Wave propagation in a non-homogeneous anisotropic elastic medium occupying a bounded domain $\Omega \subset \mathbb{R}^d$, $d = 2, 3$, with boundary Γ, is described by the linear wave equation:

$$\rho \frac{\partial^2 v}{\partial t^2} - \nabla \cdot \tau = f, \quad \text{in } \Omega \times (0, T),$$ \hspace{1cm} (1)

$$\tau = C \epsilon,$$ \hspace{1cm} (2)

$$v = v_0, \quad \frac{\partial v}{\partial t} = 0,$$ \hspace{1cm} (3)

where $v(x, t) \subset \mathbb{R}^d$, is the displacement, τ is the stress tensor, $\rho(x)$ is the density of the material depending on $x \in \Omega$, t is the time variable, T is a final time, and $f(x, t) \subset \mathbb{R}^d$, is a given source function.
Further, ϵ is the strain tensor with components

$$
\epsilon_{ij} = \epsilon_{ij}(v) = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)
$$

(4)

coupled to τ by Hooke’s law

$$
\tau_{ij} = \sum_{k=1}^{d} \sum_{l=1}^{d} C_{ijkl} \epsilon_{kl},
$$

(5)

where C is a cyclic symmetric tensor, satisfying

$$
C_{ijkl} = C_{klij} = C_{jkli}.
$$

(6)

If the constants $C_{ijkl}(x)$ do not depend on x, the material of the body is said to be homogeneous. If the constants $C_{ijkl}(x)$ do not depend on the choice of the coordinate system, the material of the body is said to be isotropic at the point x. Otherwise, the material is anisotropic at the point x.
In the isotropic case C can be written as

$$C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu \left(\delta_{ij} \delta_{kl} + \delta_{il} \delta_{jk} \right),$$ \hspace{1cm} (7)

where δ_{ij} is Kronecker symbol, in which case (5) takes the form of Hooke’s law

$$\tau_{ij} = \lambda \delta_{ij} \sum_{k=1}^{d} \epsilon_{kk} + 2\mu \epsilon_{ij},$$ \hspace{1cm} (8)

where λ and μ are the Lamé’s coefficients, depending on x, given by

$$\mu = \frac{E}{2(1 + \nu)}, \quad \lambda = \frac{E\nu}{(1 + \nu)(1 - 2\nu)},$$ \hspace{1cm} (9)

where E is the modulus of elasticity (Young modulus) and ν is the Poisson’s ratio of the elastic material. We have that

$$\lambda > 0, \mu > 0 \iff E > 0, 0 < \nu < 1/2.$$ \hspace{1cm} (10)
\[\rho \frac{\partial^2 v_1}{\partial t^2} - \frac{\partial}{\partial x_1} ((\lambda + 2\mu) \frac{\partial v_1}{\partial x_1} + \lambda \frac{\partial v_2}{\partial x_2} + \lambda \frac{\partial v_3}{\partial x_3}) \\
- \frac{\partial}{\partial x_2} (\mu (\frac{\partial v_1}{\partial x_2} + \frac{\partial v_2}{\partial x_1})) \\
- \frac{\partial}{\partial x_3} (\mu (\frac{\partial v_1}{\partial x_3} + \frac{\partial v_3}{\partial x_1})) = f_1, \]

\[\rho \frac{\partial^2 v_2}{\partial t^2} - \frac{\partial}{\partial x_2} ((\lambda + 2\mu) \frac{\partial v_2}{\partial x_2} + \lambda \frac{\partial v_1}{\partial x_1} + \lambda \frac{\partial v_3}{\partial x_3}) \\
- \frac{\partial}{\partial x_1} (\mu (\frac{\partial v_1}{\partial x_2} + \frac{\partial v_2}{\partial x_1})) \\
- \frac{\partial}{\partial x_3} (\mu (\frac{\partial v_2}{\partial x_3} + \frac{\partial v_3}{\partial x_2})) = f_2, \]

\[\rho \frac{\partial^2 v_3}{\partial t^2} - \frac{\partial}{\partial x_3} ((\lambda + 2\mu) \frac{\partial v_3}{\partial x_3} + \lambda \frac{\partial v_2}{\partial x_2} + \lambda \frac{\partial v_1}{\partial x_1}) \\
- \frac{\partial}{\partial x_2} (\mu (\frac{\partial v_3}{\partial x_2} + \frac{\partial v_2}{\partial x_3})) \\
- \frac{\partial}{\partial x_1} (\mu (\frac{\partial v_1}{\partial x_3} + \frac{\partial v_3}{\partial x_1})) = f_3, \]
or in more compact form

\[
\rho \frac{\partial^2 v}{\partial t^2} - \nabla \cdot (\mu \nabla v) - \nabla ((\lambda + \mu) \nabla \cdot v) = f. \tag{11}
\]
The inverse scattering problem

We consider the elastics system in a non-homogeneous isotropic medium in a bounded domain $\Omega \subset \mathbb{R}^d$, $d = 2, 3$, with boundary Γ:

$$
\rho \frac{\partial^2 v}{\partial t^2} - \nabla \cdot (\mu \nabla v) - \nabla((\lambda + \mu) \nabla \cdot v) = f \quad \text{in} \quad \Omega \times (0, T),
$$

$$
v(x, 0) = v_0(t), \quad \frac{\partial v(x, t)}{\partial t} = 0, v|_{\Gamma} = 0.
$$

where $v = (v_1, v_2, v_3)^T$, $\nabla v = (\nabla v_1, \nabla v_2, \nabla v_3)^T$, and $\nabla \cdot v$ is the divergence of the vector field v.
The inverse problem for (12 - 13) can be formulated as follows: find a controls ρ, μ, λ which belongs to the set of admissible controls

$$U = \{ \rho, \mu, \lambda \in L^2(\Omega); 0 < \rho\min < \rho(x) < \rho\max, \\
0 < \lambda\min < \lambda(x) < \lambda\max, \\
0 < \mu\min < \mu(x) < \mu\max \}$$

and minimizes the quantity

$$E(v, \rho, \lambda, \mu) = \frac{1}{2} \int_0^T \int_{\Omega} (v - \tilde{v})^2 \delta_{obs} \ dx dt + \frac{1}{2} \gamma_1 \int_{\Omega} \rho^2 \ dx \\
+ \frac{1}{2} \gamma_2 \int_{\Omega} \mu^2 \ dx + \frac{1}{2} \gamma_3 \int_{\Omega} \lambda^2 \ dx,$$

(15)

where \tilde{v} is observed data at a finite set of observation points x_{obs}, v satisfies (12) and thus depends on ρ, μ, λ, $\delta_{obs} = \sum \delta(x_{obs})$ is a sum of delta-functions corresponding to the observation points, and $\gamma_i, \ i = 1, 2, 3$ are a regularization parameters.
To approach this minimization problem, we introduce the Lagrangian

\[L(\alpha, v, \rho, \mu, \lambda) = E(v, \rho, \lambda, \mu) + \]

\[\int_0^T \int_\Omega \left(-\rho \frac{\partial \alpha}{\partial t} \frac{\partial v}{\partial t} + \mu \nabla \alpha \nabla v + (\lambda + \mu) \nabla \cdot v \nabla \cdot \alpha - f \alpha \right) \, dx \, dt, \]

and search for a stationary point with respect to \((\alpha, v, \rho, \mu, \lambda)\) satisfying for all \((\bar{\alpha}, \bar{v}, \bar{\rho}, \bar{\lambda}, \bar{\mu})\)

\[L'(\alpha, v, \rho, \mu, \lambda)(\bar{\alpha}, \bar{v}, \bar{\rho}, \bar{\mu}, \bar{\lambda}) = 0, \quad (16) \]

where \(L'\) is the gradient of \(L\) and we assume that \(\alpha(\cdot, T) = \bar{\alpha}(\cdot, T) = 0, \alpha = 0\) and \(v(\cdot, 0) = \bar{v}(\cdot, 0) = 0.\)
\[0 = \frac{\partial L}{\partial \alpha}(\alpha, v, \rho, \mu, \lambda)(\bar{\alpha}) = \int_0^T \int_\Omega \left(-\rho \frac{\partial \bar{\alpha}}{\partial t} \frac{\partial v}{\partial t} + \mu \nabla \bar{\alpha} \nabla v \right) dt + (\lambda + \mu) \nabla \cdot v \nabla \cdot \bar{\alpha} - f \bar{\alpha} \] dx dt, \tag{17} \]

\[0 = \frac{\partial L}{\partial v}(\alpha, v, \rho, \mu, \lambda)(\bar{v}) = \int_0^T \int_\Omega (v - \bar{v}) \bar{v} \delta_{obs} \] dx dt \tag{18} \]

\[+ \int_0^T \int_\Omega -\rho \frac{\partial \alpha}{\partial t} \frac{\partial \bar{v}}{\partial t} + \mu \nabla \alpha \nabla \bar{v} + (\lambda + \mu) \nabla \cdot \bar{v} \] \nabla \cdot \alpha \] dx dt,
\[0 = \frac{\partial L}{\partial \rho}(\alpha, v, \rho, \mu, \lambda)(\bar{\rho}) = \int_0^T \int_\Omega \frac{\partial \alpha(x, t)}{\partial t} \frac{\partial v(x, t)}{\partial t} \bar{\rho} \, dx \, dt \quad (19) \]

\[+ \quad \gamma_1 \int_\Omega \rho \bar{\rho} \, dx, \quad x \in \Omega. \]

\[0 = \frac{\partial L}{\partial \mu}(\alpha, v, \rho, \mu, \lambda)(\bar{\mu}) = \int_0^T \int_\Omega (\nabla \alpha \nabla v + \nabla \cdot v \nabla \cdot \alpha) \bar{\mu} \, dx \, dt \]

\[+ \quad \gamma_2 \int_\Omega \mu \bar{\mu} \, dx, \quad x \in \Omega. \]

\[0 = \frac{\partial L}{\partial \lambda}(\alpha, v, \rho, \mu, \lambda)(\bar{\lambda}) = \int_0^T \int_\Omega \nabla \cdot v \nabla \cdot \alpha \bar{\lambda} \, dx \, dt \quad (20) \]

\[+ \quad \gamma_3 \int_\Omega \lambda \bar{\lambda} \, dx, \quad x \in \Omega. \]
The equation (17) is a weak form of the state equation (12 - 13), the equation (18) is a weak form of the adjoint state equation

\[
\rho \frac{\partial^2 \alpha}{\partial t^2} - \nabla \cdot (\mu \nabla \alpha) - \nabla ((\lambda + \mu) \nabla \cdot \alpha) = -(v - \tilde{v}) \delta_{obs}, \ x \in \Omega, \ 0 < t < T,
\]

\[
\alpha(T) = \frac{\partial \alpha(T)}{\partial t} = 0,
\]

\[
\alpha = 0 \ on \ \Gamma \times (0, T),
\]

and (19) - (20) expresses stationarity with respect to \(\rho(x), \mu(x), \lambda(x) \).
To solve the minimization problem we shall use a discrete form of the following steepest descent or gradient method starting from an initial guess ρ^0, μ^0, λ^0 and computing a sequence ρ^n, μ^n, λ^n in the following steps:

1. Compute the solution $v^n = (v^n_1, v^n_2, v^n_3)$ of the forward problem (12 - 13) with $\rho = \rho^n, \mu = \mu^n, \lambda = \lambda^n$.

2. Compute the solution $\alpha^n = (\alpha^n_1, \alpha^n_2, \alpha^n_3)$ of the adjoint problem (22).

3. Update the ρ, μ, λ according to

$$
\begin{align*}
\rho^{n+1}(x) & = \rho^n(x) - \beta^n \left(\int_0^T \frac{\partial \alpha^n(x, t)}{\partial t} \frac{\partial v^n(x, t)}{\partial t} dt + \gamma_1 \rho^n(x) \right), \\
\mu^{n+1}(x) & = \mu^n(x) - \beta^n \left(\int_0^T \nabla \alpha^n \nabla v^n + \nabla \cdot v^n \nabla \cdot \alpha^n + \gamma_2 \mu^n(x) \right), \\
\lambda^{n+1}(x) & = \lambda^n(x) - \beta^n \left(\int_0^T \nabla \cdot v^n \nabla \cdot \alpha^n + \gamma_3 \lambda^n(x) \right),
\end{align*}
$$
We now formulate a finite element method for (16) based on using continuous piecewise linear functions in space and time. We discretize $\Omega \times (0, T)$ in the usual way denoting by $K_h = \{ K \}$ a partition of the domain Ω into elements K (triangles in \mathbb{R}^2 and tetrahedra in \mathbb{R}^3 with $h = h(x)$ being a mesh function representing the local diameter of the elements), and we let $J_k = \{ J \}$ be a partition of the time interval $I = (0, T)$ into time intervals $J = (t_{k-1}, t_k]$ of uniform length $\tau = t_k - t_{k-1}$. In fully discrete form the resulting method corresponds to a centered finite difference approximation for the second order time derivative and a usual finite element approximation of the Laplacian.

To formulate the finite element method for (16) we introduce the finite
element spaces V_h, W^ν_h and W^α_h defined by:

\[
V_h := \{ v \in L_2(\Omega) : v \in P_0(K), \forall K \in K_h \},
\]
\[
W^\nu := \{ v \in [H^1(\Omega \times I)]^3 : v(\cdot, 0) = 0, v|\Gamma = 0 \},
\]
\[
W^\alpha := \{ \alpha \in [H^1(\Omega \times I)]^3 : \alpha(\cdot, T) = \alpha|\Gamma = 0 \},
\]
\[
W^\nu_h := \{ v \in W^\nu : v|_{K \times J} \in [P_1(K) \times P_1(J)]^3, \forall K \in K_h, \forall J \in J_k \},
\]
\[
W^\alpha_h := \{ v \in W^\alpha : v|_{K \times J} \in [P_1(K) \times P_1(J)]^3, \forall K \in K_h, \forall J \in J_k \},
\]

where $P_1(K)$ and $P_1(J)$ are the set of linear functions on K and J, respectively.
The finite element method now reads: Find
\[\rho_h \in V_h, \mu_h \in V_h, \lambda_h \in V_h, \alpha_h \in W_h^\alpha, v_h \in W_h^v, \] such that
\[L'(\alpha_h, v_h, \rho_h, \mu_h, \lambda_h)(\bar{\alpha}, \bar{v}, \bar{\rho}, \bar{\mu}, \bar{\lambda}) = 0 \]
\[\forall \bar{\rho} \in V_h, \bar{\mu} \in V_h, \bar{\lambda} \in V_h, \bar{\alpha} \in W_h^\alpha, \bar{v} \in W_h^v. \]
Expanding v, α in terms of the standard continuous piecewise linear functions $\varphi_i(x)$ in space and $\psi_i(t)$ in time and substituting this into (17 - 18), the following system of linear equations is obtained:

$$M(v^{k+1} - 2v^k + v^{k-1}) = \frac{\tau^2}{\rho} F^k - \frac{\tau^2}{\rho} \mu K(\frac{1}{6}v^{k-1} + \frac{2}{3}v^k + \frac{1}{6}v^{k+1})$$

$$- \frac{\tau^2}{\rho} (\lambda + \mu) Dv^k,$$

(22)

$$M(\alpha^{k+1} - 2\alpha^k + \alpha^{k-1}) = -\frac{\tau^2}{\rho} S^k - \frac{\tau^2}{\rho} \mu K(\frac{1}{6}\alpha^{k-1} + \frac{2}{3}\alpha^k + \frac{1}{6}\alpha^{k+1})$$

$$- \frac{\tau^2}{\rho} (\lambda + \mu) D\alpha^k,$$

(23)
with initial conditions:

\[v(0) = 0, \quad \dot{v}(0) \approx 0, \]
\[\alpha(T) = 0, \quad \dot{\alpha}(T) \approx 0. \]

Here, \(M \) is the mass matrix in space, \(K \) is the stiffness matrix, \(D \) is the divergence matrice, \(k = 1, 2, 3 \ldots \) denotes the time level, \(F^k, S^k \) are the load vectors, \(\mathbf{v} \) is the unknown discrete field values of \(v \), \(\mathbf{\alpha} \) is the unknown discrete field values of \(\alpha \) and \(\tau \) is the time step.
The explicit formulas for the entries in system (22 - 23) at the element level can be given as:

\[
M_{i,j}^e = (\varphi_i, \varphi_j)_e, \quad (26)
\]
\[
K_{i,j}^e = (\nabla \varphi_i, \nabla \varphi_j)_e, \quad (27)
\]
\[
D_{i,j}^e = (\nabla \cdot \varphi_i, \nabla \cdot \varphi_j)_e, \quad (28)
\]
\[
F_{j,m}^e = (f, \varphi_j \psi_m)_{e \times J}, \quad (29)
\]
\[
S_{j,m}^e = (v - \tilde{v}, \varphi_j \psi_m)_{e \times J}, \quad (30)
\]

where \((.,.)_e\) denotes the \(L_2(e)\) scalar product. The matrix \(M_e\) is the contribution from element \(e\) to the global assembled matrix in space \(M\), \(K_e\) is the contribution from element \(e\) to the global assembled matrix \(K\), \(D_e\) is the contribution from element \(e\) to the global assembled matrix \(D\), \(F^e\) and \(S^e\) are the contributions from element \(e\) to the assembled source vectors \(F\) and vector of the right hand side of (22), correspondingly.
To obtain an explicit scheme we approximate M with the lumped mass matrix M^L, the diagonal approximation obtained by taking the row sum of M. By multiplying (22) - (23) with $(M^L)^{-1}$ and replacing the terms $\frac{1}{6}v^{k-1} + \frac{2}{3}v^k + \frac{1}{6}v^{k+1}$ and $\frac{1}{6}\alpha^{k-1} + \frac{2}{3}\alpha^k + \frac{1}{6}\alpha^{k+1}$ by v^k and α^k, respectively, we obtain an efficient explicit formulation:

\[
\begin{align*}
v^{k+1} &= \frac{\tau^2}{\rho}(M^L)^{-1}F^k + 2v^k - \frac{\tau^2}{\rho}(M^L)^{-1}Kv^k \\
&\quad - \frac{\tau^2}{\rho}(\lambda + \mu)(M^L)^{-1}Dv^k - v^{k-1},
\end{align*}
\]

\[
\begin{align*}
\alpha^{k-1} &= -\frac{\tau^2}{\rho}(M^L)^{-1}S^k + 2\alpha^k - \frac{\tau^2}{\rho}(M^L)^{-1}K\alpha^k \\
&\quad - \frac{\tau^2}{\rho}(\lambda + \mu)(M^L)^{-1}D\alpha^k - \alpha^{k+1}.
\end{align*}
\]
The discrete version of gradients takes the form:

\[
0 = \frac{\partial L}{\partial \rho}(\alpha, v, \rho(x), \mu(x), \lambda(x))(\bar{\rho}) = \int_0^T \int_\Omega \frac{\partial \alpha_h}{\partial t} \frac{\partial v_h}{\partial t} \bar{\rho} \, dx \, dt + \gamma_1 \int_\Omega \rho_h \bar{\rho} \, dx, \forall \bar{\rho} \in V_h. \tag{33}
\]

\[
0 = \frac{\partial L}{\partial \mu}(\alpha, v, \rho(x), \mu(x), \lambda(x))(\bar{\mu}) = \int_0^T \int_\Omega (\nabla \alpha_h \nabla v_h + \nabla \cdot v_h \nabla \cdot \alpha_h)\bar{\mu} \, dx \, dt
+ \gamma_2 \int_\Omega \mu_h \bar{\mu} \, dx, \, x \in \Omega. \tag{34}
\]

\[
0 = \frac{\partial L}{\partial \lambda}(\alpha, v, \rho(x), \mu(x), \lambda(x))(\bar{\lambda}) = \int_0^T \int_\Omega \nabla \cdot v_h \nabla \cdot \alpha_h \bar{\lambda} \, dx \, dt + \gamma_3 \int_\Omega \lambda_h \bar{\lambda} \, dx, \, x \in \Omega. \tag{35}
\]
An a posteriori error estimate for the Lagrangian

We start by writing an equation for the error e in the Lagrangian as

$$e = L(\alpha, v, \rho, \mu, \lambda) - L(\alpha_h, v_h, \rho_h, \mu_h, \lambda_h)$$

$$= \frac{1}{2} L'(\alpha_h, v_h, \rho_h, \mu_h, \lambda_h)((\alpha, v, \rho, \mu, \lambda) - (\alpha_h, v_h, \rho_h, \mu_h, \lambda_h)) + R$$

$$= \frac{1}{2} L'(\alpha_h, v_h, \rho_h, \mu_h, \lambda_h)(\alpha - \alpha_h, v - v_h, \rho - \rho_h, \mu - \mu_h, \lambda - \lambda_h) + R,$$

where R denotes (a small) second order term. Using the Galerkin orthogonality and the splitting

$$\alpha - \alpha_h = (\alpha - \alpha^I_h) + (\alpha^I_h - \alpha_h), \quad v - v_h =$$

$$(v - v^I_h) + (v^I_h - v_h), \quad \rho - \rho_h = (\rho - \rho^I_h) + (\rho^I_h - \rho_h), \quad \mu - \mu_h =$$

$$(\mu - \mu^I_h) + (\mu^I_h - \mu_h), \quad \lambda - \lambda_h = (\lambda - \lambda^I_h) + (\lambda^I_h - \lambda_h),$$

where

$$(\alpha^I_h, v^I_h, \rho^I_h, \mu^I_h, \lambda^I_h)$$

denotes an interpolant of

$$(\alpha, v, \rho, \mu, \lambda) \in W^{\alpha}_h \times W^v_h \times V_h \times V_h \times V_h,$$

and neglecting the term $R,$
we get:

\begin{equation}
\begin{aligned}
e & \approx \frac{1}{2} L'(\alpha_h, \nu_h, \rho_h, \mu_h, \lambda_h)(\alpha - \alpha_h, \nu - \nu_h, \rho - \rho_h, \mu - \mu_h, \lambda - \lambda_h) \\
& = \frac{1}{2} (I_1 + I_2 + I_3 + I_4 + I_5),
\end{aligned}
\end{equation}
where

\[I_1 = \int_0^T \int_\Omega -\rho_h \frac{\partial (\alpha - \alpha_h^I)}{\partial t} \frac{\partial v_h}{\partial t} + \mu_h \nabla (\alpha - \alpha_h^I) \nabla v_h + (\lambda_h + \mu_h) (\nabla \cdot v_h \nabla \cdot (\alpha - \alpha_h^I)) - f(\alpha - \alpha_h^I) \, dx \, dt, \]

\[I_2 = \int_0^T \int_\Omega (v_h - \tilde{v})(v - v_h^I) \delta_{obs} \, dx \, dt \]

\[+ \int_0^T \int_\Omega -\rho_h \frac{\partial \alpha_h}{\partial t} \frac{\partial (v - v_h^I)}{\partial t} + \mu_h \nabla \alpha_h \nabla (v - v_h^I) + (\lambda_h + \mu_h) \nabla \cdot (v - v_h^I) \nabla \cdot \alpha_h \, dx \, dt, \]

\[I_3 = -\int_0^T \int_\Omega \frac{\partial \alpha_h(x, t)}{\partial t} \frac{\partial v_h(x, t)}{\partial t} (\rho - \rho_h^I) \, dx \, dt + \int_\Omega \rho_h (\rho - \rho_h^I) \, dx, \]

\[I_4 = \int_0^T \int_\Omega (\nabla \alpha_h \nabla v_h + \nabla \cdot v_h \nabla \cdot \alpha_h) (\mu - \mu_h^I) \, dx \, dt + \int_\Omega \mu_h (\mu - \mu_h^I) \, dx, \]

\[I_5 = \int_0^T \int_\Omega (\nabla \cdot v_h \nabla \cdot \alpha_h)(\lambda - \lambda_h^I) \, dx \, dt + \int_\Omega \lambda_h (\lambda - \lambda_h^I) \, dx. \]
Defining the residuals

\[R_{v_1} = |f|, \quad R_{v_2} = \frac{\mu_h}{2} \max_{S \subset \partial K} h^{-1}_k |[\partial_s v_h]|, \quad R_{v_3} = \frac{\rho_{h}}{2} \tau^{-1} |[\partial v_{ht}]|, \]

\[R_{\alpha_1} = |v_h - \tilde{v}|, \quad R_{\alpha_2} = \frac{\mu_h}{2} \max_{S \subset \partial K} h^{-1}_k |[\partial_s \alpha_h]|, \quad R_{\alpha_3} = \frac{\rho_{h}}{2} \tau^{-1} |[\partial \alpha_{ht}]|, \]

\[R_{\rho_1} = \left| \frac{\partial \alpha_h}{\partial t} \frac{\partial v_h}{\partial t} \right|, \quad R_{\rho_2} = |\rho_{h}|, \]

\[R_{\mu_1} = |\nabla \alpha_h \nabla v_h + \nabla \cdot \alpha_h \nabla \cdot v_h|, \quad R_{\mu_2} = |\mu_{h}|, \]

\[R_{\lambda_1} = |\nabla \cdot \alpha_h \nabla \cdot v_h|, \quad R_{\lambda_2} = |\lambda_{h}|, \]

\[(37)\]
and interpolation errors in the form

\[
\sigma_\alpha = C_T \left| \left[\frac{\partial \alpha_h}{\partial t} \right] \right| + C_h \left| \left[\frac{\partial \alpha_h}{\partial n} \right] \right|, \quad (38)
\]

\[
\sigma_v = C_T \left| \left[\frac{\partial v_h}{\partial t} \right] \right| + C_h \left| \left[\frac{\partial v_h}{\partial n} \right] \right|, \quad (39)
\]

\[
\sigma_\rho = C |[\rho_h]|, \quad \sigma_\mu = C |[\mu_h]|, \quad \sigma_\lambda = C |[\lambda_h]| \quad (40)
\]
we obtain the following a posteriori estimate

\[|e| \leq \frac{1}{2} \left(\int_0^T \int_\Omega R_{v_1} \sigma_\alpha \ dx dt + \int_0^T \int_\Omega R_{v_2} \sigma_\alpha \ dx dt + \int_0^T \int_\Omega R_{v_3} \sigma_\alpha \ dx dt \right. \\
+ \left. \int_0^T \int_\Omega R_{\alpha_1} \sigma_v \ dx dt + \int_0^T \int_\Omega R_{\alpha_2} \sigma_v \ dx dt + \int_0^T \int_\Omega R_{\alpha_3} \sigma_v \ dx dt \right. \\
+ \left. \int_0^T \int_\Omega R_{\rho_1} \sigma_\rho \ dx dt + \int_\Omega R_{\rho_2} \sigma_\rho \ dx + \int_0^T \int_\Omega R_{\mu_1} \sigma_\mu \ dx dt \right. \\
+ \left. \int_\Omega R_{\mu_2} \sigma_\mu \ dx + \int_0^T \int_\Omega R_{\lambda_1} \sigma_\lambda \ dx dt + \int_\Omega R_{\lambda_2} \sigma_\lambda \ dx \right). \]
Adaptive algorithm

In the computations below we use the following variant of the gradient method with adaptive mesh selection:

1. Choose an initial mesh K_h and an initial time partition J_k of the time interval $(0, T)$.

2. Compute the solution $v^n = (v^n_1, v^n_2, v^n_3)$ on K_h and J_k of the forward problem (12 - 13) with $\rho = \rho^n, \mu = \mu^n, \lambda = \lambda^n$.

3. Compute the solution $\alpha^n = (\alpha^n_1, \alpha^n_2, \alpha^n_3)$ of the adjoint problem

$$\rho \frac{\partial^2 \alpha}{\partial t^2} - \mu \Delta \alpha - (\lambda + \mu) \nabla (\nabla \cdot \alpha) = -(v - \tilde{v}) \delta_{obs}, \quad x \in \Omega, \ 0 < t < T$$

on K_h and J_k.
4. Update the ρ, μ, λ according to

\[\rho^{n+1}(x) = \rho^n(x) - \beta^n \left(\int_0^T \frac{\partial \alpha^n(x,t)}{\partial t} \frac{\partial v^n(x,t)}{\partial t} dt + \gamma_1 \rho^n(x) \right), \]

\[\mu^{n+1}(x) = \mu^n(x) - \beta^n \left(\int_0^T \nabla \alpha^n \cdot \nabla v^n + \nabla \cdot v^n \nabla \cdot \alpha^n + \gamma_2 \mu^n(x) \right), \]

\[\lambda^{n+1}(x) = \lambda^n(x) - \beta^n \left(\int_0^T \nabla \cdot v^n \nabla \cdot \alpha^n + \gamma_3 \lambda^n(x) \right). \]

Make steps 1 – 4 as long the gradient quickly decreases.

5. Refine all elements, where

\[(R_{\rho_1} + R_{\rho_2}) \sigma_\rho + (R_{\mu_1} + R_{\mu_2}) \sigma_\mu + (R_{\lambda_1} + R_{\lambda_2}) \sigma_\lambda > tol \]

and construct a new mesh K_h and a new time partition J_k. Here tol is a tolerance chosen by the user. Return to 1.