
A Hybrid Method for the Wave Equation

http://www.math.unibas.ch/∼beilina

1



The mathematical model

The model problem is the wave equation

∂2u

∂t2
= ∇ · (a2∇u) + f, x ∈ Ω ⊂ R3, t > 0, (1)

u(x, 0) = 0, x ∈ Ω, (2)

∂

∂t
u(x, 0) = 0, x ∈ Ω, (3)

u = 0, x ∈ Γ, t > 0 (4)

where u(x, t) is unknown, a is the wave velocity, x ranges over the points

of the space domain, t over the time, f is the source function, and Γ

denotes the boundary of the domain Ω.

2



We can rewrite this second order equation as a system of first order

equations in time using the substitution u1 = ∂
∂t

u and u2 = u, thus

obtaining

∂

∂t
u1 −∇ · (a2∇u2) = f, x ∈ Ω, (5)

∂

∂t
u2 = u1, x ∈ Ω, (6)

u1(x, 0) = u2(x, 0) = 0, x ∈ Ω. (7)

3



In many wave equation applications, only a small part of the

computational domain Ω is complex enough to motivate a more complex

unstructured discretisation, whereas quite large regions of the

computational domain are sufficiently discretised with simple, Cartesian

grids. For our exposition, our model domain consists of two regions,

ΩFEM and ΩFDM , not necessarily simply connected. In the relatively

small ΩFEM domain, we assume that an unstructured discretisation is

appropriate. In the ΩFDM domain, we assume that a structured,

Cartesian, grid is suitable.

4



(a) (b) (c)

Figure 1: Domain decomposition. The hybrid mesh (c) is a combination of

the structured mesh (a) and the unstructured mesh (b) with a thin overlap-

ping of structured elements. The unstructured grid is constructed so that

the grid contains edges approximating an ellipse.

Fig. 1 illustrates the principle in two dimensions.

5



0 1
0

1

X−Axis

Y
−

A
xi

s

0 1
0

1

0 1
0

1

X−Axis

Y
−

A
xi

s

0 1
0

1

(a) A quadrilateral, split into two triangles.

Z
−

A
xi

s

0

1

Y−Axis

0

1 X−Axis

0

1

Z
−

A
xi

s

0

1

Y−Axis

0

1 X−Axis

0

1

(b) A hexahedron, split into six tetrahedra.

Figure 2: In the overlapping domain the finite element grid is created by

splitting the structured cells into simplexes as depicted in (a) and (b) for

2D and 3D, respectively.

6



The FEM grid is generated such that the thin overlapping domain consists

of simplexes obtained by splitting the structured cells as described in

Fig. 2. In the interior part of the FEM grid the discretisation is allowed to

be truly unstructured.

In most of our test cases, we have used Dirichlet boundary conditions. We

have also used an absorbing boundary condition. At a boundary Γ, we

then use ∂
∂t

u − ∂
∂n

u|Γ = 0, where ∂/∂n is the normal derivative.

7



The numerical method

8



(a) (b)

Figure 3: Coupling of FEM and FDM. The nodes of the unstructured FEM

grid of (a) is shown in (b), where rings and crosses are nodes which are

shared between the FEM and FDM grids. The remaining nodes are marked

with stars. The ring nodes are interior to the FDM grid, while the nodes

crosses are interior to the FEM grid. At each time iteration, the FDM

solution values at ring nodes are copied to the corresponding FEM solution

values. At the same time at cross nodes the FEM solution values are copied

to the FDM solution values.
9



With a hybrid discretisation of the computational domain we are now in a
position to formulate our hybrid algorithm. We observe that the interior
nodes of the computational domain belong to either of the following sets:

ωo : Nodes interior to ΩFDM and boundary nodes to ΩFEM ,

ω× : Nodes interior to ΩFEM and boundary nodes to ΩFDM ,

ω∗ : Nodes interior to ΩFEM and not contained in ΩFDM ,

ωD : Nodes interior to ΩFDM and not contained in ΩFEM .

Fig. 3 illustrates the situation for a two-dimensional domain where some
nodes are confined to an ellipse, which requires an unstructured
discretisation. The exterior and the interior of the ellipse may use a
structured discretisation. For clarity, nodes belonging to ΩD are not
shown.

In our algorithm, we store nodes belonging to ωo and Ω× twice, both as
nodes belonging to ΩFEM and ΩFDM . For explicit time stepping

10



schemes, the main loop of the simulation can be sketched:

For every time step

1. Update the solution in the interior of ΩFDM , i.e. at nodes ωD

and ωo using FDM

2. Update the solution in the interior of ΩFEM , i.e. at nodes ω∗

and ω× using FEM

3. Copy values at nodes ω× from ΩFEM to ΩFDM

4. Copy values at nodes ωo from ΩFDM to ΩFEM

The FEM and the FDM schemes that we use are well-known. For the sake

of completeness, we present them below, and we also point out that we

can regard the FDM sheme as a reformulation of the FEM scheme for a

structured grid. Therefore, our hybrid approach can be analysed as a pure

FEM scheme.

11



Finite element formulation

In the ΩFEM domain where an unstructured grid is assumed, we use
FEM. To formulate the finite element method for problem (1) we use the
standard Galerkin finite element method with linear elements in space and
a centralised finite difference approximation for the second order time
derivative. We introduce finite element space Vh for u, consisting of
standard piecewise linear continuous functions on a mesh and satisfying
Dirichlet boundary conditions. Let V 0

h denote the corresponding finite
element spaces satisfying homogeneous Dirichlet boundary conditions.
The finite element method now reads: find uh in Vh such that

(
uk+1

h − 2uk
h + uk−1

h

τ2
, v) + (a2∇uk

h,∇v) = (fk, v), ∀v ∈ V 0
h . (8)

This produces the system of linear equations

Mu
k+1 = τ2F k + 2Mu

k − τ2Ku
k − Mu

k−1, (9)

12



with proper initial and boundary conditions. Here, M is the mass matrix,
K is the stiffness matrix depending on a possible varying wave velocity a,
k = 1, 2, 3 . . . denotes the time level, F k is the load vector, u is the
unknown discrete field values of u, and τ is the time step.

The explicit formulas for the entries in system (9) at the element level can
be given as:

Me
i,j = (

1

c2
ϕi, ϕj)e, (10)

Ke
i,j = (5ϕi,5ϕj)e, (11)

F e
j = (f, ϕj)e, (12)

where (a, b)e =

∫

Ωe

a b dΩe, (13)

where Ωe is domain of the element e.

The matrix M e is the contribution from element e to the global assembled
matrix M , Ke is the similar contribution to global assembled matrix K,

13



F e is the contribution from element e to the assembled source vector F .

To obtain an explicit scheme we approximate M with the lumped mass
matrix ML, the diagonal approximation obtained by taking the row sum
of M . By multiplying (9) with (ML)−1 we obtain an efficient explicit
formulation:

u
k+1 = τ2(ML)−1F k + 2uk − τ2(ML)−1Ku

k − u
k−1, (14)

where matrix ML is the approximation of the global mass matrix M by

ML
i,j =







∑

n Mi,n , i = j,

0 , i 6= j,
(15)

that is the diagonal elements of the matrix ML are the row-sums of M .

To formulate the finite element method for system (5 -7) we use the
standard Galerkin finite element method in space and the forward finite
difference approximation to the first order time derivative. We introduce

14



finite element spaces Vh, Wh for u1, u2, consisting of standard piecewise

linear continuous functions on a mesh and satisfying Dirichlet boundary

conditions. Let V 0
h , W 0

h denote the corresponding finite element spaces

satisfying homogeneous Dirichlet boundary conditions. The finite

element method now reads: find (u1h, u2h) in (Vh × Wh) such that

(
uk+1

1h − uk
1h

τ
, v) + (a2∇uk

2h,∇v) = (fk, v), ∀v ∈ V 0
h , (16)

(
uk+1

2h − uk
2h

τ
, w) = (uk

1h, w), ∀w ∈ W 0
h . (17)

This produces the system of linear equations for model (5–7) at each time

15



step :

Mu
k+1
1 = (F k − a2Ku

k
2)τ + Mu

k
1 , (18)

Mu
k
2 = Mu

k
1τ + Mu

k
2 , (19)

u
0
1 |Γ = 0 (20)

u
0
2 |Γ = 0 (21)

In these equations, M and K are the same matrices, as in the system (9), k

denotes the time level, u1 and u2 are the unknown discrete field values of

u1 and u2, τ is the time step size, Γ is the boundary of the inner region.

To obtain an explicit scheme we approximate M by ML and multiply the

first of the system equations by (ML)−1 so that the system can be

rewritten in the more efficient form:

u
k+1
1 = ((ML)−1F k − a2(ML)−1Ku

k
2)τ + u

k
1 , (22)

u
k+1
2 = u

k
1τ + u

k
2 . (23)

16



The disadvantage with explicit schemes is of course that we must choose

small time steps to respect a CFL criterion:

τ ≤
h

ac
, (24)

where h is the minimal local mesh size of the elements, and c is a

constant.

17



Finite difference formulation

In the ΩFDM domain, we use FDM. The FDM stencil can be derived via
the FEM schemes presented in the previous section, when applied to a
structured Cartesian grid. For problem (1) we obtain

ul+1

i,j,k = τ2(f l
i,j,k + a2∆ul

i,j,k) + 2ul
i,j,k − ul−1

i,j,k, (25)

where ul
i,j,k is the solution on time iteration l at point (i, j, k), f l

i,j,k is the

source function, τ is the time step, and ∆vl
i,j,k is the discrete Laplacian.

In three dimensions, we get the standard seven-point stencil:

∆vl
i,j,k =

vl
i+1,j,k − 2vl

i,j,k + vl
i−1,j,k

dx2
+

vl
i,j+1,k − 2vl

i,j,k + vl
i,j−1,k

dy2
+

vl
i,j,k+1 − 2vl

i,j,k + vl
i,j,k−1

dz2
, (26)

where dx, dy, and dz are the steps of the discrete finite difference meshes.

18



Absorbing boundary conditions

We have also simulated a variation of the problem (1–4) with Dirichlet
boundary condition replaced by the absorbing boundary condition. It
means, that this boundary conditions approximate the solution on the
boundaries. We use the following boundary condition:

∂

∂t
u −

∂

∂x
u

∣

∣

∣

∣

x=0

= 0. (27)

We are using forward finite difference approximation in the middle point
of the condition (27), which gives a numerical approximation of higher
order than ordinary (backward or forward) approximation. For example,
for the left boundary of the outer domain we obtain:

ul+1

i,j,k − ul
i,j,k

dt
+

ul+1

i+1,j,k − ul
i+1,j,k

dt
−

ul
i+1,j,k − ul

i,j,k

dx
−

ul+1

i+1,j,k − ul+1

i,j,k

dx
= 0,

(28)

19



which can be transformed to

ul+1

i,j,k = ul
i+1,j,k + ul

i,j,k

dx − dt

dx + dt
− ul+1

i+1,j,k

dx − dt

dx + dt
. (29)

For other boundaries of the outer domain we find analogous boundary

conditions.

20



Performance comparisons

We investigate the performance of the different methods by computing,

with each method, the wave equation on structured grids, and measuring

the cpu time per node and per iteration.

The size of the used computational grids are shown in Table 1. The

performance tests were performed on a Sun workstation with free

memory size 773Mb and 2048Mb real memory.

Table 2 and Table 3 present efficiency results, in terms of cpu time per

node and iteration. The fractions FEM/Hybrid and FEM/FDM are also

presented in the tables. We note that, for two dimensions, the fraction

FEM/Hybrid ≈ 3.2 and the fraction FEM/FDM ≈ 3.7. In our

three-dimensional tests, the corresponding fractions have increased. Here,

the fraction FEM/Hybrid ≈ 4.4, and the fraction FEM/FDM is around

6.7.

21



The tables show that the fractions increase with the size of the grid. This

can be explained by cache effects, since the required memory of the FEM

sparse matrix is much larger than the corresponding FDM difference

molecule. Another effect of importance is that the nodes at the boundary

is making up a smaller part of the total number of nodes. For the hybrid

method, the relative cost associated with computing the solution in the

overlap region with both methods and exchanging solution values,

decreases as the grid sizes increase, compare with Table 1.

22



Remarks on the performance comparisons

For our test cases, the source function evaluations in the simulations are a
minor part of the execution time, since f1 is nonzero only in a small
fraction of the time steps. Since the source function evaluations are
identical for FEM and FDM methods, would an expensive source
function evaluation results in a decreased fraction FEM/FDM.

The experiments are made on structured grids for which it was possible to
use reduced FEM matrices. We define the performance P for all the
methods as

P =
Ttot

NT · NΩ

, (30)

where Ttot is total computational time, NT is number of the timesteps,
and NΩ is number of the nodes in the mesh.

The ratios FEM/FDM in Tables 2 and 3 are essentially due to the
difference in execution time of multiplying a row of a sparse matrix

23



compared to applying the corresponding finite difference molecule.

Numerical experiments (not presented here) indicate that the execution

time for a sparse matrix multiplication increases linearly with the number

of coefficients per row. Therefore, experiments performed with unreduced

FEM matrices would result in an increase of the fraction FEM/FDM,

approximately with the factors 7/5 and 15/7, for 2D and 3D simulations,

respectively. The factors come from the matrix reduction sizes. A

corresponding increase would occur for the fraction FEM/Hybrid.

24



Memory consumption

An important issue is the memory consumption of the FEM version

versus the FDM and hybrid implementations. The FDM implementation

is here advantageous in two respects. First, the FDM grid representation

uses much less memory than the corresponding unstructured FEM grid.

Second, a finite difference molecule is used instead of a memory

consuming sparse matrix. These two advantages for the hybrid method

regarding the memory consumption is probably, for many applications,

more important than the speed-up presented above.

25



size of the mesh

elements, h

number of

nodes in

ΩFEM

number of

nodes in Ω

number of

nodes in the

overlapping

layers

spatial di-

mension

0.0025 6561 160801 3192 2

0.005 1681 40401 1592 2

0.01 441 10201 152 2

0.02 121 2601 72 2

0.01 9261 1030301 4348 3

0.02 1331 132651 988 3

0.04 216 17576 208 3

Table 1: Meshes for the performance test.

26



h Hybrid FEM FDM FEM/Hybrid FEM/FDM

0.0025 9.70385e-7 3.25877e-6 8.11587e-7 3.3582 4.0153

0.005 9.25238e-7 3.05127e-6 8.09583e-7 3.2978 3.7689

0.01 9.27085e-7 2.81574e-6 8.09961e-7 3.0372 3.4764

0.02 9.31629e-7 2.69945e-6 7.90749e-7 2.8976 3.4138

Table 2: Performance for the 2D wave equation

h Hybrid FEM FDM FEM/Hybrid FEM/FDM

0.01 4.84596e-6 2.21148e-5 3.05454e-6 4.5636 7.2400

0.02 4.88609e-6 2.15223e-5 3.28249e-6 4.4048 6.55670

0.04 4.73657e-6 2.02856e-5 3.17052e-6 4.2828 6.39819

Table 3: Performance for the 3D wave equation

27


