) . 3,762 microarray experiments

37,901,459 gene expression measurements

.BUT the extra knowledge we Gt

aaaaaaaaaaa

Incorporate tries to make results J{

somewhat consistent with prior belief -® v
T

Cancer vs. Normal Undifferentiated vs. Well-Differentiated
ubtype vs. Subtype

Example. If we find that a gene in a pathway is " | ~

Explore at www.oncomine.org

Meta-Profiling

diffe rentially eXp rESSEd, this ShOUId make Dai:f]::e;;as;:zﬁ;s'cn Sgnl lcance reshold ;i?l;trlgdgin:;:;?ﬁes
It more likely that other genes in the same

(TTTTT - FTTIT -

pathway are also differentially expressed Compars Gene snrchment  Define ‘reta-signatmst  Assess robusiness

in signatures with a random if significant gene

Genes

simulation enrichment

(Hongzhe Li, UPenn). F:\* "l DDDDDD == __'Is
| 5 E\

1 2 3 <
# Signatures

Explore at www.oncomine.org

Rhodes, Daniel R. et al. (2004) Proc. Natl.
Acad. Sci. USA 101, 9309-9314



Take-home Message

1. Significance Analysis

 Don’t forget to check the assumptions of the test you use:
normality of error? equal variance? independent sampling?

o Choose an appropriate test. Which parameter are you interested
In? Can you formulate a model that gives you a direct estimate of
this parameter? Do you need to regularize your test-statistic? Did
you take covariates (confounders) into account?

2. Design and Imputation

o Imputation affects downstream analysis so it’s worthwhile doing
It properly

o Are values missing or do you have a calibration problem?

e Ask a statistician about the design issues before you spend $$$.



3. Clustering

e |sexploratory, but can be useful for data reduction, increased
understanding of the data structure

e The choices of distance metric and clustering algorithm drive
the results — different approaches focus on different aspects of
the data. You get what you ask for — no more, no less!

o Stability analysis is a great way to check how much your
assumptions drive the analysis (run clustering after making
small changes to the data, e.g. # genes, one sample in/out).
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