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Linear models for regression

Supervised learning

Linear regression as part of supervised learning.

Supervised learning is the machine learning task of learning a

function that maps an input to an output based on example

input-output pairs. It infers a function from labeled training data

consisting of a set of training examples. In supervised learning,

each example is a pair consisting of an input object (typically a

vector) and a desired output value (also called the supervisory

signal).

A supervised learning algorithm analyzes the training data and

produces an inferred function, which can be used for mapping new

examples. An optimal scenario will allow for the algorithm to

correctly determine the class labels for unseen instances.
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Linear regression

The goal of regression is to predict the value of one or more

continuous target variables t by knowing the values of input vector x.

The linear regression is similar to the solution of linear least squares

problem.

We will revise solution of linear least squares problem in terms of

linear regression.
Reference literature: Miroslav Kurbat, An Introduction to Machine Learning, Springer, 2017.

Christopher M. Bishop, Pattern recognition and machine learning, Springer, 2009.

L. Beilina, E. Karchevskii, M. Karchevskii, Numerical Linear Algebra: Theory and Applications, Springer, 2017 –

see link to GitHub with Matlab code
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Linear models for regression

Linear model for regression versus least squares problem

The simplest linear model for regression is

f(x, ω) = ω0 · 1 + ω1x1 + ...+ ωNxN , (1)

Here, {ωi}, i = 0, ...,N are weights with bias parameter ω0, {xi}, i = 1, ...,N

are observation points. Target values (known data) are {ti}, i = 1, ...,N

which correspons to {xi}, i = 1, ...,N. The goal is to predict the value of t

for a new value of x.

The linear model (1) can be written in the form

f(x, ω) = ω0 · 1 +
N∑

i=1

ωiϕi(x) = ω0 + ω
Tϕ(x), (2)

where ϕj(x), j = 0, ...,N are known basis functions with ϕ0(x) = 1.
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Linear model for regression versus least squares problem

Our goal is to minimize the sum of squares

E(ω) =
1

2

N∑

n=1

(tn − ω
Tϕ(xn))

2 :=
1

2
‖t − ωTϕ(x)‖22. (3)

to find

min
ω

1

2
‖t − ωTϕ(x)‖22 (4)

The problem (4) is a typical least squares problem of the minimizing the

squared residuals

min
ω

1

2
‖r(ω)‖22 = min

ω

1

2
‖t − ωTϕ(x)‖22 (5)

with the residual r(ω) = t − ωTϕ(x).
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Linear model for regression versus least squares problem

The test functions ϕ(x) form the such called design matrix A

A =





1 ϕ1(x1) ϕ2(x1) . . . ϕM(x1)
1 ϕ1(x2) ϕ2(x2) . . . ϕM(x2)
1 ϕ1(x3) ϕ2(x3) . . . ϕM(x3)
...

...
. . .

. . .
...

1 ϕ1(xN) ϕ2(xN) . . . ϕM(xN)





. (6)

and regression problem (or least squares problem) can be written as

min
ω

1

2
‖r(ω)‖22 = min

ω

1

2
‖Aω − t‖22 (7)

where A is of the size N ×M with N > M, t is the target vector t is of the

size N, and ω is vector of weights fo the size M.
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Normal Equations

Our goal is to minimize the residual ‖r(ω)‖2
2
= ||Aω − t ||2

2
. To find

minimum of the error function (3) and derive the normal equations, we

look for the ω where the gradient of ||Aω − t ||2
2
= (Aω − t)T (Aω − t)

vanishes, or where ‖r ′(ω)‖2
2
= 0. So we want

0 = lim
‖e‖→0

(A(ω+ e) − t)T (A(ω+ e) − t) − (Aω − t)T (Aω − t)

||e||2

= lim
‖e‖→0

((Aω − t) + Ae)T ((Aω − t) + Ae) − (Aω − t)T (Aω − t)

||e||2

= lim
‖e‖→0

‖(Aω − t) + Ae‖22 − ‖Aω − t‖22

||e||2

= lim
‖e‖→0

‖Aω − t‖22 + 2‖Aω − t‖2 · ‖Ae‖2 + ‖Ae‖22 − ‖Aω − t‖22

||e||2

= lim
‖e‖→0

2eT (AT Aω − AT t) + eT AT Ae

||e||2
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Normal Equations

The second term in

0 = ‖r ′(ω)‖22 = lim
‖e‖→0

2eT (AT Aω − AT t) + eT AT Ae

||e||2
(8)

|eT AT Ae|
||e||2

≤
||A ||2

2
||e||2

2

||e||2
= ||A ||2

2
||e||2 approaches 0 as e goes to 0, so the factor

AT Aω − AT t in the first term must also be zero, or AT Aω = AT t . This is

a system of M linear equations for M unknowns, the normal equations.

The gradient (8) in the discrete form will be

0 = ωT (
N∑

n=1

ϕT (xn)ϕ(xn)) −
N∑

n=1

tnϕ
T (xn), (9)

where ϕ(xn) = ϕ1(xn), ..., ϕM(xn), n = 1, ...,N are elements of the matrix

A given by (6).
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Normal Equations

Thus, normal equations are

AT Aω = AT t , (10)

which is a symmetric linear system of the M ×M equations. Normal

equations in the discrete form can be written as

AT Aω = AT t , (11)

Using 1
2
‖r(ω)‖2

2
= 1

2
||Aω − t ||2

2
we can compute the Hessian matrix

H = AT A . If the Hessian matrix H = AT A is positive definite, then ω is

indeed a minimum. We can show that the matrix AT A is positive definite

if, and only if, the columns of A are linearly independent, or when

rank(A) = M.

If the matrix A has a full rank (rank(A) = M) then the system (10) is of

the size M-by-M and is symmetric positive definite system of normal

equations. It has the same solution ω as the least squares problem

minω ‖Aω − t‖2
2
.
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Study of bias parameter ω0

Let us rewrite (3) making the bias parameter ω0 explicit

E(ω) =
1

2

N∑

n=1

(tn − ω
Tϕ(xn))

2 =
1

2
(

N∑

n=1

(tn − ω0 −

M∑

j=1

ωjϕj(xn))
2. (12)

Now we take derivative E′(ω0) = 0 to get

0 = E′(ω0) = (
N∑

n=1

(tn − ω0 −

M∑

j=1

ωjϕj(xn))(−1), (13)

or

0 = E′(ω0) =
N∑

n=1

tn − Nω0 − (ω1

N∑

n=1

ϕ1(xn) + ...+ ωM

N∑

n=1

ϕM(xn)). (14)
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Study of bias parameter ω0

Now solving (14) for ω0 we get

ω0 = t̄ −

M∑

j=1

ωjϕ̄j , (15)

where

t̄ =
1

N

N∑

n=1

tn,

ϕ̄j =
1

N

N∑

n=1

ϕj(xn).

(16)

Using (15) we conclude that bias ω0 balance the difference between the

averages of the target values and the weighted sum of the averages of

the basis functions.
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Data fitting

In this example we present the typical application of least squares or

regression called data or curve fitting problem. This problem appears in

statistical modelling and experimental engineering when data are

generated by laboratory or other measurements.

Suppose that we have data points (xi , ti), i = 1, ...,N, and our goal is to

find the vector of weights ω of the size M which will fit best to the target

data ti of the model function f(xi , ω), in the least squares sense:

min
ω

N∑

i=1

(ti − f(xi , ω))
2 = min

ω
‖t − f(x, ω)‖22. (17)

If the function f(x, ω) is linear then we can solve the problem (17) using

least squares, or regression, method.
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Linear models for regression

Recall, that the function f(x, ω) is linear if we can write it as a linear

combination of the functions φj(x), j = 0, ...,M as:

f(x, ω) = ω0φ0(x) + ω1φ1(x) + ω2φ2(x) + ...+ ωMφM(x). (18)

Functions φj(x), j = 0, ...,M are called basis functions which are known.

Usually, in regression models we choose φ0(x) = 1, ω0 is called bias

parameter.

Let now the matrix A will have entries aij = φj(xi), i = 1, ...,N; j = 1, ...,M.

Then a linear data fitting problem takes the form

Aω ≈ t (19)

Elements of the matrix A are created by basis functions

φj(x), j = 1, ...,M. We will consider now different examples of choosing

basis functions φj(x), j = 1, ...,M.
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Problem of the fitting to a polynomial

In the problem of the fitting to a polynomial

f(x, ω) =
d∑

i=1

ωix
i−1 (20)

of degree d − 1 to data points (xi , ti), i = 1, ...,N, basis functions

φj(x), j = 1, ...,M can be chosen as φj(x) = x j−1, j = 1, ...,M. The matrix

A constructed by these basis functions in a polynomial fitting problem is

a Vandermonde matrix:

A =





1 x1 x2
1
. . . xd−1

1

1 x2 x2
2
. . . xd−1

2

1 x3 x2
3
. . . xd−1

3
...
...
. . .

. . .
...

1 xN x2
N
. . . xd−1

N





. (21)

Here, xi , i = 1, ....,N are discrete points on the interval for x = [xleft , xright ].
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Suppose, that we choose d = 4 in (17). Then we can write the

polynomial as f(x, ω) =
∑4

i=1 ωix
i−1 = ω1 + ω2x + ω3x2 + ω4x3 and our

data fitting problem (19) for this polynomial takes the form

Aω =





1 x1 x2
1

x3
1

1 x2 x2
2

x3
2

1 x3 x2
3

x3
3

...
...
. . .

...

1 xN x2
N

x3
N





·





ω1

ω2

ω3

ω4





=





t1
t2
t3
...

tN





. (22)
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Linear models for regression

The right hand side of the above system represents measurements or

function which we want to fit. Our goal is to find such weights

ω = {ω1, ω2, ω3, ω4} which will minimize the residual

ri = f(xi , ω) − ti , i = 1, ...,N.

Since we want minimize squared 2-norm of the residual, or

‖r‖22 =
N∑

i=1

r2
i =

N∑

i=1

(f(xi , ω) − ti)
2,

with a linear model function f(xi , ω) then we will solve the linear least

squares problem.
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Regularized linear regression or least squares problem

In the regularized linear regression or least squares problem the goal is

to minimize the regularized sum of squares

E(ω) =
1

2

N∑

n=1

(tn −ω
Tϕ(xn))

2 +
γ

2
ωTω :=

1

2
‖t −ωTϕ(x)‖22 +

γ

2
‖ω‖22. (23)

to find

min
ω

1

2
‖t − ωTϕ(x)‖22 +

γ

2
‖ω‖22 (24)

The problem (24) is a regularized least squares, or regression, problem

of the minimizing the regularized squared residuals

min
ω

1

2
‖r(ω)‖22 +

γ

2
‖ω‖22 = min

ω

1

2
‖t − ωTϕ(x)‖22 +

γ

2
‖ω‖22 (25)

with the residual r(ω) = t − ωTϕ(x) and regularization parameter γ.

In the machine learning comminity γ is called weight decay seance in the

sequential learning algorithms this parameter encourages weight values

go to zero. In statistics, γ is an example of a parameter shrinkage

method since it shrinks parameter values to zero.
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Regularized linear regression or least squares problem

Let now the matrix A will have entries aij = φj(xi), i = 1, ...,N; j = 1, ...,M.

Recall, that functions φj(x), j = 0, ...,M are called basis functions which

are known. Then the regularized least squares problem takes the form

min
ω

1

2
‖r(ω)‖22 +

γ

2
‖ω‖22 = min

ω

1

2
‖Aω − t‖22 +

γ

2
‖ω‖22 (26)
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Normal Equations for regularized linear regression or

least squares problem

To minimize the regularized squared residuals

min
ω

1

2
‖r(ω)‖22 +

γ

2
‖ω‖22 = min

ω

1

2
‖Aω − t‖22 +

γ

2
‖ω‖22 (27)

we will derive the normal equations. To do this we look for the ω where

the gradient of 1
2
||Aω − t ||2

2
+ γ

2
‖ω‖2

2
= 1

2
(Aω − t)T (Aω − t) + γ

2
ωTω

vanishes. In other words, we consider

0 =
1

2
lim
‖e‖→0

(A(ω+ e) − t)T (A(ω+ e) − t) − (Aω − t)T (Aω − t)

||e||2

+ lim
‖e‖→0

γ

2
(ω+ e)T (ω+ e) −

γ

2
ωTω

||e||2
=
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Normal Equations for regularized linear regression or

least squares problem

=
1

2
lim
‖e‖→0

‖(Aω − t) + Ae‖22 − ‖Aω − t‖22

||e||2
+ lim
‖e‖→0

γ

2
(‖ω+ e‖22 − ‖ω‖

2
2)

‖e‖2

=
1

2
lim
‖e‖→0

‖Aω − t‖22 + 2‖Aω − t‖2 · ‖Ae‖2 + ‖Ae‖22 − ‖Aω − t‖22

||e||2

+
γ

2
lim
‖e‖→0

‖ω‖22 + 2‖ω‖2 · ‖e‖2 + ‖e‖
2
2 − ‖ω‖

2
2

||e||2

=
1

2
lim
‖e‖→0

2eT (AT Aω − AT t) + eT AT Ae

||e||2
+
γ

2
lim
‖e‖→0

2eTω+ eT e

||e||2
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Normal Equations

The term

|eT AT Ae|

||e||2
≤
||A ||2

2
||e||2

2

||e||2
= ||A ||22||e||2 (28)

approaches 0 as e goes to 0.

Similarly, the term

|eT e|

||e||2
=
||e||2

2

||e||2
(29)

approaches 0 as e goes to 0.

Using these facts, we finally get

0 = lim
‖e‖→0

eT (AT Aω − AT t)

||e||2
+
γeTω

||e||2

so the factor AT Aω − AT t + γω must also be zero, or

(AT A + γI)ω = AT t

This is a system of M linear equations for M unknowns, the normal

equations for regularized least squares.
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Artificial neural networks

Figure: Example of neural network which contains two interconnected layers (M. Kurbat, An Introduction to machine

learning, Springer, 2017.)

In an artificial neural network simple units - neurons- are

interconnected by weighted links into structures of high

performance.

Multilayer perceptrons and radial basis function networks will

be discussed.
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Neurons

Figure: Structure of a typical neuron (Wikipedia).

A neuron, also known as a nerve cell, is an electrically excitable cell

that receives, processes, and transmits information through

electrical and chemical signals. These signals between neurons

occur via specialized connections called synapses.

An artificial neuron is a mathematical function which presents a

model of biological neurons, resulting in a neural network.
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Artificial neurons

Artificial neurons are elementary units in an artificial neural network.

The artificial neuron receives one or more inputs and sums them to

produce an output (or activation, representing a neuron’s action

potential which is transmitted along its axon).

Each input is separately weighted by weights ωkj , and the sum
∑

k ωkjxk is passed as an argument Σ =
∑

k ωkjxk through a

non-linear function f(Σ) which is called the activation function or

transfer function.

Assume that attributes xk are normalized and belong to the interval

[−1, 1].
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Artificial neurons

Figure: Perceptron neural network consisting of one neuron (source: DataCamp(datacamp.com)).

Each input is separately weighted by weights ωkj , and the sum
∑

k ωkjxk

is passed as an argument Σ =
∑

k ωkjxk through a non-linear function

f(Σ) which is called the activation function or transfer function.
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Artificial neurons: transfer functions
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0.9

1

f(
)

Sigmoid and gaussian transfer functions  f( )

sigmoid function

Gaussian function

Figure: Sigmoid and Gaussian (for b = 1, σ = 3 in (32)) transfer functions.

Different transfer (or activation) functions f(Σ) with Σ =
∑

k ωkjxk

are used. We will study sigmoid and gaussian functions.

Sigmoid function:

f(Σ) =
1

1 + e−Σ
(31)

Gaussian function centered at b for a given variance σ2

f(Σ) =
e−(Σ−b)2

2σ2
(32)
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Forward propagation

Example of neural network called multilayer perceptron (one hidden layer of neurons and one output layer). (M. Kurbat, An

Introduction to machine learning, Springer, 2017.)

Neurons in adjacent layer are fully interconnected.

Forward propagation is implemented as

yi = f(Σjω
(1)
ji

xj) = f(Σjω
(1)
ji

f(Σkω
(2)
kj

xk )
︸         ︷︷         ︸

xj

), (33)

where ω
(1)
ji

and ω
(2)
kj

are weights of the output and the hidden

neurons, respectively, f is the transfer function.
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Example of forward propagation through the network

Source: M. Kurbat, An Introduction to machine learning, Springer, 2017.

Using inputs x1 , x2 compute inputs of hidden-layer neurons:

x
(2)
1

= 0.8 ∗ (−1.0) + 0.1 ∗ 0.5 = −0.75, x
(2)
2

= 0.8 ∗ 0.1 + 0.1 ∗ 0.7 = 0.15

Compute transfer function (sigmoid f(Σ) = 1

1+e−Σ
in our case):

h1 = f(x
(2)
1

) = 0.32, h2 = f(x
(2)
2

) = 0.54.

Compute input of output-layer neurons

x
(1)
1

= 0.32 ∗ 0.9 + 0.54 ∗ 0.5 = 0.56, x
(1)
2

= 0.32 ∗ (−0.3) + 0.54 ∗ (−0.1) = −0.15.

Compute outputs of output-layer neurons using transfer function (sigmoid in our case):

y1 = f(x
(1)
1

) = 0.66, y2 = f(x
(1)
2

) = 0.45.
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Backpropagation of error through the network

Our goal is to find optimal weights ω
(1)
ji

and ω
(2)
kj

in forward propagation

yi = f(Σjω
(1)
ji

xj) = f(Σjω
(1)
ji

f(Σkω
(2)
kj

xk )
︸         ︷︷         ︸

xj

). (34)

To do this we introduce functional

F(ω
(1)
ji
, ω

(2)
kj
) =

1

2
‖ti − yi‖

2 =
1

2

m∑

i=1

(ti − yi)
2. (35)

Here, t = t(x) is the target vector which depends on the concrete

example x. In the domain with m classes the target vector

t = (t1(x), ..., tm(x)) consists of m binary numbers such that

ti(x) =






1, example x belongs to i-th class,

0, otherwise.
(36)
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Examples of target vector and mean square error

Let there exist three different classes c1, c2, c3 and x belongs to the class

c2. Then the target vector is t = (t1, t2, t3) = (0, 1, 0).
The mean square error is defined as

E =
1

m
‖ti − yi‖

2 =
1

m

m∑

i=1

(ti − yi)
2. (37)

Let us assume that we have two different networks to choose from, every
network with 3 output neurons corresponding to classes c1, c2, c3. Let
t = (t1, t2, t3) = (0, 1, 0) and for the example x the first network output is
y1 = (0.5, 0.2, 0.9) and the second network output is y2 = (0.6, 0.6, 0.7).

E1 =
1

3

3∑

i=1

(ti − yi )
2 =

1

3
((0 − 0.5)2 + (1 − 0.2)2 + (0 − 0.9)2)) = 0.57,

E2 =
1

3

3∑

i=1

(ti − yi )
2 =

1

3
((0 − 0.6)2 + (1 − 0.6)2 + (0 − 0.7)2)) = 0.34.

Since E2 < E1 then the second network is less wrong on the example x

than the first network.
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Linear models for regression

Backpropagation of error through the network

To find minimum of the functional (59) F(ω) with ω = (ω
(1)
ji
, ω

(2)
kj
), recall it

below:

F(ω) = F(ω
(1)
ji
, ω

(2)
kj
) =

1

2
‖ti − yi‖

2 =
1

2

m∑

i=1

(ti − yi)
2, (38)

we need to solve the minimization problem

min
ω

F(ω) (39)

and find a stationary point of (38) with respect to ω such that

F ′(ω)(ω̄) = 0, (40)

where F ′(ω) is the Fréchet derivative such that

F ′(ω)(ω̄) = F ′
ω
(1)
ji

(ω)(ω̄
(1)
ji
) + F ′

ω
(2)
kj

(ω)(ω̄
(2)
kj

). (41)
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Backpropagation of error through the network

Recall now that yi in the functional (38) is defined as

yi = f(
∑

j

ω
(1)
ji

xj) = f(
∑

j

ω
(1)
ji

f(
∑

k

ω
(2)
kj

xk )

︸          ︷︷          ︸

xj

). (42)

Thus, if the transfer function f in (42) is sigmoid, then

F ′
ω
(1)
ji

(ω)(ω̄
(1)
ji

) = (ti − yi) · y
′
i (ω

(1)
ji

)
(ω̄

(1)
ji
)

= (ti − yi) · xj · f(
∑

j

ω
(1)
ji

xj)(1 − f(
∑

j

ω
(1)
ji

xj))(ω̄
(1)
ji
)

= (ti − yi) · xj · yi(1 − yi))(ω̄
(1)
ji
),

(43)
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Linear models for regression

Backpropagation of error through the network

Here we have used that for the sigmoid function f ′(Σ) = f(Σ)(1 − f(Σ))
since

f ′(Σ) =

(

1

1 + e−Σ

)′

=
1 + e−Σ − 1

(1 + e−Σ)2

= f(Σ)

[

(1 + e−Σ) − 1

1 + e−Σ

]

= f(Σ)

[

(1 + e−Σ)

1 + e−Σ
−

1

1 + e−Σ

]

= f(Σ)(1 − f(Σ)).

(44)
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Backpropagation of error through the network

Again, since

yi = f(
∑

j

ω
(1)
ji

xj) = f(
∑

j

ω
(1)
ji

f(
∑

k

ω
(2)
kj

xk )

︸          ︷︷          ︸

xj

). (45)

for the sigmoid transfer function f we also get

F ′
ω
(2)
kj

(ω)(ω̄
(2)
kj
) = (ti − yi) · y

′
i (ω

(2)
kj

)
(ω̄

(2)
kj
)

=





hj(1 − hj)
︸     ︷︷     ︸

f ′(hj)

·





∑

i

yi(1 − yi)
︸     ︷︷     ︸

f ′(yi)

(ti − yi)ω
(1)
ji





· xk





(ω̄
(2)
kj
),

(46)

since for the sigmoid function f we have:

f ′(hj) = f(hj)(1 − f(hj)), f
′(yi) = f(yi)(1 − f(yi)) (prove this). Hint:

hj = f(
∑

k ω
(2)
kj

xk ), yi = f(
∑

j ω
(1)
ji

xj).
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Backpropagation of error through the network

Usually, F ′
ω
(1)
ji

(ω)/xj ,F
′

ω
(2)
kj

(ω)/xk in (43), (46) are called responsibilities of

output layer neurons and hidden-layer neurons δ
(1)
i
, δ

(2)
i

, respectively, and

they are defined as

δ
(1)
i

= (ti − yi)yi(1 − yi),

δ
(2)
j

= hj(1 − hj) ·
∑

i

δ
(1)
i
ω
(1)
ji
.

(47)

By knowing responsibilities (47), weights can be updates using usual

gradient update formulas:

ω
(1)
ji

= ω
(1)
ji

+ ηδ
(1)
i

xj ,

ω
(2)
kj

= ω
(2)
kj

+ ηδ
(2)
j

xk .
(48)

Here, η is the step size in the gradient update of weights and we use

value of learning rate for it such that η ∈ (0, 1).
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Algorithm A1: backpropagation of error through the

network with one hidden layer

Step 0. Initialize weights.

Step 1. Take example x in the input layer and perform forward propagation.

Step 2. Let y = (y1 , ..., ym) be the output layer and let t = (t1 , ..., tm) be the target vector.

Step 3. For every output neuron yi , i = 1, ...,m calculate its responsibility δ1
i

as

δ
(1)
i

= (ti − yi )yi (1 − yi ). (49)

Step 4. For every hidden neuron compute responsibility δ
(2)
j

for the network’s error as

δ
(2)
j

= hj (1 − hj ) ·
∑

i

δ
(1)
i

(ωji )
1 , (50)

where δ
(1)
i

are computed using (60).

Step 5. Update weights with learning rate η ∈ (0, 1) as

ω
(1)
ji

= ω
(1)
ji

+ η(δ
(1)
i

)xj ,

ω
(2)
kj

= ω
(2)
kj

+ η(δ
(2)
j

)xk .

(51)
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Algorithm A2: backpropagation of error through the

network with l hidden layers

Step 0. Initialize weights and take l = 1.

Step 1. Take example x l in the input layer and perform forward propagation.

Step 2. Let y l = (y l
1
, ..., y l

m) be the output layer and let t l = (t l
1
, ..., t l

m) be the target vector.

Step 3. For every output neuron y l
i
, i = 1, ...,m calculate its responsibility (δ

(1)
i

)l as

(δ
(1)
i

)l = (t l
i − y l

i )y
l
i (1 − y l

i ). (52)

Step 4. For every hidden neuron compute responsibility (δ
(2)
j

)l for the network’s error as

(δ
(2)
j

)l = hl
j (1 − hl

j ) ·
∑

i

(δ
(1)
i

)l (ω
(1)
ji

)l , (53)

where (δ
(1)
i

)l are computed using (60).

Step 5. Update weights with learning rate ηl ∈ (0, 1) as

(ω
(1)
ji

)l+1 = (ω
(1)
ji

)l + ηl(δ
(1)
i

)l x l
j ,

(ω
(2)
kj

)l+1 = (ω
(2)
kj

)l + ηl(δ
(2)
j

)l x l
k .

(54)

Step 6. If the mean square error less than tolerance, or ‖(ω
(1)
ji

)l+1 − (ω
(1)
ji

)l ‖ < ǫ1 and ‖(ω
(2)
kj

)l+1 − (ω
(2)
kj

)l ‖ < ǫ2

stop, otherwise go to the next layer l = l + 1 , assign x l = x l+1 and return to the step 1. Here, ǫ1 , ǫ2 are

tolerances chosen by the user.
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Example of backpropagation of error through the network

Source: M. Kurbat, An Introduction to machine learning, Springer, 2017.

Assume that after forward propagation with sigmoid transfer function we have

h1 = f(x
(2)
1

) = 0.12, h2 = f(x
(2)
2

) = 0.5,

y1 = f(x
(1)
1

) = 0.65, y2 = f(x
(1)
2

) = 0.59.

Let the target vector be t(x) = (1, 0) for the output vector y = (0.65, 0.59).

Compute responsibility for the output neurons:

σ
(1)
1

= y1 ∗ (1 − y1)(t1 − y1) = 0.65(1 − 0.65)(1 − 0.65) = 0.0796,

σ
(1)
2

= y2 ∗ (1 − y2)(t2 − y2) = 0.59(1 − 0.59)(0 − 0.59) = −0.1427
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Example of backpropagation of error through the network

Source: M. Kurbat, An Introduction to machine learning, Springer, 2017.

Compute the weighted sum for every hidden neuron

δ1 = σ
(1)
1

w
(1)
11

+ σ
(1)
2

w
(1)
12

= 0.0796 ∗ 1 + (−0.1427) ∗ (−1) = 0.2223,

δ2 = σ
(1)
1

w
(1)
21

+ σ
(1)
2

w
(1)
22

= 0.0796 ∗ 1 + (−0.1427) ∗ 1 = −0.0631.

Compute responsibility for the hidden neurons for above computed δ1 , δ2 :

σ
(2)
1

= h1(1 − h1)δ1 = −0.0235, σ
(2)
2

= h2(1 − h2)δ2 = 0.0158.
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Example of backpropagation of error through the network

Compute new weights ω
(1)
ji

for output layer with learning rate η = 0.1 as:

ω
(1)
11

= ω
(1)
11

+ ησ
(1)
1

h1 = 1 + 0.1 ∗ 0.0796 ∗ 0.12 = 1.00096,

ω
(1)
21

= ω
(1)
21

+ ησ
(1)
1

h2 = 1 + 0.1 ∗ 0.0796 ∗ 0.5 = 1.00398,

ω
(1)
12

= ω
(1)
12

+ ησ
(1)
2

h1 = −1 + 0.1 ∗ (−0.1427) ∗ 0.12 = −1.0017,

ω
(1)
22

= ω
(1)
22

+ ησ
(1)
2

h2 = 1 + 0.1 ∗ (−0.1427) ∗ 0.5 = 0.9929.

Compute new weights ω
(2)
kj

for hidden layer with learning rate η = 0.1 as:

ω
(2)
11

= ω
(2)
11

+ ησ
(2)
1

x1 = −1 + 0.1 ∗ (−0.0235) ∗ 1 = −1.0024,

ω
(2)
21

= ω
(2)
21

+ ησ
(2)
1

x2 = 1 + 0.1 ∗ (−0.0235) ∗ 1 = 1.0024,

ω
(2)
12

= ω
(2)
12

+ ησ
(2)
2

x1 = 1 + 0.1 ∗ 0.0158 ∗ 1 = 1.0016,

ω
(2)
22

= ω
(2)
22

+ ησ
(2)
2

x2 = 1 + 0.1 ∗ 0.0158 ∗ (−1) = 0.9984.

Using computed weights for hidden and output layers, one can test a neural network for a new example.

Larisa Beilina, http://www.math.chalmers.se/∼ larisa/ Lecture 10



Linear models for regression

Perceptron non-regularized neural network

Step 0. Initialize weights ωi to small random numbers.

Step 1. If
∑n

i=0 ωixi > 0 we will say that the example is positive and

h(x) = 1.

Step 2. If
∑n

i=0 ωixi < 0 we will say the the example is negative and

h(x) = 0.

Step 3. Update every weight ωi using algorithm of backpropagation

of error through the network (perform steps 3-5 of A1 or A2)

Step 4. If c(x) = h(x) for all learning examples - stop. Otherwise

return to step 1.

Here, η ∈ (0, 1] is called the learning rate.
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Non-regularized and regularized neural network

Our goal is to find optimal weights ω
(1)
ji

and ω
(2)
kj

in forward propagation

yi = f(Σjω
(1)
ji

xj) = f(Σjω
(1)
ji

f(Σkω
(2)
kj

xk )
︸         ︷︷         ︸

xj

). (55)

To do this we introduce functional

F(ω
(1)
ji
, ω

(2)
kj
) =

1

2
‖ti − yi‖

2 =
1

2

m∑

i=1

(ti − yi)
2. (56)

Here, t = t(x) is the target vector which depends on the concrete

example x. In the domain with m classes the target vector

t = (t1(x), ..., tm(x)) consists of m binary numbers such that

ti(x) =






1, example x belongs to i-th class,

0, otherwise.
(57)

Larisa Beilina, http://www.math.chalmers.se/∼ larisa/ Lecture 10



Linear models for regression

Non-regularized neural network

F(w) =
1

2
‖ti − yi(w)‖2 =

1

2

m∑

i=1

(ti − yi(w))2. (58)

Regularized neural network

F(w) =
1

2
‖ti − yi(w)‖2 +

1

2
γ‖w‖2 =

1

2

m∑

i=1

(ti − yi(w))2 +
1

2
γ

M∑

j=1

|wj |
2

(59)

Here, γ is reg.parameter, ‖w‖2 = wT w = w2
1
+ ...+ w2

M
, M is

number of weights.
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Algorithm: backpropagation of error through the

regularized network with one hidden layer

Step 0. Initialize weights.

Step 1. Take example x in the input layer and perform forward propagation.

Step 2. Let y = (y1 , ..., ym) be the output layer and let t = (t1 , ..., tm) be the target vector.

Step 3. For every output neuron yi , i = 1, ...,m calculate its responsibility δ1
i

as

δ
(1)
i

= (ti − yi )yi (1 − yi ). (60)

Step 4. For every hidden neuron compute responsibility δ
(2)
j

for the network’s error as

δ
(2)
j

= hj (1 − hj ) ·
∑

i

δ
(1)
i

(ωji )
1 , (61)

where δ
(1)
i

are computed using (60).

Step 5. Update weights with learning rate η ∈ (0, 1) and regularization parameters γ1 , γ2 ∈ (0, 1) as

ω
(1)
ji

= ω
(1)
ji

+ η(δ
(1)
i

)xj + γ1ω
(1)
ji
,

ω
(2)
kj

= ω
(2)
kj

+ η(δ
(2)
j

)xk + γ2ω
(1)
kj
.

(62)
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