The Finite Element Method for the Wave Equation

The Wave Equation

We consider the scalar wave equation modelling acoustic wave propagation in a bounded domain Ω^3 , with boundary Γ :

$$\frac{1}{c(\mathbf{x})^2} \frac{\partial^2 u}{\partial t^2} - \Delta u = 0, \quad \text{in } \Omega \times (0, T),$$
$$u(\cdot, 0) = 0, \quad \frac{\partial u}{\partial t}(\cdot, 0) = f, \quad \text{in } \Omega,$$
$$\left. \frac{\partial_n u}{\partial_1} \right|_{\Gamma_1} = 0, \quad \text{on } \Gamma \times (0, T),$$
(1)

where u(x, t) is the pressure and c(x) is the wave speed depending on $x = (x_1, x_2, x_3) \in \Omega$, t is the time variable, T is a final time, and f is a load vector.

Finite Element Discretization

We now formulate a finite element method for (1) based on using continuous piecewise linear functions in space and time. We discretise $\Omega \times (0,T)$ in the usual way denoting by $K_h = \{K\}$ a partition of the domain Ω into tetrahedra K (h = h(x) being a mesh function representing the local diameter of the elements), and we let $J_k = \{J\}$ be a partition of the time interval (0,T) into time intervals $J = (t_{k-1}, t_k]$ of uniform length $\tau = t_k - t_{k-1}, k = 1, ..., N$.

To formulate the finite element method for (1) we introduce the finite element space W_h^u defined by :

$$W^{u} := \{ u \in H^{1}(\Omega \times J) : u(\cdot, 0) = 0, \ \partial_{n}u|_{\Gamma} = 0 \}, W^{u}_{h} := \{ u \in W^{u} : u|_{K \times J} \in P_{1}(K) \times P_{1}(J), \forall K \in K_{h}, \forall J \in J_{k} \},$$
(2)

where $P_1(K)$ and $P_1(J)$ are the set of piecewise linear functions on K and J, respectively.

Fully discrete scheme

To obtain discrete scheme we apply CG(1) in space and time and seek a discrete solution in the space W_h^u for u spanned by the functions

$$u(x,t) = \sum_{l=0}^{N} \sum_{i=1}^{M} u_i^l \varphi_i(x) \psi_l(t),$$

where $\varphi_i(x)$ and $\psi_l(t)$ are standard continuous piecewise linear functions in space and time, respectively. Substituting this into (1), we obtain the following system of linear equations:

$$M(\mathbf{u}^{k+1}-2\mathbf{u}^{k}+\mathbf{u}^{k-1}) = \tau^{2}F^{k}-\tau^{2}A(\frac{1}{6}\mathbf{u}^{k-1}+\frac{2}{3}\mathbf{u}^{k}+\frac{1}{6}\mathbf{u}^{k+1}), \quad k = 1, \dots, N-1,$$
(3)

with initial conditions :

$$u(0) = \frac{\partial u}{\partial t}\Big|_{t=0} = 0.$$
(4)

Here, M is the mass matrix in space, A is the stiffness matrix, F^k is the load vector at time level $t_k, k = 1, 2, 3 \dots$, **u** is the unknown discrete field values of u, and τ is the time step.

The explicit formulas for the entries in system (3) at each element e can be given as:

$$M_{i,j}^{e} = \left(\frac{1}{c^{2}}\varphi_{i},\varphi_{j}\right)_{e},$$

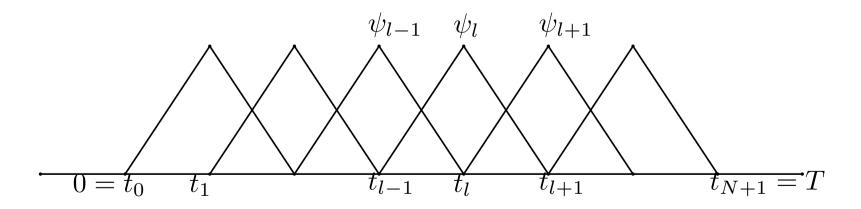
$$K_{i,j}^{e} = (\nabla\varphi_{i},\nabla\varphi_{j})_{e},$$

$$F_{j}^{e} = (f,\varphi_{j})_{e},$$
(5)

where $(.,.)_e$ denotes the $L_2(e)$ scalar product. The matrix M_e is the contribution from element e to the global assembled matrix in space M, K^e is the contribution from element e to the global assembled matrix K.

 W_h^u is a finite dimensional vector space, dim $W_h^u = M \times N$, with a basis consisting of the standard continuous piecewise linear functions $\{\varphi_i\}_{i=1}^M$ in space and hat functions $\{\psi_l\}_{l=1}^N$ in time, where:

$$\psi_{l}(t) = \begin{cases} 0, & \text{if } t \notin [t_{l-1}, t_{l+1}], \\ \frac{t-t_{l-1}}{t_{i}-t_{l-1}}, & \text{if } t \in [t_{l-1}, t_{l}], \\ \frac{t_{l+1}-t_{l}}{t_{l+1}-t_{l}}, & \text{if } t \in [t_{l}, t_{l+1}]; \end{cases}$$
(6)



The discrete system of equations

Using basis of functions $\{\varphi_i\}_{i=1}^M$ in space and $\{\psi_l\}_{l=1}^N$ in time we have: $u_h = \sum_{l=0}^N \sum_{i=1}^M u_h{}_i^l \varphi_i(x) \psi_l(t)$. Substituting into (1) we get:

$$-\sum_{l=0}^{N}\sum_{i=1}^{M}u_{h}{}_{i}^{l}\int_{\Omega}\frac{1}{c^{2}}\varphi_{i}(x)\int_{t_{l-1}}^{t_{l+1}}\frac{\partial\psi_{l}(t)}{\partial t}\frac{\partial v(x,t)}{\partial t}\,dxdt$$
$$+\sum_{l=0}^{N}\sum_{i=1}^{M}u_{h}{}_{i}^{l}\int_{\Omega}\int_{t_{l-1}}^{t_{l+1}}\nabla\varphi_{i}(x)\nabla v(x,t)\psi_{l}(t)\,dxdt \qquad (7)$$
$$=\int_{\Omega}\int_{0}^{T}f(x)v(x,t)\,dxdt \quad \forall v\in W_{h}^{u}.$$

We take $v(x,t) = \varphi_j(x)\psi_m(t)$ and get:

$$-\sum_{l=0}^{N}\sum_{i=1}^{M}u_{hi}^{l}\int_{\Omega}\frac{1}{c^{2}}\varphi_{i}(x)\varphi_{j}(x)\int_{t_{l-1}}^{t_{l+1}}\frac{\partial\psi_{l}(t)}{\partial t}\frac{\partial\psi_{m}(t)}{\partial t}\,dxdt$$
$$+\sum_{l=0}^{N}\sum_{i=1}^{M}u_{hi}^{l}\int_{\Omega}\nabla\varphi_{i}(x)\nabla\varphi_{j}(x)\int_{t_{l-1}}^{t_{l+1}}\psi_{l}(t)\psi_{m}(t)\,dxdt \qquad (8)$$
$$=\int_{\Omega}\int_{0}^{T}f(x)v(x,t)\,dxdt \quad \forall v\in W_{h}^{u}.$$

Let $U = u_{h_i}^l$ denote the vector of unknown coefficients, $M = (m_{ij}), A = (a_{ij})$ are mass and stiffness matrices $M \times M$ in space, correspondingly, with coefficients

$$m_{ij} = \int_{\Omega} \varphi_i(x) \varphi_j(x) \, dx,$$

$$a_{ij} = \int_{\Omega} \nabla \varphi_i(x) \nabla \varphi_j(x) \, dx,$$
(9)

 $P = (p_{lm}), K = (k_{lm})$ are stiffness and mass matrices $N \times N$ in time with coefficients

$$k_{lm} = \int_{t_{l-1}}^{t_{l+1}} \frac{\partial \psi_l(t)}{\partial t} \frac{\partial \psi_m(t)}{\partial t} dt,$$

$$k_{lm} = \int_{t_{l-1}}^{t_{l+1}} \psi_l(t) \psi_m(t) dt,$$
(10)

and the load vector $b = (b_{jm})$ with coefficients

$$b_{jm} = \int_{\Omega} \int_{t_{l-1}}^{t_{l+1}} f(x)\varphi_j(x)\psi_m(t) \, dxdt.$$
(11)

First, we compute $K = (k_{lm})$ and $P = (p_{lm})$. Note, that $k_{lm} = 0, p_{lm} = 0$ unless l = m - 1, l = m, l = m + 1. Using the definition of test functions (6), we compute first diagonal elements k_{ll} :

$$k_{ll} = \int_{t_{l-1}}^{t_{l+1}} \psi_l'(t)\psi_l'(t) dt$$

$$= \int_{t_{l-1}}^{t_l} \left(\frac{1}{\tau}\right)^2 dt + \int_{t_l}^{t_{l+1}} \left(\frac{-1}{\tau}\right)^2 dt = \frac{2}{\tau},$$

$$p_{ll} = \int_{t_{l-1}}^{t_{l+1}} \psi_l(t)\psi_l(t) dt$$

$$= \int_{t_{l-1}}^{t_l} \left(\frac{t-t_{l-1}}{\tau}\right)^2 dt + \int_{t_l}^{t_{l+1}} \left(\frac{t_{l+1}-t}{\tau}\right)^2 dt = \frac{2}{3}\tau,$$

(12)

Similarly,

$$k_{l,l+1} = \int_{t_{l-1}}^{t_{l+1}} \psi_l'(t)\psi_{l+1}'(t) dt$$

$$= \int_{t_l}^{t_{l+1}} \frac{-1}{\tau} \frac{1}{\tau} dt$$

$$= -\frac{1}{\tau},$$

$$k_{l-1,l} = \int_{t_{l-1}}^{t_{l+1}} \psi_{l-1}'(t)\psi_l'(t) dt$$

$$= \int_{t_{l-1}}^{t_l} \frac{-1}{\tau} \frac{1}{\tau} dt$$

$$= -\frac{1}{\tau}.$$

(13)

Verification: write (6) for ψ_{l+1} and ψ_{l-1} and insert then into (14).

$$p_{l,l+1} = \int_{t_{l-1}}^{t_{l+1}} \psi_l(t)\psi_{l+1}(t) dt$$

$$= \int_{t_l-1}^{t_l} \left(\frac{t-t_{l-1}}{\tau}\right) \cdot \left(\frac{t-t_l}{\tau}\right) dt$$

$$= \frac{1}{6}\tau,$$

$$p_{l-1,l} = \int_{t_{l-1}}^{t_{l+1}} \psi_{l-1}(t)\psi_l(t) dt$$

$$= \int_{t_l}^{t_{l+1}} \left(\frac{t_{l+1}-t}{\tau}\right) \cdot \left(\frac{t_l-t}{\tau}\right) dt$$

$$= \frac{1}{6}\tau.$$

(14)

Verification: write (6) for ψ_{l+1} and ψ_{l-1} and insert then into (14).

We compute coefficients of *b* in the same way to get:

$$b_{jm} = \int_{\Omega} \int_{t_{m-1}}^{t_{m+1}} f(x)\varphi_j(x)\psi_m(t) dxdt$$

$$= \int_{\Omega} f(x)\varphi_j(x) \int_{t_{m-1}}^{t_m} \frac{t - t_{m-1}}{\tau} dxdt$$

$$+ \int_{\Omega} f(x)\varphi_j(x) \int_{t_m}^{t_{m+1}} \frac{t_{m+1} - t}{\tau} dxdt$$

$$\approx \tau \int_{\Omega} f(x_j)\varphi_j(x) dx.$$

(15)

We substitude computed coefficients to (8) and get the system of linear equations (3):

$$M(\mathbf{u}^{k+1} - 2\mathbf{u}^k + \mathbf{u}^{k-1}) = \tau^2 F^k - \tau^2 A(\frac{1}{6}\mathbf{u}^{k-1} + \frac{2}{3}\mathbf{u}^k + \frac{1}{6}\mathbf{u}^{k+1}), \quad k = 1, ..., N - 1.$$
(16)

To obtain an explicit scheme we approximate M with the lumped mass matrix M^L in space, the diagonal approximation obtained by taking the row sum of M, as well use mass lumping in time by replacing the terms $\frac{1}{6}\mathbf{u}^{k-1} + \frac{2}{3}\mathbf{u}^k + \frac{1}{6}\mathbf{u}^{k+1}$ by \mathbf{u}^k . By multiplying (16) with $(M^L)^{-1}$ we obtain an efficient explicit formulation:

$$\mathbf{u}^{k+1} = \tau^2 F^k + 2\mathbf{u}^k - \tau^2 (M^L)^{-1} K \mathbf{u}^k - \mathbf{u}^{k-1}, \quad k = 1, ..., N-1,$$
(17)