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Outline
•Detecting Differentially Expressed  

Genes.

•Dealing with missing values, Design 
of experiments.

•Clustering



Gene Expression Data
After normalization

Gene expression data on p genes for n samples

Genes

mRNA samples

(log)Gene expression level of gene i in mRNA sample j

sample1 sample2 sample3 sample4 sample5 …
1 0.46 0.30 0.80 1.51 0.90 ...
2 -0.10 0.49 0.24 0.06 0.46 ...
3 0.15 0.74 0.04 0.10 0.20 ...
4 -0.45 -1.03 -0.79 -0.56 -0.32 ...
5 -0.06 1.06 1.35 1.09 -1.09 ...

Significance 
analysis



Which genes are “interesting”?
Question: what kind of experimental setup do I have? 

– Categorical outcome (e.g. cancer type).

– Continuous outcome (e.g. survival).

– Time-course

Question: do I also have covariates? (e.g. patient’s age, 
etc)? 

•T-test, ANOVA

The detection of interesting genes is based on a “test statistic” - T 
- How do we know if an observed value of T is significant?
- We are performing thousands of tests - have to adjust the 

critical values for multiple testing.

Significance 
analysis

•Regression models, survival models.

•Functional data analysis.



Significance 
analysis

Categorical outcome - Two samples types

µ2g+ ε2g

Not cancer

µ1g+ ε1g

Cancer
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Two samples

µ1g+ ε1g

All possible array experiments  
Cancer Not cancer

µ2g+ ε2g
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Two samples
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Example: 20 liver, 20 liver cancer samples

To pool or not to pool? 



Significance 
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Histogram of liver samples and QQ-plot

Assumptions of the t-test?

• Independent sampling

• Normal errors 

QQ-plot after standardization of the 
liver data: subtract the mean, divide by 
the standard deviation, for each gene



Significance 
analysis Linear Models (ANOVA) –another view of the t-test

-1

baseline expression
Impact on expression due 
to covariate x1



Linear Models – another view of the t-test

cancer

not cancer

Cancer type 
covariate x1

Significance 
analysis
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That is, a t-test is the same thing as testing that the 
second coefficient in this linear regression model is 0!
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Linear Models – testing
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Permutation tests
Group 1 1 1 2 2           
Data 0.46 0.30 0.80 1.51 0.90 ...
Permute the labels!

1 2 2 1 1 ...
2 1 2 1 2 ...
2 1 1 2 1 ...
1 1 2 2 2 ...

What do we do if we can’t assume the errors are normally distributed?

By permuting the sample labels we make the null is true! – since labels 
are randomly assigned the means of groups 1 and 2 have to be equal.

If we compute the t-statistics with the permuted labels we obtain 
the sampling distribution of the t under the null, but we don’t have 
to assume normality of errors!

P-value=proportion permutations with |t(permuted)|> |t(observed)|

Reject the null if this P-value is less than some cut-off, say 5%



Significance 
analysis Multiple testing

For each gene we obtain test-statistic Tg. We compare each Tg to 
the critical cut-off t*, where t* corresponds to the 1-α/2 quantile of 
the appropriate t-distribution.

Each test has a probability 1-α of leading to a false rejection (Tg 
exceeds t* even when the null is true).

We pick α small (t* large) to keep the likelihood of a false rejection 
under control. 

We’re performing many tests (10000s of genes), and each test has a 
small probability α of a false rejection…. What will this mean for 
the data set as a whole?

If α is 0.05, the probability that we make at least one false 
rejection is ~ 0.05 for 1 test, ~0.40 for 10 tests
~0.994 for 100 tests, and ~1 for >1000 tests.                Hm?



Significance 
analysis

Multiple testing

Not rejected                 Rejected

True Nulls                              U                              V M0 

True Alternatives                   T                               S M1

M-R                           R M

Family-wise error rate FWER=Prob(V>=1), at least one false 
rejection

False discovery rate FDR=E(V/R | R>0), proportion of rejections 
that are false.



Significance 
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Multiple testing

Family-wise error rate FWER=Prob(V>=1), at least one false 
rejection

False discovery rate FDR=E(V/R | R>0), proportion of rejections 
that are false.

Do we care more about FWER or FDR?

•Well, if any false rejections are unacceptable we go with FWER

•If we don’t care about a few false rejection, provided that they 
make up a small proportion of the total number of rejections, we 
go with FDR. 
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analysis

Multiple testing

To control FWER we can use the classical Bonferroni correction:

Adjust the p-value for gene g by the number of tests performed:

P-adjusted(g)=P(g)*M

To control FDR we can use the Benjamini-Hochberg correction:

Adjust the p-value for gene g by a factor that depends on its rank-
order. If gene g has the k-th smallest p-value:

P-adjusted(g)=P(g)*M/k

(where we make sure adjusted p-values retain the same rank-order 
and don’t exceed 1)



Example: 8*2 replicate experiment.
(courtesy: M. Callows, LBNL, technical report UCB statistics)

8 control samples, 8 treatment samples. Compute the t-statistic.
Use permutations of the control/treatment labels to get
adjusted p-values. p-value < .01 significant - found 8 genes.

Adjusted p-values.

Histogram,QQ-plot of t-statistics.

Significance 
analysis

‘raw’ p-values.



Significance 
analysis Another example from the liver data

Raw p-values

Adjusted p-values
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Examples from liver data: number of genes declared 
significant at the 5% level. 

Test              t-test                 ebayes                    permutation

Raw 2638                  2647                         2656 

BF 420                    462                           1001

BH 2164                  2206                         2198

2124                    2131       

2103

Raw 298                    488                            375

BF 0                         0                              216

BH 0                         66                            228
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Significance 
analysis More complex experiments and methods.

For more complex experiments (many covariates, time course 
experiments) there are many new statistical methods out there.

Most are some kind of variant of regression, with a twist on 
regularization.

See e.g. J. Storey (UWash) for time course modeling, M. Yuan et al 
(G.Tech) for detection of differential expression patterns/classes, M. 
West (Duke) for Bayesian methods for gene selection, Hongzhe Li 
for incorporating pathway information into testing, and many many 
more…

New methods vs standard ones….

PRO: More specific answers (differential expression patterns).

CON: Often not as easy to use (R-code or R-packages). 



Significance 
analysis More advanced methods - not just declaring a gene 

differentially expressed, but say in what sense.... 



Design Issues
• Some known sources of non-biological, 

systematic errors
– Running the experiment in batches
– Using different technicians, students
– Staggered experimental runs (ordered).

Design

• How to address these issues
– Make the experiment as uniform as possible

• Same control, same processing, same technician, same chip lot, 
same scanner, same scanner setup, same day (if possible)…

– Randomize when uniformity is not possible
• Don’t do all of condition 1 on day 1 and condition 2 on day 2
• Randomize the time a chips sits waiting to be scanner.
• Think ahead – will there be follow-up experiments? 



Batch 1      Batch 2

Design

Normalization cannot fix design problems.

Normalization can correct for constant                                                           
shifts or amplifications (scale), but                                                    
design problems rarely have such simple                                                     
impact on the expression data.

We cannot model the design problem away either. With a poor design, 
the parameter of interest and the batch may be confounded and we can’t 
tell if observed expression differences are due to one or the other.



Overlapping spots

Low intensity spots

Imputation

Ideal 
microarray

image

Should we ignore the missing values? Impute them?
What is the effect on the subsequent analysis?

First ask yourself ‘why do I have missing values?’ Are they 
‘missing’ or do they carry information, e.g. saturation, below 
detection? If the latter, you should NOT impute but model the 
missingness directly (or adjust calibration of scanner). 

High background

Smears,dust

Actual images from the early days



“ROWimpute”, K-nearest-neighbors (kNN), Transform based 
methods (SVD, BPCA), and many, many more

So….how do we decide which method to use? Is there a ‘best 
method’ for imputation?

Imputation

With few values are missing (~1% missing values), forgoing imputation 
is not a bad strategy. If more values are missing, imputing can really 
help, but only if you do it right…

Some methods are clearly always a bad choice: kNN and ROWimpute.



Clustering = exploratory analysis

We wish to group data units (genes or samples) that are similar, or 
partition the data set into dissimilar groups.

*decide on what you mean by similarity (e.g. correlated, close in 
an average sense)

*choose an algorithm that uses this similarity metric to group the 
data.

These choices are subjective.

We cannot easily say that one clustering outcome is “better” than 
another – different clustering methods focus on different aspects 
of the data

Clustering



Using the metric to generate clusters.

To generate clusters based on a metric we have to use a rule for 
assigning units to the same/different groups.

A very popular method is hierarchical clustering.

Clustering

Start with all N units as individual clusters

• Join the two units, or groups of units, that are the most 
similar

• Here, the similarity of groups of units is determined via 
the “linkage” function, i.e. how to combine the 
dissimilarities between the group members into one 
dissimilarity between the groups (e.g. nearest or 
farthest neighbor, or average neighbor distance).

• Repeat until only one cluster remains



Example:two-way clustering (both samples and genes)

Dendograms: the length of the 
branches depicted are 
proportional to the 
dissimilarity between the 
daughter-branches. Long 
branches indicate good 
separation.

Caution: Hierarchical clustering is 
highly non-robust: small 
changes to the data can alter 
the look of the dendogram 
substantially. 

Both the choices of linkage and the 
dissimilarity metric play a role

Clustering



Partitioning methods
Divide the data into K groups such that an objective function is 
optimized. Examples:

Depending on the objective function these methods are more or 
less robust. These three methods tend to produce clusters of 
equal size and shape.

• kmeans – partition in order to minimize the distance from each 
unit to the closest cluster representative=mean of the cluster.

• Kmedian, PAM – same as above, but using the median 
(multivariate) as the cluster representative

• And many more….

Clustering

• kmeans –simple, intuitive and fast. Non-robust because the mean 
is used as the cluster representative

• kmedian,PAM – more robust than kmeans, also fast



Clustering
Model-based clustering methods.

•If we are willing to assume that gene expression is 
approximately normally distributed, and expression 
patterns come from a number of more or less distinct 
shapes….                                                                     

Clustering becomes a regular statistical modeling   
problem!

•We assume that there are K types of expression patterns
(or clusters) in the data. 

•Within each cluster we assume that the gene have 
expression pattern µk and the cluster has shape Σk.

•We assume that a proportion πk of the genes belong to 
cluster k. 

•We need to estimate the parameters (µk, Σk, πk)



Clustering

Model-based clustering methods.

•Pro: we’re using a specific parametric model to describe the 
gene expression data, and we can check the fit of this model

•Pro: We can use standard statistical model selection 
techniques to select the number of clusters K, and the 
parameters that defines the pattern of each cluster

•Con: can converge to a local optimum

•Con: we make assumptions on the distribution of the data.  



Clustering

An example: Spinal cord injury
•There are 3 types of 
samples; uninjured 
tissue, injured tissue 
treated with an anti-
inflammatory drug, 
and untreated 
injured tissue.

•Here is a simple 
two-way 
hierarchical 
clustering.

•We see that the 
sample types cluster 
together



Clustering

An example: Spinal cord injury

•- this would suggest that the drug treatment suppresses the 
injury effect! 

•Here are the selected 
gene clusters (9 of them)

•As you can see, a few 
cluster models indicate 
that the uninjured and 
injured-treated have 
similar expression
while the injured-
untreated differs from 
the others (magenta, 
red,green)

Uninjured       Treated          Injured 



Clustering

•After clustering we can allocate                                             
genes to specific time-course and                                              
cell-line patterns. 

•Lots of current work in this area (Raftery et al. (UWash), 
Hongzhe Li (UPenn), W. Pan (UMinn) and many more….)  The 
goal of these statistically oriented clustering methods is to make 
clustering less subjective. 

•Here is a more complex 
example with two-factors in the 
cluster model (time & cell-line)

•Clustering detects 5 distinct 
patterns.

Another example: cell-lines and time

Cell line 1              Cell line 2



Clustering
Stability analysis: how much will clustering 
results differ if I alter the data a little?



Clustering
Stability analysis: how much will clustering 
results differ if I alter the data a little?



●Currently, much focus on combining multiple data sets and 
background knowledge into analysis of gene expression data. 

●The base models are often very                                              
similar to what we have discussed                                  
(regression, model-based clustering).

●BUT the extra knowledge we                                         
incorporate tries to make results                                      
somewhat consistent with prior belief                                         (

Example. If we find that a gene in a pathway is                                                    
differentially expressed, this should make                                                           
it more likely that other genes in the same                                                      
pathway are also differentially expressed                                                –
(Hongzhe Li, UPenn).

Rhodes, Daniel R. et al. (2004) Proc. Natl. 
Acad. Sci. USA 101, 9309-9314

Clustering



Take-home Message
1. Significance Analysis

• Don’t forget to check the assumptions of the test you use: 
normality of error? equal variance? independent sampling?

• Choose an appropriate test. Which parameter are you interested 
in? Can you formulate a model that gives you a direct estimate of 
this parameter? Do you need to regularize your test-statistic? Did 
you take covariates (confounders) into account?

2. Design and Imputation
• Imputation affects downstream analysis so it’s worthwhile doing 

it properly

• Are values missing or do you have a calibration problem?

• Ask a statistician about the design issues before you spend $$$.



3. Clustering
• is exploratory, but can be useful for data reduction, increased 

understanding of the data structure     

• The choices of distance metric and clustering algorithm drive 
the results – different approaches focus on different aspects of 
the data. You get what you ask for – no more, no less!

• Stability analysis  is a great way to check how much your 
assumptions drive the analysis (run clustering after making 
small changes to the data, e.g. # genes, one sample in/out).
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