Curriculum Vitae
Mrs. Larisa Beilina, Ph.D. in Mathematics
Professor of Applied Mathematics
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg, Sweden
Education
Degree  Date  School 
PhD in Mathematics  2003 
Chalmers University of Technology and GU, Gothenburg, Sweden

Ph.Lic. in Mathematics  2002 
Chalmers University of Technology and GU, Gothenburg, Sweden 
M.Sc. in Mathematics  1994 
University of Latvia, Riga, Latvia

Thesis
• Adaptive Finite Element/Dierence Methods for TimeDependent Inverse Scattering problems. Doctoral Dissertation, Chalmers University of Technology, University, Gothenburg,Sweden, 2003. Thesis Advisor Professor Claes Johnson.
• Adaptive Hybrid FEM/FDM methods for Inverse Scattering problems. Thesis for the Degree of LICENTIATE of Engineering, Chalmers University of Technology, University, Gothenburg, Sweden, 2002. Thesis Advisor Professor Claes Johnson.
Scientific professional experience
Particular computational tools
• Adaptive hybrid FEM/FDM methods for inverse scattering problems
• Hybrid (domain decomposition) FEM/FDM methods
• Adaptive hybrid FEM/FDM methods for transient wave equations (scalar, elastic and electromagnetic)
• Numerical Analysis of PDEs and mathematical software
• Scientic computing, parallel processing, high performance computing (C++ libraries PETSC (MPI uni and MPI), MV++ classes)
• Optimization
• Grid generation and applications (AVS/Express, CAD, GID, TETGEN, PLOTMTV)
• Programming(C/C++, PETSc, Pascal, Fortran, Matlab/Femlab, Assembler, Natural/ADABAS)
Participation in research projects and international collaboration
List of publications of L. Beilina
Books
1. L. Beilina, Adaptive hybrid FEM/FDM methods for inverse scattering problems. Inverse Problems and Information Technologies, V.1, N.3, pp.73116, 2002.
2. L. Beilina, Adaptive hybrid nite element/dierence methods: application to inverse elastic scattering. Inverse and IllPosed Problems, V.11, N.6, pp.585618, 2003.
3. L. Beilina, Eciency of a Hybrid FEM/FDM methods for elastic waves, Applied and Computational Mathematics, V.2, N.1, pp.1329, 2003.
4. L. Beilina, Adaptive Finite Element/Dierence Method for inverse elastic scattering waves , Applied and Computational Mathematics, V.2, pp.119134, 2003.
5. L. Beilina, S. Korotov, M. Krizek, Local Nonobtuse tetrahedral renement techniques near Ficheralike corners. Applications of Mathematics, N.50, pp. 569581, 2005.
6. L. Beilina, C. Johnson, A posteriori error estimation in computational inverse scattering, Mathematical Models and Methods in Applied Sciences, V.15, N.1, pp.2337, 2005.
7. L. Beilina and C. Clason, An adaptive hybrid FEM/FDM method for an inverse scattering problem in scanning acoustic microscopy, SIAM Sci.Comp., V.28, I.1, pp.382402, 2006.
8. L. Beilina, M. V. Klibanov, A globally convergent numerical method for some coefficient inverse problems with resulting second order elliptic equations, SIAM Sci.Comp., V.31, N.1, 478509, 2008.
9. L. Beilina, M. P. Hatlo, H. E. Krogstad, Adaptive algorithm for an inverse electromagnetic scattering problem, Applicable Analysis, V.88, N.1, 1528, 2009.
10. L. Beilina and M. V. Klibanov. A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem, Inverse Problems, 26, 045012, 2010.
11. L. Beilina and M. V. Klibanov. Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D, J. Inverse and Illposed problems, 18(1), 85132, 2010.
12. M.V. Klibanov, M.A. Fiddy, L. Beilina, N. Pantong and J. Schenk, Picosecond scale experimental verication of a globally convergent numerical method for a coefficient inverse problem, Inverse problems, 26, 045003, 2010.
13. J. Xin, L.Beilina, Michael V.Klibanov, Globally convergent numerical methods for coefficient inverse problems for imaging inhomogeneities, Computing in Science and Engineering, (CISE), V.12(5), pp.6477, 2010.
14. L.Beilina, M.V.Klibanov and M.Yu.Kokurin, Adaptivity with relaxation for illposed problems and global convergence for a coefficient inverse problem, Journal of Mathematical Sciences, JMS, Springer, 167(3), pp.279325, 2010.
15. L.Beilina, Adaptive Finite Element Method for a coefficient inverse problem for the Maxwell's system, Applicable Analysis, V.90(10), pp.14611479, 2011.
16. L.Beilina, Adaptive Hybrid Finite Element/Dierence Method for Maxwell's Equations: An a Priori Error Estimate and Efficiency, Applied and Computational Mathematics (ACM), V.9(2), 2010.
17.M. Asadzadeh and L. Beilina, A posteriori error analysis in a globally convergent numerical method for a hyperbolic coefficient inverse problem, Inverse Problems, 26, 115007, 2010.
18. L. Beilina, M. Grote, Adaptive Hybrid Finite Element/Difference Method for Maxwell's equations, TWMS J. of Pure and Applied Mathematics, V.1(2), pp.176197, 2010.
19. A.Kuzhuget, L.Beilina, M.V.Klibanov, Global convergence and quasireversibility for a coefficient inverse problem with backscattered data, Journal of Mathematical Sciences, JMS, Springer, 181, 2, 126163, 2012.
20. L.Beilina, M.V.Klibanov, A.Kuzhuget, New a posteriori error estimates for adaptivity technique and global convergence for a hyperbolic coefficient inverse problem,
Journal of Mathematical Sciences, JMS, Springer, 172, 4, 449476, 2011.
21. L.Beilina, M.V.Klibanov, Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, 2010.
22. M.V.Klibanov, A.B.Bakushinsky, L.Beilina, Why a minimizer of the Tikhonov functional is closer to the exact solution than the first guess, J. Inverse and Illposed problems, 19, pp.83105, 2011.
23. Beilina L and Klibanov M V The philosophy of the approximate global convergence for multidimensional coefficient inverse problems, Complex Variables and Elliptic Equations, DOI:10.1080/17476933.2011.636432, 2012.
24. L. Beilina, Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for the Maxwell's system in time domain, CEJM, 11(4), pp.702733, DOI: 10.2478/s1153301302023, 2013.
25. L. Beilina and M.V. Klibanov, A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data, J. Inverse and IllPosed Problems, 20, 513565, 2012.
26. A.V. Kuzhuget, L. Beilina, M.V. Klibanov, A. Sullivan, L. Nguyen and M.A . Fiddy, Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm, Inverse Problems, 28, 095007, 2012.
27. A.V. Kuzhuget, L. Beilina, M.V. Klibanov, A. Sullivan, L. Nguyen and M.A. Fiddy, Quantitative image recovery from measured blind backscattered data using a globally convergent inverse method, IEEE Transactions of Geoscience and Remote Sensing, DOI 10.1109/TGRS.2012.2211885, 2012.
28. A.V. Kuzhuget, L. Beilina and M.V. Klibanov, Approximate global convergence and quasireversibility for a coefficient inverse problem with backscattering data, J. of Mathematical Sciences, 181, 126163, 2012.
29. L. Beilina, M. V. Klibanov, Relaxation property for the adaptivity for illposed problems, Applicable Analysis}, DOI:10.1080/00036811.2013.768339, 2013.
30. N. Koshev and L. Beilina, An Adaptive Finite Element Method for Fredholm Integral Equations of the first kind and its verification on experimental data, CEJM, 11(8), pp. 14891509 2013.
31. L. Beilina, Solving the unsolvable, International Innovation, March (Research Media, UK, pp. 112114) ISSN 20414552, 2013.
32. L. Beilina, Nguyen Trung Thanh, M. V. Klibanov and M. A. Fiddy, Reconstruction from blind experimental data for an inverse problem for a hyperbolic equation, Inverse Problems 30, 025002, doi:10.1088/02665611/30/2/025002, 2014.
33. Nguyen Trung Thanh, L.Beilina, M.V. Klibanov and M.A. Fiddy, Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method, SIAM J. Scientific Computing, 36 (3), pp.273293, 2014.
34. E. M. Karchevskii, A. O. Spiridonov, A. I. Repina and L. Beilina, "Reconstruction of Dielectric Constants of Core and Cladding of Optical Fibers Using Propagation Constants Measurements," Physics Research International, ID 253435, 2014. doi:10.1155/2014/253435.
35. L. Beilina, Nguyen Trung Thanh, M.V. Klibanov and J. B. Malmberg, Reconstruction of shapes and refractive indices from backscattering experimental data using the adaptivity, Inverse Problems, 30, 105007, 2014
36. L. Beilina, Nguyen Trung Thanh, M.V. Klibanov and J. B. Malmberg, Globally convergent and adaptive finite element methods in imaging of buried objects from experimental backscattering radar measurements, Journal of Computational and Applied Mathematics, Elsevier, DOI 10.1016/j.cam.2014.11.055, 2014.
37. L. Beilina, M.V. Klibanov, Globally strongly convex cost functional for a coefficient inverse problem, Nonlinear analysis: real world applications, 22, 272288, 2015.
38. L. Beilina, M. Cristofol and K. Niinimaki, Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations, \emph{Inverse Problems and Imaging}, 9 (1), pp. 125, 2015.
39. N. T. Thanh, L. Beilina, M. V. Klibanov, M. A. Fiddy, Imaging of Buried Objects from Experimental Backscattering TimeDependent Measurements using a Globally Convergent Inverse Algorithm, SIAM Journal on Imaging Sciences, 8(1), 757786, 2015.
Peerreviewed conference proceedings
1. L. Beilina, K. Samuelsson, K. Åhlander, Eciency of a hybrid method for the wave equation. Proceedings of the International Conference on Finite Element Methods: Three dimensional problems. GAKUTO international Series, Mathematical Sciences and Applications, V. 15, 2001.
2. L. Beilina, C. Johnson, Hybrid FEM/FDM method for Inverse scattering problem. Numerical Mathematics and Advanced Applications  ENUMATH 2001, SpringerVerlag.
3. L. Beilina and C. Clason, An inverse medium problem for scanning acoustic microscopy, PAMM ,WILEYVCH Verlag GmbH & Co., 5, pp.647648, 2005.
4. L. Beilina, A posteriori error estimation in biomedical imaging, IEEE ISBI2007, Proceedings of International Symposium on Biomedical Imaging: from nano to macro, pp.13721375, 2007.
5. L. Beilina, A posteriori error estimation for an inverse scattering problem, Proceedings of ECCOMAS thematic conference Computational Methods in Structural Dynamic and Earthquake Engineering, 2007.
6. L.Beilina, M.V.Klibanov, Global convergence for Inverse Problems, Proceedings of ICNAAM2010, AIP (American Institute of Physics) Conference Proceedings , 2010.
7. L.Beilina, Adaptive Finite Element Method for an electromagnetic coefficient inverse problem, Proceedings of ICNAAM2010, AIP (American Institute of Physics) Conference Proceedings, 2010.
8. L.Beilina, Hybrid Discontinuous Finite Element/Finite Difference Method for Maxwell equations, Proceedings of ICNAAM2010, AIP (American Institute of Physics) Conference Proceedings, 2010.
Preprints (available online at www.math.chalmers.se)
Conference presentations (invited speaker)
Administrative activities
Experience from the supervision of students
in Scientic Computing in 2003. The title of the thesis "Adaptive FEM for an inverse scattering problem with Dirichlet boundary conditions".
Awards
Career break
19961997, 20052006 Maternity leave