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Abstract. These notes describe numerical issues that may arise when implementing a sim-
ulation method for a stochastic partial differential equation. It is shown that an additional
approximation of the noise does not necessarily affect the order of convergence of a discretiza-
tion method for a stochastic partial differential equation driven by Lévy noise. Furthermore
finite element methods are explicitly given and simulations are done. In statistical tests, it
is shown that the simulations obey the theoretical orders of convergence.

1. Introduction

The numerical study and simulation of Hilbert space valued stochastic differential equa-
tion (SPDEs) is a fairly new topic. Within the last years the extension of PDEs to SPDEs
has become more and more important in applications especially in engineering such as im-
age analysis, surface analysis, filtering [17, 19, 25, 27, 32]. On the other hand side, in fi-
nance, people extend finite dimensional systems of stochastic differential equations (SDEs)
to infinite dimensional ones [5], i.e. to SPDEs. Explicit solutions to most of the problems
do not exist. Therefore it is natural to simulate a discrete version of these SPDEs. The
theory of approximating the mild solution of SPDEs with colored noise has been done e.g.
in [2, 4, 9, 10, 11, 12, 15, 16, 18, 19, 22, 24, 31, 33] and references therein. When these
approximations are simulated, some more problems arise especially with the approximation
of the noise. These will be faced in this paper. Approximations of stochastic processes have
been done e.g. in [1, 7, 29, 30] while the literature on simulations of Hilbert space valued
stochastic processes is relatively rare (see e.g. [23, 26]).

In this paper we discuss issues that arise when simulating SPDEs which will be seen in
the more general framework of Hilbert space valued SDEs. The equations that we want to
simulate are of the form

(1.1) dX(t) = AX(t)dt +G(X(t))dL(t)
with initial condition X(0) = X0, where A is a differential operator and L is a Hilbert space
valued Lévy process.

In [2, 4, 21, 22] discretization schemes have been introduced and it has been shown that
these approximations converge almost surely resp. in mean square to the mild resp. weak
solution of the SDE. The goal of this paper is to implement examples of these equations
and to give explicit simulation schemes. It turns out that in general cases it is easier to
implement the approximation scheme, if we do an additional approximation of the noise
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because otherwise either an infinite number of independent Lévy processes or a finite number
of Lévy processes with given correlation might have to be simulated. This is motivated in
Section 3. We show that, depending on the covariance of the Lévy process, the order of
convergence of the approximation scheme that was shown in [2] and [4] is not affected.

The work is organized as follows: Section 2 introduces the framework including the SPDE
properties and the known approximation results. In Section 3, the driving noise is approx-
imated by the truncated Karhunen–Loeve expansion. It is shown which properties of the
eigenvalues of the covariance of the stochastic process imply that the overall order of con-
vergence of the approximation scheme for an SPDE is not affected. Section 4 is devoted to
explicitly give a finite element method (FEM) for the approximation. The simulation results
including paths and statistics are displayed in Section 5. Finally, Section 6 concludes the
results of the notes.

2. Framework

Let (H, (⋅, ⋅)H) and (U, (⋅, ⋅)U) denote separable Hilbert spaces and (Ω,F , (Ft),P) a fil-
tered probability space satisfying the “usual conditions”. We are interested in simulating the
solution of an SPDE driven by a U–valued Lévy process L and start with an introduction to
the noise.

Definition 2.1. A stochastic process (L = L(t), t ≥ 0) with values in U is called a Lévy
process, if

(a) L has independent increments, i.e. if for any 0 ≤ t0 < t1 < ⋯ < tn, the U–valued random
variables L(t1) −L(t0), L(t2) −L(t1), . . . , L(tn) −L(tn−1) are independent,

(b) L has stationary increments, i.e. the law L(L(t) − L(s)) of L(t) − L(s) depends only
on the difference t − s for t > s,

(c) L(0) = 0,
(d) L is stochastically continuous, i.e. lims→t P (∥L(t) − L(s)∥U > ε) = 0 for every ε > 0,

s, t ≥ 0.

For the covariance of a centered, square integrable Lévy process, we get that there exists
Q in the set of all symmetric, non-negative and nuclear operators, L+1(U), such that for all
t, s ≥ 0 and x, y ∈ U

E((L(t), x)U(L(s), y)U) = (t ∧ s)(Qx, y)U .
Since Q ∈ L+1(U), there exists an orthonormal basis (ei, i ∈ N) of U consisting of eigenvec-

tors of Q. Therefore we have the representation Qei = γiei, where γi ≥ 0 is the eigenvalue
corresponding to ei. The square root of Q is defined as

Q1/2ϕ ∶= ∑
i

(ϕ, ei)U γ1/2
i ei, ϕ ∈ U

and Q−1/2 is the pseudo inverse of Q1/2. Let us denote by (H, (⋅, ⋅)H) the Hilbert space defined
by H = Q1/2(U) endowed with the inner product (x, y)H = (Q−1/2x,Q−1/2y)U for x, y ∈ H.

The Itô isometry holds for Lévy process L with covariance Q that are càdlàg square inte-
grable martingales. In the following proposition LHS(H,H) refers to the space of all Hilbert–
Schmidt operators from H to H and ∥ ⋅ ∥LHS(H,H) denotes the corresponding norm.

Proposition 2.2 ([28, Cor. 8.17]). Let L2
H,T (H) ∶= L2(Ω×[0, T ],P[0,T ], P⊗dλ; LHS(H,H))

be the space of integrands, where P[0,T ] denotes the σ–field of predictable sets in Ω × [0, T ]
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and dλ is the Lebesgue measure, then for every Ψ ∈ L2
H,T (H)

E(∥∫
t

0
Ψ(s)dL(s)∥2

H) = E(∫
t

0
∥Ψ(s)∥2

LHS(H,H)
ds).

From here on we will assume that L always refers to a Lévy process that is a càdlàg square
integrable martingale. Stochastic integrals with respect to this type of Lévy processes also
satisfy a Burkholder–Davis–Gundy type inequality for Ψ ∈ L2

H,T (H) and p ∈ (0,2] [13]:

E( sup
t∈[0,T ]

∥∫
t

0
Ψ(s)dL(s)∥pH) ≤ C E((∫

T

0
∥Ψ(s)∥2

LHS(H,H)
ds)p/2)(2.1)

for a constant C. This inequality stays true for p ∈ (2,+∞), if L is a continuous square
integrable martingale, i.e. in our approach a Wiener process. Similar estimates also apply to
stochastic convolutional integrals with respect to a semigroup (see e.g. [13]).

Following [28], a square integrable Lévy process L has the series representation

L(t) =
∞

∑
i=1

Li(t)ai,

where the elements Li are real-valued Lévy processes and a ∶= (ai, i ∈ N) is a basis of U .
Furthermore, we already know that there exists an eigenbasis (ei, i ∈ N) and eigenvalues
(γi, i ∈ N) of the covariance Q. Then L can be represented by

(2.2) L(t) =
∞

∑
i=1

√
γiLi(t) ei,

where the elements Li are again real-valued Lévy processes that are not necessarily indepen-
dent. On the other hand side, if we have a sequence of independent, identically distributed,
one dimensional real-valued Lévy processes (Lsi , i ∈ N) and set

Ls(t) ∶=
∞

∑
i=1

√
γiL

s
i (t) ei,

for t ∈ [0, T ], then by Theorem 4.40 in [28] the series on the right hand side converges P–a.s.,
uniformly in t on any compact interval and defines a Lévy process Ls on the Hilbert space
U . This series also converges in mean square, if Q is nuclear as (ei, i ∈ N) is an orthonormal
basis and the elements Li are i.i.d. square integrable Lévy processes. In this paper we will
limit ourselves to Lévy processes that have a series representation consisting of a sequence of
independent, identically distributed, real-valued Lévy processes (Li, i ∈ N). Examples of such
processes are Wiener processes and random fields of correlated NIG processes.

After having introduced the framework of the noise that we are interested in, we introduce
the corresponding SPDEs. We are interested in simulating the solution of equation

(2.3) dX(t) = AX(t)dt +G(X(t))dL(t)
on the finite time interval [0, T ] with initial condition X(0) = X0, where A is generator of
a C0–semigroup S = (S(t), t ≥ 0) and L is a Lévy process as introduced before. Let G be a
mapping from H to L(H,H). If G is Lipschitz continuous and of linear growth, i.e. there
exists a constant C such that for u, v ∈H

∥G(u)∥LHS(H,H) ≤ C(1 + ∥u∥H),
∥G(u) −G(v)∥LHS(H,H) ≤ C∥u − v∥H ,
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and if X0 is F0–measurable, then by results in Chapter 9 of [28], Equation (2.3) has a unique
mild solution, i.e. supt∈[0,T ]

E(∥X(t)∥2
H) < +∞ and X(t) can be written as

X(t) = S(t)X0 + ∫
t

0
S(t − s)G(X(s))dL(s).

For a full introduction to Hilbert space valued stochastic differential equations we refer the
reader to [6, 8, 28].

The authors approximated equations similar to Equation (2.3) in [2, 3, 4, 20] using Galerkin
methods. Similarly to these approaches, let Sh be a family of finite element spaces, consisting
of piecewise continuous polynomials with respect to the triangulation Th of D ⊂ Rd with
piecewise smooth boundary. We assume Sh ⊂ H1

0(D). Furthermore let Ph denote the L2–
Projection of L2(D) on Sh. We set Ah ∶= PhAPh. The operator Sh(t) refers to the discrete
analog of S(t), formally introduced by Sh(t) = e−tAh . The rational approximation of the
semigroup is given by r(λ) ∶= (1 + λ/2)/(1 − λ/2). In [4] it was shown that the Galerkin–
Milstein–Crank–Nicolson scheme with equidistant time discretization 0 = t0 < t1 < ⋯ < tn = T

Xn = r(kAh)Xn−1 + ∫
tn

tn−1

1
2 (r(kAh) + 1)PhBPhXn−1 ds

+ ∫
tn

tn−1
(1

2 (r(kAh) + 1)PhBPh∫
s

tn−1
PhG(Xn−1)dM(r))ds

+ ∫
tn

tn−1

1
2 (r(kAh) + 1)PhG(Xn−1)dM(s)

+ ∫
tn

tn−1
(1

2 (r(kAh) + 1)PhG(∫
s

tn−1
PhG(Xn−1)dM(r)))dM(s).

(2.4)

leads to almost surely convergence of the approximated solution to the mild solution of

dX(t) = (A +B)X(t)dt +G(X(t))dM(t),

where A is a dissipative second order differential operator, B is a first order differential
operator, G is linear, and M is a continuous square integrable martingale. The order of
convergence is O((h2+k+k1/2h)1−ε), where h denotes the size of the space discretization and
k is the step size in time.

In [2] a stochastic heat equation with Dirichlet boundary conditions on the Hilbert space
L2(D) with D ⊂ Rd

dX(t) = ∆X(t)dt +G(X(t))dM(t)

with a not necessarily continuous square integrable martingale was approximated by a Galerkin
method and a backward Euler scheme given by the recursive scheme

Xn = r(kAh)Xn−1 + ∫
tn

tn−1
r(kAh)PhG(Xn−1)dM(s),

where Ah = Ph∆Ph and r(λ) = (1+λ)−1. It was shown that the approximate solution converges
to the mild solution in mean square of order O(

√
k + h) for an appropriate initial condition

X0. The same order of convergence is achieved for the weak solution of a hyperbolic problem
of type

dX(t) = BX(t)dt +G(X(t))dM(t)
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with initial condition X(0) = X0 and B is a first order differential operator on D ⊂ Rd. The
backward Euler approximation scheme that has these properties is given in weak form by

(Xn, φ)H = (X0, φ)H + k
n

∑
i=1

a1(Xi−1, φ) +
n

∑
i=1
∫

ti

ti−1
(G∗(Xi−1)φ, dM(s))H,

where G∗ denotes the adjoint of G and a1(φ,ψ) = (Bφ,ψ)H for φ,ψ in the finite element
space Sh.

In these schemes, the noise is not approximated separately. An extra approximation can
simplify the simulations a lot. This extra approximation of the noise can preserve the overall
order of convergence, which is shown in the next section.

3. Approximation of the Noise

In this section we introduce an extra approximation of the U–valued driving noise of Equa-
tion (2.3) which might lead to easier simulations. This can be seen in the following. Therefore
let us denote the Itô integral to be simulated by

∫
b

a
PhΨ(s)dL(s)

with a < b and Ψ ∈ L2
H,T (H). This expression can be rewritten using the series representation

of L , Equation (2.2), to
∞

∑
i=1

√
γi∫

b

a
PhΨ(s)ei dLi(s).

If Sh is generated by (φk, k = 1, . . .m), we have that

∫
b

a
PhΨ(s)dL(s) =

∞

∑
i=1

m

∑
k=1

√
γi∫

b

a
(Ψ(s)ei, φk)H dLi(s)φk.

Without further assumptions, nothing is known about (Ψ(s)ei, φk)H and therefore although
the result is finite dimensional it might be necessary to simulate an infinite number of Lévy
processes. One possible way out of this problem is to approximate the Lévy process by a
truncation of the series expansion, i.e. set

Lκ(t) =
κ

∑
i=1

√
γiLi(t) ei.

The goal of this section is to show which conditions imply that the overall order of convergence
is not affected by the additional approximation.

Let (Lκ, κ ∈ N) be the sequence of truncated series expansions with covariance Qκ that
converges almost surely to the Lévy process L with covariance Q. We set

Lcκ(t) = L(t) −Lκ(t) =
∞

∑
i=κ+1

√
γiLi(t) ei.

with covariance Qcκ = Q−Qκ, which converges almost surely to zero. This implies for the Itô
integral with respect to Ψ ∈ L2

H,T (H) that

∫
b

a
Ψ(s)dL(s) − ∫

b

a
Ψ(s)dLκ(s) = ∫

b

a
Ψ(s)dLcκ(s).(3.1)

This difference converges to zero depending on the decay of the eigenvalues (γi, i ∈ N), which
is shown in the following lemma.
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Lemma 3.1. If E(supt∈[a,b] ∥Ψ(t)∥p
L(U,H)

) < +∞ and there exists a constant C > 0 such that
the eigenvalues satisfy γi ≤ C i−α for α > 1 and κ ≥ C h−1, then

E( sup
t∈[a,b]

∥∫
t

a
Ψ(s)dL(s) − ∫

t

a
Ψ(s)dLκ(s)∥pH) ≤ CpE( sup

t∈[a,b]
∥Ψ(t)∥p

L(U,H)
)h

(α−1)p
2 ,

for a constant Cp and p ∈ (0,2]. If, in addition, L is continuous, the inequality also holds for
p > 2.

Proof. Let us choose p ∈ (0,2] or p > 0 depending on the properties of L, i.e. if it is continuous
or not. We first observe that

E( sup
t∈[a,b]

∥∫
t

a
Ψ(s)dL(s) − ∫

t

a
Ψ(s)dLκ(s)∥pH) = E( sup

t∈[a,b]
∥∫

t

a
Ψ(s)dLcκ(s)∥pH)

≤ CpE((∫
b

a
∥Ψ(s)∥2

LHS(QcκU,H)
ds)p/2)

by Equations (3.1) and (2.1). Next we calculate the Hilbert–Schmidt norm. We have that

E((∫
b

a
∥Ψ(s)∥2

LHS(QcκU,H)
ds)p/2) = E((∫

b

a

∞

∑
i=κ+1

γi∥Ψ(s)ei∥2
H ds)p/2).

With the properties of Ψ it holds

E((∫
b

a

∞

∑
i=κ+1

γi∥Ψ(s)ei∥2
H ds)p/2) ≤ CpE( sup

t∈[a,b]
∥Ψ(t)∥p

L(U,H)
)(

∞

∑
i=κ+1

γi)p/2,

and the decay of the eigenvalues and the assumptions on κ imply
∞

∑
i=κ+1

γi ≤ C
∞

∑
i=κ+1

i−α = C
∞

∑
i=1

(i + κ)−α ≤ C ∫
∞

0
(x + κ)−αdx = C (α − 1)−1h(α−1).

This proves the lemma. �

We remark that the estimates stay true, if Ψ also depends on the upper integration limit,
i.e. the stochastic integral is a convolutional integral with respect to a semigroup, since Equa-
tion (2.1) also holds for this type of integrands (see [13]).

In [4] it was shown that the Galerkin–Milstein scheme given by Equation (2.4) converges
almost surely of order O((h2 + k + k1/2h)1−ε) by a Borel–Cantelli argument. In the proof it
was especially shown that for an equidistant time discretization 0 = t0 < t1 < ⋯ < tn = T and a
constant Cp(T )

E( sup
0≤j≤n

∥X(tj) −Xj∥pH) ≤ Cp(T ) (h2 + k + k1/2h)p.

So the extra approximation of the noise preserves the order of convergence, if the eigenvalues
(γi, i ∈ N) decay with order i−α and α ≥ 5.

The order of convergence in mean square for the approximation of the heat equation as
well as of a hyperbolic problem in [2] is O(

√
k + h). This implies that the order is preserved

with an extra approximation of the noise, if the eigenvalues (γi, i ∈ N) decay with order i−α

and α ≥ 3.
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4. A Finite Element Method for SPDEs

A Galerkin approximation for Equation (1.1) was introduced in [2] and [4], where conver-
gence was proved in mean square and almost sure senses. Here we are more concerned with
the issues which arise when actually implementing the FEM for those equations.

We work on the same approximation in space as introduced in [4]. For the approximation
in time we present a Crank–Nicolson scheme with an Euler–Maruyama approximation. This
converges in general slower than the corresponding Milstein scheme but for simplicity reasons
it is more convenient. Furthermore, in the case of additive noise as presented in the next
section, the Euler–Maruyama and the Milstein scheme have the same order of convergence.

First we give an introduction to the approximation in time using a model problem, after-
wards we address specific problems that occur in the implementation of SPDEs.

Let us start with a benchmark model problem: the heat equation on [0, T ] × [0, δ] =
[0, T ] ×D ∈ R2, δ > 0, with a source term f given by

dX(t)
dt

= ∆X(t) + f(t)
dt

with Dirichlet boundary condition and a smooth initial condition given by some function X0.
Thus we are facing a parabolic stochastic partial differential equation. The source term f will
later transform into the noise term.

The Galerkin approximation for this problem is given by

∫
D
Ẋ(t, x)ψ(x)dx + ∫

D
Xx(t, x)ψx(x)dx = ∫

D
ḟ(t, x)ψ(x)dx,

where we multiplied the equation above with a test function ψ ∈ Sh, which is an element of
the finite dimensional space, where the solution to the approximated problem lies, and then
we integrated by parts. Ẋ denotes the derivative with respect to the first argument and Xx

the derivative with respect to the second one. The projection of X onto Sh denoted by Xh

has the unique representation

Xh(t, x) =
n

∑
j=1

ξj(t)φj(x),

where φ = (φj , j = 1, . . . , n) is a basis of Sh and the elements ξj(t) are the corresponding
coefficient functions. The elements φj are called the trial functions. If we combine this
representation with the Galerkin approximation above, we obtain the system

Rξ̇(t) −Zξ(t) = ḃ(t),

where R = (ri,j , i, j = 1, . . . , n), Z = (zi,j , i, j = 1, . . . , n), and ḃ = (ḃj , j = 1, . . . , n) with
ri,j = ∫D φj(x)φi(x)dx, zi,j = ∫D(φx)j(x)(φx)i(x)dx, and ḃj(t) = ∫D ḟ(t, x)φj(x)dx. One
possible choice for φ is the hat function basis. The dimension of the finite element space gives
directly the number of approximation points, here x0, . . . , xn, and as well the number of finite
elements ([xi−1, xi], i = 1, . . . , n). The matrices R and Z can be assembeled from submatrices.
For the hat function basis, the submatrices Rk and Zk, k = 1, . . . , n are given by

Rk = (∫
xk

xk−1
φj(x)φi(x)dx, i, j = k − 1, k),

Zk = (∫
xk

xk−1
(φx)j(x)(φx)i(x)dx, i, j = k − 1, k).
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These are calculated for every k = 1, . . . , n separately and then the matrices are assembled in
the end. If the hat functions are all symmetric, i.e. on an equidistant grid (x0, . . . , xn) with the
same scaling, those submatrices are identical for all k = 2, . . . , n−1. Only the elements subject
to the boundary conditions have to be updated in the very end. For the model problem, if
we take for simplicity equidistant nodes x0, . . . , xn and a hat function basis given by

φj(xi) =
⎧⎪⎪⎨⎪⎪⎩

1, for j = i,
0, otherwise,

then for each x

φj(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x−xj−1
h , for xj−1 ≤ x ≤ xj ,

xj+1−x
h , for xj ≤ x ≤ xj+1,

0, otherwise.
Every matrix Zk, for k = 2, . . . , n − 1, is then of the form

Zk =
1
h
( 2 −1
−1 2 ) ,

while Rk, for k = 2, . . . , n − 1, becomes

Rk =
h

3
(2 1

2
1
2 2

) .

The calculation of R and Z does not depend on the discretization of the time. So the
matrices can be computed in advance. Let us introduce the equidistant time discretization
0 = t0 < t1 < . . . < tN = T with step size k = T /N . Since R and Z are constant, we get

R(ξ(ti) − ξ(ti−1)) − kZξ(t) = b(ti) − b(ti−1), t ∈ [ti, ti+1].
Here the time derivatives are approximated by

ξ̇(t) ≈ ξ(ti) − ξ(ti−1)
k

, t ∈ [ti, ti+1],

and

ḃ(t) ≈ b(ti) − b(ti−1)
k

, t ∈ [ti, ti+1].
For ξ(t) in the second term of the linear system of equations we apply the Crank–Nicolson
approximation, given by

ξ(t) ≈ ξ(ti) + ξ(ti−1)
2

, t ∈ [ti, ti+1].

This leads to the following fully discrete equation

R(ξ(ti) − ξ(ti−1)) − kZ(1
2ξ(ti) +

1
2ξ(ti−1)) = b(ti) − b(ti−1),

which is clearly equal to

(R − k
2Z) ξ(ti) = (R + k

2Z) ξ(ti−1) + (b(ti) − b(ti−1)).
Each component of this equation is known, except for ξ(ti). Therefore we can calculate the
approximation for each time step by solving the system of linear equations. The initial
condition is X0 is approximated as follows:

X(0, x) ≈
n

∑
j=1

ξ(0)φj(x).
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If we set for the abstract source term f the additive noise term dL(t), we get for each entry
j = 1, . . . , n

(4.1) (b(ti) − b(ti−1))j =
1
2
h(∆iL(xj) −∆iL(xj−1)),

where ∆iL(x) = L(ti, x) −L(ti−1, x).
The situation is slightly more delicate when we wish to simulate a first order hyperbolic

equation. The Galerkin approximation will only lead to stable results, if the solution is
smooth. One approach to a stable numerical scheme is to introduce an artificial diffusion along
the characteristic lines. These approximation schemes are called Petrov–Galerkin methods.

The main difference between a Petrov–Galerkin method and a Galerkin method is the set
of used test functions. In a Galerkin approximation, one uses the same functions as test and
trial functions, as we did above. In contrast, to implement our Petrov–Galerkin method we
choose as test functions φ + γφ̂, where φ is an element of the hat function basis, φ̂ denotes
the (e.g. weak) derivative of the basis function, and γ ∈ R. The trial functions remain φ. The
parameter γ has to be chosen according to the problem and depends on h. For first order
hyperbolic equations we only have essential boundary conditions at the inflow boundary ∂D−,
which leads to the following definition for the finite element space:

S−h = {χ ∈ Sh ∶ χ = c at ∂D−},
for some real function c.

Consider the initial boundary value problem

dX(t)
dt

= ∇X(t) + f(t)
dt

or with the previous notations
Ẋ =Xx + ḟ

in a domain D ⊂ R+ with some boundary condition on the inflow boundary and initial condi-
tion u(0) = v equal to the boundary condition at the inflow boundary ∂D−. The semidiscrete
problem is now to find a function Xh(t) ∈ S−h such that

(Ẋh, φ + γφ̂) = ((Xh)x, φ + γφ̂) + (ḟ , φ + γφ̂) ∀φ ∈ S−h , t > 0,

where (⋅, ⋅) is the abbreviation of (⋅, ⋅)H . In terms of the hat function basis (φj , j = 1, . . . , n),
we write

(R + R̂) u̇ + (Z + Ẑ)u = ḃ,
where R = (ri,j , i, j = 1, . . . , n) has elements ri,j = (φi, φj), R̂ = (r̂i,j , i, j = 1, . . . , n) has ele-
ments r̂i,j = (φi, φ̂j), Z = (zi,j , i, j = 1, . . . , n) consists of zi,j = (φi, (φx)j) and Ẑ = (ẑi,j , i, j =
1, . . . , n) consists of ẑi,j = (φi, (φ̂x)j). The vector b denotes the source term evaluated accord-
ing to the test function ḃj(t) = ∫D ḟ(t, x)φj(x)dx+ γ ∫D ḟ(t, x)φ̂j(x)dx. One has to take into
account the essential boundary conditions on the inflow boundary here as well.

For the fully discrete problem we will use a Crank–Nicolson approach. This leads to the
equation

(R + R̂ − k
2(Z + Ẑ))ξ(ti) = (R + R̂ + k

2(Z + Ẑ))ξ(ti−1) + (b(ti) − b(ti−1)).

The system of linear equations can be solved recursively, where (b(ti) − b(ti−1)) is defined for
the random field f as before in the parabolic case.
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5. Simulations

In many models for finance we face SPDEs with additive noise, see [3]. We consider the
following setup for the heat equation with additive noise:

dX(t) = ∆X(t)dt + dM(t), t ∈ [0,1],
subject to the initial condition X(0, x) = sin(πx) for x ∈ [0,1], and Dirichlet boundary
conditions X(t,0) = X(t,1) = 0. The stochastic process M is either of Wiener type W or a
Lévy type martingale L. The solution to the corresponding deterministic system

du(t) = ∆u(t)dt

is in this case u(t, x) = exp(−π2t) sin(πx). As trial and test functions we take the hat functions
introduced in Section 4. As a kernel function for the covariance operator Q we set q(x, y) =
exp(−κ∣x − y∣2) with range parameter κ > 0 (in the example we take κ = 2). In Figure 1, one
path is displayed on a grid of 400 × 20, i.e. we have 400 discretization points in time and
20 in the space domain. In this example the kernel function of the covariance operator is
q(x, y) = exp(−κ∣x−y∣). As driving noise process we have a Gaussian random field on the left
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(a) Gaussian random field
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(b) NIG random field

Figure 1. Simulation of one path of a heat equation with additive noise on
a grid with 400 × 20 points.

hand side and a random field of correlated NIG processes on the right. The random fields
have the same dimension as the finite element space. These approximations converge almost
surely to the mild solution by Theorem 5.1 in [4] adapted to an Euler–Maruyama scheme and
Lemma 3.1. The smoothing effect of the Laplace operator is evident. For small t the effect
of the noise is hardly visible, whereas towards the end of the time interval, where the change
of the slope of the solution is very small, the noise becomes observable. Convergence results
for the Wiener case are illustrated in Figure 2(a) on a logarithmic and in Figure 3(a) on a
linear scale. Clearly, there is no exact solution to the stochastic problem available. We take
a finite element approximation on a very fine grid as a substitute to an exact solution. In the
parabolic case this means 27 points in space (leading to 214 points in time). On the x-axis we
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Figure 2. Simulated errors with respect to the time discretization and a line
as reference slope on a logarithmic scale.

have the grid size in time and on the y-axis the error which is the approximation of

e = E( sup
j=0,...,n

∥X(tj) −Xj∥2
H)1/2

and which was calculated by taking the square root of the average over the realizations of the
maximum over all time steps of the normalized sum of the squared difference of the solution
on the finest grid and the solution on the coarser grids, i.e. let (Yi, i = 1, . . . ,N) be the set
of simulated paths on a time grid (tj , j = 0, . . . , n) and a space grid (xk, k = 0, . . . , l), and
(Ŷi, i = 1, . . . ,m) the set of the simulated paths of the “exact” solution on the coarser grid in
time and space, then the error is given by

eN =

¿
ÁÁÀ 1

N

N

∑
i=1

max
j=0,...,n

1
m

m

∑
k=1

(Ŷi(tj , xk) − Yi(tj , xk))2.

Note that the noise for Yi and Ŷi, for i = 1, . . . ,m, consists of the same random numbers.
For the coarser grids the increments are added according to the grid size. The number of
realizations was N = 100 and therefore quite small but the convergence is already visible. The
discretization was done starting on a grid of size 24 × 22 up to a grid of 212 × 26 points. The
reference slope is cx for a constant c > 0 because the Euler–Maruyama scheme converges of
order O(k) and O(h2) respectively in the case of additive noise.

The second example that we discuss is a first order hyperbolic stochastic partial differential
equation. Here we choose as a model problem for M Wiener noise W or Lévy martingale
noise L respectively on the interval [0,1]

dX(t) = ∇X(t)dt + dM(t), t ∈ [0,1],
with initial condition X(0, x) = sin(2πx) and inflow boundary condition X(t,0) = − sin(2πt).
The solution to the corresponding deterministic system

du(t) = ∇u(t)dt
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(b) Hyperbolic equation

Figure 3. Simulated errors with respect to the time discretization and a line
as reference slope on a linear scale.

is u(t, x) = sin(2π(x − t)), obtained by dropping the noise term. In Figure 4 we have one
realization on a grid of 80× 80 points with a Gaussian random field on the left hand side and
correspondingly with a random field of correlated NIG processes on the right. One can clearly
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Figure 4. Simulation of one path of a hyperbolic equation with additive noise
on a grid with 80 × 80 points.

see the characteristic lines along which the information in the system is transported. The
first order differential operator has no smoothing effect which leads to a ”rougher” realization
than in the parabolic case. The effect of the noise is much stronger (also due to a different
scaling in time).

Since the solution is not sufficiently smooth, a Galerkin approximation would lead to oscil-
lations along the inflow boundary, which would spread over the whole domain over time. This
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oscillations would be bounded but the result would still be unsatisfactory. With a Petrov–
Galerkin approximation those oscillations are smoothed by the diffusion introduced by the
test functions. The convergence of this method is shown in Figure 2(b) on a logarithmic scale
and in Figure 3(b) on a linear scale, where we have the step size in time on the x-axis and
the error in the y-direction. The reference slope is cx for a constant c > 0. The error was
calculated in the same way as in the parabolic case with 100 paths for each discretization.
The discretization grids were of size 22 × 22 up to 26 × 26 points, the “exact“ solution was cal-
culated with 29 approximation points in space and time. Although the number of simulations
was quite small, the convergence results are visible.

Lemma 3.1 states the necessary convergence speed of the eigenvalues of the covariance
operator, so that the overall convergence is not dominated by the convergence of the noise.
The kernel function in the examples above provides this. If we take q(x, y) = exp(−κ∣x − y∣)
instead of q(x, y) = exp(−κ∣x − y∣2) as the kernel function of the covariance operator the
condition of Lemma 3.1 on the decay of the eigenvalues would not be fulfilled. Figure 5
displays the errors calculated in the parabolic and hyperbolic case with the different kernel
functions on a logarithmic scale. The difference is significant in the parabolic case since the
Lemma states that the decay has to be much faster than in the hyperbolic case. The blue
stars refer to the error calculated with the kernel function that satisfies Lemma 3.1 and the
black circles to a covariance function with slower decay of the eignevalues. Figure 6 shows
the same errors on a linear scale.
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Figure 5. Simulated errors with respect to the time discretization for different
kernel functions on a logarithmic scale.

We conclude this section with a remark on the law of large numbers for Hilbert space
valued processes, which is the essence of a Monte Carlo simulation.

Remark. A completely different question about the viability of the law of large numbers
arises in the numerical implementation. Our approximations are pathwise. For practical rea-
sons, people are often interested in the law of the solution of an SPDE and not in single paths.
To ensure that the presented methods also approximate the law of the equations, we need a
law of large numbers for Hilbert space valued processes. In [14] a result of this nature is given.



14 BARTH AND LANG

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) Parabolic equation

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Hyperbolic equation

Figure 6. Simulated errors with respect to the time discretization for different
kernel functions on a linear scale.

In Theorem 2.1 the authors show that if we are given a sequence of centered, independent
H–valued random variables {Yn}, that fulfill Chung’s condition, i.e. ∑∞n=1 n−2 E(∥Yn∥2), then
the law of large numbers holds. In our approximations we assume independently simulated
paths and therefore we have independent random variables. These are all equally distributed
with finite second moment and therefore Chung’s condition holds, so we can apply the law of
large numbers from [14]. Practically this will be done by the simulation of many paths which
are used to do statistics.

6. Conclusions

In this paper we verified the theoretical convergence rates of a Galerkin–Crank–Nicolson
approximation of a parabolic SPDE and a Petrov–Galerkin–Crank—Nicolson approximation
of a hyperbolic SPDE. The results resemble the expected convergence rates. We addressed
many practical problems arising with the actual implementation, like the approximation of
the infinite dimensional noise and the convergence of the Monte Carlo method. An exam-
ple showed that the convergence of the noise can dominate the overall convergence if the
covariance function is not chosen appropriate. The sample sizes used here were quite small,
however convergence rates are visible. The Euler–Maruyama scheme used here is in the case
of a multiplicative equation converging much slower than the Milstein scheme, so further work
might be the implementation of a Milstein scheme for a multiplicative equation.
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