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A posteriori error estimation for the Lagrangian

We obtain an a posteriori error estimate for error in the Lagrangian by
noting that

L(u) − L(uh) =

∫ 1

0

d

dε
L(εu+ (1 − ε)uh)dε

=

∫ 1

0

L′(εu+ (1 − ε)uh;u− uh)dε

= L′(uh;u− uh) +R,

where R is a second order remainder term. Using now the Galerkin
orthogonality

L′(uh; ū) = 0 ∀ū ∈ Uh

with the splitting

u− uh = (u− uI
h) + (uI

h − uh),
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where uI
h ∈ Uh denotes an interpolant of u, and neglecting the term R,

we get the following error representation:

L(u) − L(uh) ≈ L′(uh;u− uI
h), (1)

involving the residual L′(uh; ·) with u− uI
h appearing as a weight.
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Acoustic wave propagation

The scalar wave equation modeling acoustic wave propagation in a

bounded domain Ω ⊂ Rd, d = 2, 3, with boundary Γ, takes the following

form:

1

c2
∂2p

∂t2
−4p = f, in Ω × (0, T ),

p(·, 0) = 0,
∂p

∂t
(·, 0) = 0, in Ω,

p
∣

∣

Γ
= 0, on Γ × (0, T ),

(2)

where p(x, t) ∈ R is the pressure satisfying homogeneous boundary and

initial conditions, c(x) is the wave speed depending on x ∈ Ω, t is the

time variable and T is a final time, and f(x, t) is a given source function.
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Inverse acoustic scattering

Our goal is to find the function c(x) which minimizes the quantity

E(p, c) =
1

2

∫ T

0

∫

Ω

(p− p̃)2δobsdxdt+
1

2
γ

∫

Ω

|∇c|2 dx, (3)

where p̃ is observed data at xobs, p satisfies (2) and thus depends on c,

δobs =
∑

δ(xobs) is a sum of multiples of delta-functions δ(xobs)

corresponding to the observation points, and γ is a regularization

parameter (small).
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To approach this minimization problem, we introduce the Lagrangian

L(u) = E(p, c) − ((
1

c2
Dp,Dϕ)) + ((∇p,∇ϕ)) − ((f, ϕ)),

where u = (p, ϕ, c), and search for a stationary point with respect to u

satisfying ∀ū

L′(u; ū) = 0, (4)

where L′(u; ·) is the Jacobian of L at u, and we assume that

ϕ(·, T ) = ϕ̄(·, T ) = 0 and p(·, 0) = p̄(·, 0) = 0, together with

homogeneous Dirichlet boundary conditions.
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The equation (4) expresses that in Ω × (0, T )

1

c2
∂2p

∂t2
−4p = f, (5)

1

c2
∂2ϕ

∂t2
−4ϕ = −(p− p̃)δobs, (6)

−γ4c−
2

c3

∫ T

0

∂p

∂t

∂ϕ

∂t
dt = 0, (7)

together with homogeneous boundary and initial conditions.
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Finite element discretization.

To formulate the finite element method for (4) we introduce the finite

element spaces Vh, W p
h and Wϕ

h defined by :

Vh := {v ∈ L2(Ω) : v ∈ P0(K), ∀K ∈ Kh},

W p := {p ∈ H1(Ω × J) : p(·, 0) = 0, p|Γ = 0},

Wϕ := {ϕ ∈ H1(Ω × J) : ϕ(·, T ) = 0, ϕ|Γ = 0},

W
p
h := {v ∈W p : v|K×J ∈ P1(K) × P1(J), ∀K ∈ Kh, ∀J ∈ Jk},

W
ϕ
h := {v ∈Wϕ : v|K×J ∈ P1(K) × P1(J), ∀K ∈ Kh, ∀J ∈ Jk},

where P1(K) and P1(J) are the set of linear functions on K and J,

respectively.
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The finite element method now reads: Find

ch ∈ Vh, ϕh ∈W
ϕ
h , ph ∈W

p
h , such that

L′(ϕh, ph, ch)(ϕ̄, p̄, c̄) = 0 ∀c̄ ∈ Vh, ϕ̄ ∈Wλ
h , p̄ ∈W

p
h . (8)
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An a posteriori error estimate for the Lagrangian

Using the Galerkin orthogonality (4) and the splitting

ϕ− ϕh = (ϕ− ϕI
h) + (ϕI

h − ϕh), p− ph =

(p− pI
h) + (pI

h − ph), c− ch = (c− cIh) + (cIh − ch), where (ϕI
h, p

I
h, c

I
h)

denotes an interpolant of (ϕ, p, c) ∈W
ϕ
h ×W

p
h × Vh, and neglecting the

term R, we get:

e ≈ L′(ϕh, ph, ch)(ϕ− ϕI
h, p− pI

h, c− cIh) = (I1 + I2 + I3), (9)
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where

I1 =

∫ T

0

∫

Ω

(−
1

c2h

∂(ϕ− ϕI
h)

∂t

∂ph

∂t
+ ∇(ϕ− ϕI

h)∇ph

−f(ϕ− ϕI
h)) dxdt,

I2 =

∫ T

0

∫

Ω

(ph − p̃)(p− pI
h) δobs dxdt

+

∫ T

0

∫

Ω

(

−
1

c2h

∂ϕh

∂t

∂(p− pI
h)

∂t
+ ∇ϕh∇(p− pI

h)

)

dxdt,

I3 =
2

c3h

∫ T

0

∫

Ω

∂ϕh(x, t)

∂t

∂ph(x, t)

∂t
(c− cIh) dxdt− γ

∫

Ω

4ch(c− cIh) dx.
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To estimate (??) we integrate by parts in the first and second terms to get:

∣

∣I1
∣

∣ =
∣

∣

∫ T

0

∫

Ω

(

1

c2h

∂2ph

∂t2
(ϕ− ϕI

h) −4ph(ϕ− ϕI
h) − f(ϕ− ϕI

h)

)

dxdt

+
∑

K

∫ T

0

∫

∂K

∂ph

∂nK

(ϕ− ϕI
h) dsdt (10)

−
∑

k

∫

Ω

1

c2h

[∂ph

∂t
(tk)

]

(ϕ− ϕI
h)(tk) dx

∣

∣,

where the terms ∂ph

∂nK
and

[

∂ph

∂t

]

appear during the integration by parts

and denote the derivative of ph in the outward normal direction nK of the

boundary ∂K of element K, and the jump of the derivative of ph in time,

respectively.
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In the second term of the (10) we sum over the element boundaries, and

each internal side S ∈ Sh occurs twice. Denoting by ∂sph the derivative

of a function ph in one of the normal directions of each side S, we can

write
∑

K

∫

∂K

∂ph

∂nK

(ϕ− ϕI
h) ds =

∑

S

∫

S

[

∂sph

]

(ϕ− ϕI
h) ds, (11)

where
[

∂sph

]

is jump in the derivative ∂sph computed from the two

triangles sharing S.
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We distribute each jump equally to the two sharing triangles and return to

a sum over elements edges ∂K :

∑

S

∫

S

[∂sph] · (ϕ− ϕI
h) ds =

∑

K

1

2
h−1

K

∫

∂K

[

∂sph

]

(ϕ− ϕI
h) hK ds.

(12)

We formally set dx = hKds and replace the integrals over the element

boundaries ∂K by integrals over the elements K, to get:
∣

∣

∣

∣

∣

∑

K

1

2
h−1

K

∫

∂K

[

∂sph

]

(ϕ− ϕI
h) hK ds

∣

∣

∣

∣

∣

≤ C max
S⊂∂K

h−1
K

∫

Ω

∣

∣

[

∂sph

]∣

∣

∣

∣(ϕ−ϕI
h)
∣

∣ dx,

(13)

where
[

∂sph

]∣

∣

K
= maxS⊂∂K

[

∂sph

]∣

∣

S
.

14



In a similar way we can estimate the third term in (10):
∣

∣

∣

∣

∣

∑

k

∫

Ω

1

c2h

[

∂ph

∂t
(tk)

]

(ϕ− ϕI
h)(tk) dx

∣

∣

∣

∣

∣

≤

∑

k

∫

Ω

1

c2h
τ−1 ·

∣

∣

∣

∣

[

∂ph

∂t
(tk)

]∣

∣

∣

∣

·
∣

∣(ϕ− ϕI
h)(tk)

∣

∣ τdx

≤ C
∑

k

∫

Jk

∫

Ω

1

c2h
τ−1 ·

∣

∣

[

∂phtk

]∣

∣ ·
∣

∣(ϕ− ϕI
h)
∣

∣ dxdt

= C

∫ T

0

∫

Ω

1

c2h
τ−1 ·

∣

∣

[

∂pht

]∣

∣ ·
∣

∣(ϕ− ϕI
h)
∣

∣ dxdt,

where

[∂phtk
] = max

k

([

∂ph

∂t
(tk)

]

,

[

∂ph

∂t
(tk+1)

])

, (14)

[∂pht] = [∂phtk
] on Jk. (15)
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Substituting both above expressions for the second and third terms in

(10), we get:

∣

∣I1
∣

∣ ≤

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

( 1

c2h

∂2ph

∂t2
−4ph − f

)

(ϕ− ϕI
h) dxdt

∣

∣

∣

∣

∣

(16)

+ C

∫ T

0

∫

Ω

max
S⊂∂K

h−1
k ·

∣

∣

[

∂sph

]∣

∣ ·
∣

∣(ϕ− ϕI
h)
∣

∣ dxdt

+
C

c2h

∫ T

0

∫

Ω

τ−1 ·
∣

∣

[

∂pht

]∣

∣ ·
∣

∣

(

ϕ− ϕI
h)
∣

∣ dxdt

≤ C

∫ T

0

∫

Ω

∣

∣

∣

∣

1

c2h

∂2ph

∂t2
−4ph − f

∣

∣

∣

∣

·

(

τ2

∣

∣

∣

∣

∂2ϕ

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xϕ
∣

∣

)

dxdt

+ C

∫ T

0

∫

Ω

max
S⊂∂K

h−1
k ·

∣

∣

[

∂sph

]∣

∣ ·

(

τ2

∣

∣

∣

∣

∂2ϕ

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xϕ
∣

∣

)

dxdt

+
C

c2h

∫ T

0

∫

Ω

τ−1 ·
∣

∣

[

∂pht

]∣

∣ ·

(

τ2

∣

∣

∣

∣

∂2ϕ

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xϕ
∣

∣

)

dxdt,
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where we used standard interpolation estimates for ϕ− ϕI
h, and C

denotes interpolation constants. Next, the terms ∂2ph

∂t2
and 4ph disappears

in the first integral in (17) (ph is continuous piecewise linear function).

We estimate ∂2ϕ
∂t2

≈

[

∂ϕh
∂t

]

τ
and D2

xϕ ≈

[

∂ϕh
∂n

]

h
to get:

∣

∣I1
∣

∣ ≤ C

∫ T

0

∫

Ω

∣

∣f
∣

∣ ·

(

τ2

∣

∣

∣

∣

∣

[

∂ϕh

∂t

]

τ

∣

∣

∣

∣

∣

+ h2

∣

∣

∣

∣

∣

[

∂ϕh

∂n

]

h

∣

∣

∣

∣

∣

)

dxdt (17)

+ C

∫ T

0

∫

Ω

max
S⊂∂K

h−1
k

∣

∣

[

∂sph

]∣

∣ ·

(

τ2

∣

∣

∣

∣

∣

[

∂ϕh

∂t

]

τ

∣

∣

∣

∣

∣

+ h2

∣

∣

∣

∣

∣

[

∂ϕh

∂n

]

h

∣

∣

∣

∣

∣

)

dxdt

+
C

c2h

∫ T

0

∫

Ω

τ−1
∣

∣

[

∂pht

]∣

∣ ·

(

τ2

∣

∣

∣

∣

∣

[

∂ϕh

∂t

]

τ

∣

∣

∣

∣

∣

+ h2

∣

∣

∣

∣

∣

[

∂ϕh

∂n

]

h

∣

∣

∣

∣

∣

)

dxdt.
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We estimate I2 similarly:

∣

∣I2
∣

∣ ≤

∫ T

0

∫

Ω

∣

∣

∣

∣

(

1

c2h

∂2ϕh

∂t2
(p− pI

h) −4ϕh(p− pI
h) − (ph − p̃)(p− pI

h)

)∣

∣

∣

∣

dxdt

+ C

∫ T

0

∫

Ω

max
S⊂∂K

h−1
k ·

∣

∣

[

∂sϕh

]∣

∣ ·
∣

∣(p− pI
h)
∣

∣ dxdt

+
C

c2h

∫ T

0

∫

Ω

τ−1 ·
∣

∣

[

∂ϕht

]∣

∣ ·
∣

∣(p− pI
h)
∣

∣ dxdt

≤ C

∫ T

0

∫

Ω

∣

∣

∣

∣

(

1

c2h

∂2ϕh

∂t2
−4ϕh − (ph − p̃)

)∣

∣

∣

∣

·
∣

∣(p− pI
h)
∣

∣ dxdt

+ C

∫ T

0

∫

Ω

max
S⊂∂K

h−1
k ·

∣

∣

[

∂sϕh

]∣

∣ ·
∣

∣(p− pI
h)
∣

∣ dxdt

+
C

c2h

∫ T

0

∫

Ω

τ−1 ·
∣

∣

[

∂ϕht

]∣

∣ ·
∣

∣(p− pI
h)
∣

∣ dxdt
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≤ C

∫ T

0

∫

Ω

∣

∣

∣

∣

(

1

c2h

∂2ϕh

∂t2
−4ϕh − (ph − p̃)

)∣

∣

∣

∣

(

τ2

∣

∣

∣

∣

∂2p

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xp
∣

∣

)

dxdt

+ C

∫ T

0

∫

Ω

max
S⊂∂K

h−1
k ·

∣

∣

[

∂sϕh

]∣

∣

(

τ2

∣

∣

∣

∣

∂2p

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xp
∣

∣

)

dxdt

+
C

c2h

∫ T

0

∫

Ω

τ−1 ·
∣

∣

[

∂ϕht

]∣

∣ ·

(

τ2

∣

∣

∣

∣

∂2p

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xp
∣

∣

)

dxdt

≤ C

∫ T

0

∫

Ω

∣

∣(ph − p̃)
∣

∣ ·



τ2

∣

∣

∣

∣

∣

∣

[

∂ph

∂t

]

τ

∣

∣

∣

∣

∣

∣

+ h2

∣

∣

∣

∣

∣

∣

[

∂ph

∂n

]

h

∣

∣

∣

∣

∣

∣



 dxdt

+ C

∫ T

0

∫

Ω

max
S⊂∂K

h−1
k

∣

∣

[

∂sϕh

]∣

∣ ·



τ2

∣

∣

∣

∣

∣

∣

[

∂ph

∂t

]

τ

∣

∣

∣

∣

∣

∣

+ h2

∣

∣

∣

∣

∣

∣

[

∂ph

∂n

]

h

∣

∣

∣

∣

∣

∣



 dxdt

+
C

c2h

∫ T

0

∫

Ω

τ−1 ·
∣

∣

[

∂ϕht

]∣

∣ ·



τ2

∣

∣

∣

∣

∣

∣

[

∂ph

∂t

]

τ

∣

∣

∣

∣

∣

∣

+ h2

∣

∣

∣

∣

∣

∣

[

∂ph

∂n

]

h

∣

∣

∣

∣

∣

∣



 dxdt.
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To estimate I3 we use a standard approximation estimate of the form

c− cIh ≈ hDxc to get:

∣

∣I3
∣

∣ ≤
2

c3h

∫ T

0

∫

Ω

∣

∣

∣

∣

∂ϕh(x, t)

∂t
·
∂ph(x, t)

∂t

∣

∣

∣

∣

· h ·
∣

∣Dxc
∣

∣ dxdt− γ

∫

Ω

∣

∣4ch
∣

∣ · h ·
∣

∣Dxc
∣

∣ dx(18)

≤ C
2

c3h

∫ T

0

∫

Ω

∣

∣

∣

∣

∂ϕh(x, t)

∂t
·
∂ph(x, t)

∂t

∣

∣

∣

∣

· h ·
∣

∣

[ch]

h

∣

∣ dxdt− γ

∫

Ω

∣

∣4chh ·
∣

∣

[ch]

h

∣

∣ dx

≤ C
2

c3h

∫ T

0

∫

Ω

∣

∣

∣

∣

∂ϕh(x, t)

∂t
·
∂ph(x, t)

∂t

∣

∣

∣

∣

·
∣

∣[ch]
∣

∣ dxdt− γ

∫

Ω

∣

∣4ch
∣

∣[ch]
∣

∣ dx.
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Defining the residuals

Rp1
=

∣

∣f
∣

∣, Rp2
=

1

2
max

S⊂∂K
h−1

k

∣

∣

[

∂sph

]∣

∣, Rp3
=

1

2 c2h
τ−1

∣

∣

[

∂pht

]∣

∣,

Rϕ1
=

∣

∣ph − p̃
∣

∣, Rϕ2
=

1

2
max

S⊂∂K
h−1

k

∣

∣

[

∂sϕh

]∣

∣, Rϕ3
=

1

2 c2h
τ−1

∣

∣

[

∂ϕht

]∣

∣,

Rc1
=

2

ch3

∣

∣

∣

∣

∂ϕh

∂t

∣

∣

∣

∣

·

∣

∣

∣

∣

∂ph

∂t

∣

∣

∣

∣

, Rc2
=
∣

∣4ch
∣

∣,

and interpolation errors in the form

σϕ = Cτ

∣

∣

∣

∣

[

∂ϕh

∂t

]∣

∣

∣

∣

+ Ch

∣

∣

∣

∣

[

∂ϕh

∂n

]∣

∣

∣

∣

, (19)

σp = Cτ

∣

∣

∣

∣

[

∂ph

∂t

]∣

∣

∣

∣

+ Ch

∣

∣

∣

∣

[

∂ph

∂n

]∣

∣

∣

∣

, (20)

σc = C
∣

∣[ch]
∣

∣, (21)
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we obtain the following a posteriori estimate

∣

∣e
∣

∣ ≤

∫ T

0

∫

Ω

Rp1
σϕ dxdt+

∫ T

0

∫

Ω

Rp2
σϕ dxdt+

∫ T

0

∫

Ω

Rp3
σϕ dxdt+

+

∫ T

0

∫

Ω

Rϕ1
σp dxdt+

∫ T

0

∫

Ω

Rϕ2
σp dxdt+

∫ T

0

∫

Ω

Rϕ3
σp dxdt

+

∫ T

0

∫

Ω

Rc1
σc dxdt−

∫

Ω

Rc2
σc dx
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An a posteriori error estimate for parameter identification

Now we present a more general a posteriori error estimate, which may be
used to estimate the error in the parameter identification, our prime
quantity of interest. This estimate involves the solution ũ of the problem:

−L′′(uh; ū, ũ) = (ψ, ū) ∀ū, (22)

where ψ acts as given data, and L′′(u; ·, ·) is the Hessian of the
Lagrangian at u, which expresses the sensitivity of the Jacobian L′(u; ·)

with respect to changes in u. Assuming this problem can be solved, we
obtain choosing here ū = u− uh and using the fact that L′′(u; ū, ũ) is
symmetric in ū and ũ, the following error representation:

((ψ, u− uh)) = −L′′(uh;u− uh, ũ)

= −L′(u; ũ) + L′(uh; ũ) +R

= L′(uh; ũ) +R = L′(uh; ũ− ũI) +R,
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where ũI is an interpolant of ũ and again R is a second order remainder.
Neglecting R we obtain the following analog of (1)

((ψ, u− uh)) ≈ L′(uh; ũ− ũI),

with ũ replacing u in the second argument. With proper choice of ψ and
estimating ũ− ũI as above by solving approximately for ũ, we may this
way obtain, for example, an a posteriori error estimate for a mean value of
the error in the parameter identification. The concrete form of this
estimate is the same as that given above for the Lagrangian with only u
replaced by ũ in the weights. We will consider now scalar wave equation
in the form

α
∂2p

∂t2
−4p = f, in Ω × (0, T ),

p(·, 0) = 0,
∂p

∂t
(·, 0) = 0, in Ω,

p
∣

∣

Γ
= 0, on Γ × (0, T ),

(23)
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where we define α = 1
c2 .

The Hessian for the acoustic wave equation

In the acoustic case the second derivative L′′ takes the form

L′′(u; ū, ũ) = −((αDp̃,Dϕ̄)) + ((∇p̃,∇ϕ̄))

+ ((p̄, p̃))δobs
− ((ᾱDp̃,Dϕ))

− ((αDp̄,Dϕ̃)) + ((∇p̄,∇ϕ̃)) − ((ᾱDp,Dϕ̃))

− ((α̃Dp,Dϕ̄)) − ((α̃Dp̄,Dϕ)) + γ(∇ᾱ,∇α̃),

and the Hessian problem takes the following strong form:

αD2ϕ̃− ∆ϕ̃+ p̃δobs
+D2ϕα̃ = ψ1,

αD2p̃− ∆p̃+D2pα̃ = ψ2, (24)
∫ T

0

D2ϕp̃ dt+

∫ T

0

ϕ̃D2p dt− γ4α̃ = ψ3,
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together with initial and boundary conditions. The stability properties of

this linear system determines the sensitivity in the parameter

identification to perturbations. Thus, we may say that the secret of

parameter identification is reflected by the stability (or solvability)

properties of the linear system (24).

With correct data, the dual solution ϕ will be small and thus we may

expect to be able to neglect the terms with D2ϕ as coefficient in (24). In

this case one can prove uniqueness of the solution with γ = 0. We may

further expect the stability properties of this system to improve (the

sensitivity to decrease), with increasing number of observation points and

correct observations.

Algorithm

To get error estimator, we solve iteratively system (24). The iterative

algorithm is:
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0. Find (p, α, ϕ), using quasi-Newton method, see [?], where p is
solution of the state problem, ϕ is solution of the adjoint problem and
α are discrete values of the identification parameter found from the
optimality condition.

1. Choose guess for ψ = (ψ1, ψ2, ψ3), for example, ψ = (0, 0, 1).

2. From third equation of system (24) eliminate α̃ using equation

α̃new = α̃old + ρ(ψ3 −

∫ T

0

ϕ̃D2p dt− γα̃old) (25)

with already computed (p, α, ϕ).

3. From second equation eliminate p̃ solving scalar wave equation

αD2p̃− ∆p̃ = ψ2 −D2pα̃ (26)

4. From first equation eliminate ϕ̃ solving scalar wave equation

αD2ϕ̃− ∆ϕ̃ = ψ1 − p̃δobs
(27)
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5. Repeat steps 2 − 4 until desired convergence is achieved.

1 Numerical examples
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Figure 1: Computed L2 norms of ϕ̃ and
∫ T

0
D2pϕ̃ are given in a), and L2

norms of α̃ are presented in b).
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Figure 2: Computed L2 norms of ϕ̃ are given in a), and L2 norms of α̃ are

presented in b).
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Figure 3: Values of α̃ in one point (2.5,1.3,1.3) are given in a), and in point

(0.7,2.1,1.5) are presented in b).
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Figure 4: Computed L2 norms with γ = 0 of ϕ̃ are given in a), and of α̃

are presented in b).

We now present numerical tests to prove convergence of the presented

above algorithm. We simulate inverse acoustic scattering problem in three

dimensions to identify parameter α in (23).

The computational domain is Ω = [0, 5.0] × [0, 2.5] × [0, 2.5], which is
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split into a finite element domain
ΩFEM = [0.3, 4.7] × [0.3, 2.3] × [0.3, 2.3] with a nonstructured mesh,
and a surrounding domain ΩFDM with a structured mesh. The space
mesh in ΩFEM consists of tetrahedra and in ΩFDM of hexahedra with
mesh size h = 0.2. We apply the hybrid finite element/difference method
presented in [?] with finite elements in ΩFEM and finite differences in
ΩFDM with absorbing boundary conditions on the boundary of Ω.

We present example of the reconstruction of a single cube with spherical
pulses, generated at different points in ΩFDM , which are given by the
source function

f1(x, x0) =







103 sin2 πt if 0 ≤ t ≤ 0.1 and |x− x0| < r,

0 otherwise;
(28)

The experiments are performed with 6 spherical pulses, initialized in
ΩFDM at the points with coordinates (0.45, 2.2, 1.25), (1.25, 2.2, 1.25),
(2.05, 2.2, 1.25), (2.95, 2.2, 1.25), (3.75, 2.2, 1.25) and (4.55, 2.2, 1.25),
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using absorbing boundary conditions on the outer boundary of ΩFDM . In
Fig. 5 - 6 we present the computed exact solution of the problem (23)
inside ΩFEM and ΩFDM . The observation points are placed at the
surface of the ΩFDM such that they are located at the opposite side to the
initialized pulses. We use a total of 22 observation points for this
experiment.

To get data at the observation points we solve the acoustic wave equation
with 6 pulses, initialized as described above, with the exact value of the
parameter α = 2 inside a single cube, and α = 1 in the rest of the
domain. We perform tests with T = 3.0 and 300 time steps.

The optimization algorithm is started with quess value of the parameter
α = 1.0 at all points of the computational domain. The computations was
performed on five times adaptively refined meshes. In Table 1 we shown
computed L2 norms of p− pobs on adaptively refined meshes. The
computational tests show, that the best results of the identification of the
parameter α are obtained on 5 times adaptively refined mesh.

33



opt.it. 2783 nodes 2847 nodes 3183 nodes 3771 nodes 4283 nodes 6613 nodes

1 0.00694825 0.00692864 0.00693746 0.007015554 0.00708052 0.00719459

2 0.00693482 0.00688032 0.00681395 0.006836000 0.00687631 0.00687631

3 0.00692904 0.00685980 0.00673734 0.006691750 0.00667551 0.00667551

4 0.00692904 0.00685377 0.00670842 0.00665982 0.00663715 0.00663764

5 0.00685107 0.00670227 0.00665705 0.00663510 0.00661256

Table 1: L2 norm of computed p − pobs for number of stored corrections

m = 5 on adaptively refined meshes.

1.1 Example 1

To prove the convergence of the Hessian problem (24) first we take values

of (p, α, ϕ) from the solution of the system (4) on a 4 times adaptively
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refined mesh. Then we perform all the steps of the algorithm (23) until L2

norms of ϕ̃, α̃ are stabilized.

Computed L2 norms of α̃, ϕ̃ and
∫ T

0
D2pϕ̃ with ρ = 10 and with

parameter in regularization term γ = 0.1 are presented in Fig. 10, and for
ρ = 100 and γ = 0.01 – in Fig. 2. Computed L2 norms without
regularization parameter (γ = 0) and with ρ = 100 are presented in
Fig. 4.

We tested the same algorithm and with different values of parameters ρ
and γ. In Fig. 7 we show computed L2 norms of α̃, ϕ̃ and

∫ T

0
D2pϕ̃ with

ρ = 10 and γ = 0.01, and also values of α̃ in one point.

Better convergence of the algorithm can be obtained by adding a new
regularization term ργ4α̃. Then the equation for computation α̃ takes the
following form:

α̃new(1 + ργ) = α̃old + ρ(ψ3 −

∫ T

0

ϕ̃D2p dt) + ργ4α̃old. (29)
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In Fig. 8 we show computed L2 norms of α̃, ϕ̃ with adding new

regularization term and without it. In Fig. 9 are presented computational

results for regularization parameters ρ = 1.0, γ = 0.01.

1.2 Example 2

In the second example the data (p, α, ϕ) for Hessian problem are obtained

from the solution of the identification problem on the same meshes as for

example 1. The solution at the observation points obtained on 5 times

refined mesh.
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opt.it. 2783 nodes 2847 nodes 3183 nodes 3771 nodes 4283 nodes 6613 nodes

1 0.00694825 0.00692864 0.00693746 0.007015554 0.00708052 0.00719459

2 0.00693361 0.00687162 0.00678214 0.00677909 0.00681245 0.00692611

3 0.0068053 0.00664284 0.00643874 0.00636594 0.00642106 0.00646023

4 0.00676193 0.00662587 0.0063419 0.00634826 0.00645059

5 0.00630912 0.00643267

0.00622704

0.00619646

0.00618079

Table 2: L2 norm of computed p − pobs for number of stored corrections

m = 5 on adaptively refined meshes.

In this example the new values of the parameter α in reconstruction
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algorithm are computed as

α(n+1) = (1+γ)αn+β(

∫ T

0

∫

Ω

∂ϕn(x, t)

∂t
·
∂pn(x, t)

∂t
dxdt−γ

∫

Ω

4αn dx),

(30)

where β is step length.

In Table 2 we show computed L2 norms of p− pobs on adaptively refined

meshes with regularization parameter γ = 0.0001.

We tested again convergence of α̃ in algorithm for Hessian problem with

different values of parameters ρ and γ, when α̃ is computed using (29). In

Fig. 11-e),f) are presented L2 norms of α̃ and ϕ̃ computed with different

regularization parameters.

After computing α̃ we can define error in the computed parameter α using
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last two terms in a posteriori error for Lagrangian (??)

Eα =

∫ T

0

∫

Ω

∣

∣

∣

∣

∂ϕh(x, t)

∂t
·
∂ph(x, t)

∂t

∣

∣

∣

∣

·
∣

∣[α̃h]
∣

∣ dxdt−γ

∫

Ω

|4αh||·
∣

∣[α̃h]
∣

∣ dx,

(31)

where [α̃h] is jump of α̃h across inter-element boundaries and is

computed from two elements sharing common side.

In this example the computed error in the parameter is Eα = 0.0324972,

when the exact value of the reconstructed parameter α ≈ 1.97, see

Fig. 11-a),b).
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t=0.3 t=0.9

t=0.5 t=1.1

t=0.7 t=1.5

Figure 5: The exact solution in ΩFDM with mesh size h = 0.2. on the

boundary ΩFDM we apply absorbing boundary conditions.
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t=0.3 t=0.9

t=0.5 t=1.1

t=0.7 t=1.5

Figure 6: The exact solution in ΩFEM with mesh size h = 0.2. on the

boundary ΩFDM we apply absorbing boundary conditions.
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Figure 7: Computed L2 norms with γ = 0.001, ρ = 10 of ϕ̃ are given

in a), of α̃ are presented in b), and values of α̃ in points with coordinates

(2.5,1.3,1.3), (0.7,2.1,1.5) are given in c).
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Figure 8: Computed L2 norms with different regularization terms of ϕ̃

are given in a), of α̃ are presented in b), and values of α̃ in point with

coordinates (2.5,1.3,1.3) are given in c).
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Figure 9: Computed L2 norms with regularization parameters ρ =

1.0, γ = 0.01 of ϕ̃ and
∫ T

0
D2pϕ̃ are given in a), of α̃ are presented in

b), and values of α̃ in point with coordinates (0.7,2.1,1.5) are given in c).
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Figure 10: a)-b) Computed L2 norms of ϕ̃ and
∫ T

0
D2pϕ̃ in Example 1 are

given in a), and L2 norms of α̃ are presented in b). c)-d) Isosurfaces for

α̃ ≈ 9.66 and λ̃ ≈ 0.0 where parameters are ρ = 1.0, γ = 0.001.
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Figure 11: Reconstructed parameter α on the five (a)-b)) and four (c)-d))

times refined mesh. Computed L2 norms of α̃ in Example 2 with different

regularization parameters γ are presented in e) and ϕ̃ are given in f).
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