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Introduction to inverse and ill-posed problems:
QR and SVD. Solution of rank-deficient problems.
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QR Decomposition

THEOREM QR decomposition. Let A be m-by-n with m ≥ n. Suppose
that A has full column rank. Then there exist a unique m-by-n orthogonal
matrix Q(QT Q = In) and a unique n-by-n upper triangular matrix R with
positive diagonals rii > 0 such that A = QR.

Proof. Can be two proofs of this theorem: using the Gram-Schmidt
orthogonalization process and using the Hauseholder reflections. The
first proof: this theorem is a restatement of the Gram-Schmidt
orthogonalization process [P. Halmos. Finite Dimensional Vector Spaces.
Van Nostrand, New York, 1958]. If we apply Gram-Schmidt to the
columns ai of A = [a1, a2, . . . , an] from left to right, we get a sequence of
orthonormal vectors (if they are orthogonal and unit vectors) q1 through
qn spanning the same space: these orthogonal vectors are the columns
of Q . Gram-Schmidt also computes coefficients rji = qT

j ai expressing

each column ai as a linear combination of q1 through qi : ai =
∑i

j=1 rjiqj .
The rji are just the entries of R.
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ALGORITHM The classical Gram-Schmidt (CGS) and modified
Gram-Schmidt (MGS) Algorithms for factoring A = QR:

for i = 1 to n /* compute ith columns of Q and R */
qi = ai

for j = 1 to i − 1 /* subtract component in qj direction from ai */
{

rji = qT
j ai CGS

rji = qT
j qi MGS

qi = qi − rjiqj

end for
rii = ||qi ||2
if rii = 0 /* ai is linearly dependent on a1, . . . , ai−1 */

quit
end if
qi = qi/r ii

end for

If A has full column rank, rii will not be zero.
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Notes:

Unfortunately, CGS is numerically unstable in floating point
arithmetic when the columns of A are nearly linearly dependent.

MGS is more stable and will be used in algorithms later in this
course but may still result in Q being far from orthogonal (||QT Q − I||
being far larger than ε) when A is ill-conditioned

Literature on this subject:

Å. Björck. Solution of Equations volume 1 of Handbook of
Numerical Analysis, chapter Least Squares Methods.
Elsevier/North Holland, Amsterdam, 1987.

Å. Björck. Least squares methods. Mathematics Department
Report, Linkoping University, 1991.

Å. Björck. Numerical Methods for Least Squares Problems. SIAM,
Philadelphia, PA, 1996.

N. J. Higham. Accuracy and Stability of Numerical Algorithms.
SIAM, Philadelphia, PA, 1996.
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We will derive the formula for the x that minimizes ||Ax − b ||2 using the
decomposition A = QR in three slightly different ways. First, we can
always choose m − n more orthonormal vectors Q̃ so that [Q , Q̃] is a
square orthogonal matrix and thus Q̃T Q = 0 (for example, we can
choose any m − n more independent vectors X̃ that we want and then
apply QR Algorithm to the n-by-n nonsingular matrix [Q , X̃ ]). Then

||Ax − b ||22 = ||[Q , Q̃]T (Ax − b)||22

=

∥

∥

∥

∥

∥

∥

[

QT

Q̃T

]

(QRx − b)

∥

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

∥

[

In×n

O(m−n)×n

]

Rx −
[

QT b
Q̃T b

]
∥

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

∥

[

Rx − QT b
−Q̃T b

]
∥

∥

∥

∥

∥

∥

2

2

=
∥

∥

∥Rx − QT b
∥

∥

∥

2

2
+ ‖Q̃T b‖22 ≥ ‖Q̃

T b‖22.

We can solve Rx − QT b = 0 for x, since A and R have the same rank, n,
and so R is nonsingular. Then x = R−1QT b, and the minimum value of
||Ax − b ||2 is ||Q̃T b ||2.
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Here is a second, slightly different derivation that does not use the matrix
Q̃ . Rewrite Ax − b as

Ax − b = QRx − b = QRx − (QQT + I − QQT )b
= Q(Rx − QT b) − (I − QQT )b .

Note that the vectors Q(Rx − QT b) and (I − QQT )b are orthogonal,
because (Q(Rx −QT b))T ((I−QQT )b) = (Rx −QT b)T [QT (I−QQT )]b =
(Rx − QT b)T [0]b = 0. Therefore, by the Pythagorean theorem,

‖Ax − b‖22 = ‖Q(Rx − QT b)‖22 + ‖(I − QQT )b‖22
= ‖Rx − QT b‖22 + ‖(I − QQT )b‖22.

where we have used ||Qy ||22 = ||y ||22. This sum of squares is minimized
when the first term is zero, i.e., x = R−1QT b.
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Finally, here is a third derivation that starts from the normal equations
solution:

x = (AT A)−1AT b
= (RT QT QR)−1RT QT b = (RT R)−1RT QT b
= R−1R−T RT QT b = R−1QT b .
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Singular values

The singular values, or s-numbers of a compact operator T : X → Y
acting between Hilbert spaces X and Y , are the square roots of the
eigenvalues of the nonnegative self-adjoint operator T ∗T : X → X (where
T ∗ denotes the adjoint of T ).

σ(T) =
√

λ(T ∗T).

The singular values are nonnegative real numbers, usually listed in
decreasing order (s1(T), s2(T), ...). If T is self-adjoint, then the largest
singular value s1(T) is equal to the operator norm of T .
In the case of a normal matrix A (or A ∗A = AA ∗, when A is real then
AT A = AAT ), the spectral theorem can be applied to obtain unitary
diagonalization of A as A = UΛU∗. Therefore,

√
A ∗A = U|Λ|U∗ and so

the singular values are simply the absolute values of the eigenvalues.
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Singular Value Decomposition

THEOREM SVD. Let A be an arbitrary m-by-n matrix with m ≥ n. Then
we can write A = UΣVT , where U is m-by-n and satisfies UT U = I, V is
n-by-n and satisfies VT V = I, and Σ = diag(σ1, . . . , σn), where
σ1 ≥ · · · ≥ σn ≥ 0. The columns u1, . . . , un of U are called left singular

vectors. The columns v1, . . . , vn of V are called right singular vectors. The
σi are called singular values. (If m < n, the SVD is defined by considering
AT .)
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THEOREM Let A = UΣVT be the SVD of the m-by-n matrix A, where
m ≥ n. (There are analogous results for m < n.)

1. Suppose that A is symmetric, with eigenvalues λi and
orthonormal eigenvectors ui . i.e., A = UΛUT is an
eigendecomposition of A , with Λ = diag(λ1, . . . , λn), and
U = [u1, . . . , un], and UUT = I. Then an SVD of A is A = UΣVT ,
where σi = |λi | and υi = sign(λi)ui , where sign(0) = 1.

2. The eigenvalues of the symmetric matrix AT A are σ2
i . The right

singular vectors υi are corresponding orthonormal eigenvectors.

3. The eigenvalues of the symmetric matrix AAT are σ2
i and m − n

zeroes. The left singular vectors ui are corresponding orthonormal
eigenvectors for the eigenvalues σ2

i . One can take any m − n other
orthogonal vectors as eigenvectors for the eigenvalue 0.
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4. Let H = [
0 AT

A 0
], where A is square and A = UΣVT is the

SVD of A . Let Σ = diag(σ1, . . . , σn), U = [u1, . . . , un], and
V = [υ1, . . . , υn]. Then the 2n eigenvalues of H are ±σi , with

corresponding unit eigenvectors 1√
2

[

υi

±ui

]

.

5. If A has full rank, the solution of minx ‖Ax − b‖2 is x = VΣ−1UT b.

6. ‖A‖2 = σ1. If A is square and nonsingular, then ‖A−1‖−1
2 = σn

and ‖A‖2 · ‖A−1‖2 = σ1
σn

.

7. Write V = [υ1, υ2, . . . , υn] and U = [u1, u2, . . . , un], so
A = UΣVT =

∑n
i=1 σiuiυ

T
i (a sum of rank-1 matrices). Then a

matrix of rank k < n closest to A (measured with || · ||2) is
Ak =

∑k
i=1 σiuiυ

T
i and ||A − Ak ||2 = σk+1. We may also write

Ak = UΣk VT where Σk = diag(σ1, . . . , σk , 0, . . . , 0).
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Proof.
1. Suppose that A is symmetric, with eigenvalues λi and

orthonormal eigenvectors ui . In other words A = UΛUT is an

eigendecomposition of A , with Λ = diag(λ1, . . . , λn), and

U = [u1, . . . , un], and UUT = I. Then an SVD of A is A = UΣVT ,

where σi = |λi | and υi = sign(λi)ui , where sign(0) = 1.

This is true by the definition of the SVD.
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2. The eigenvalues of the symmetric matrix AT A are σ2
i . The

right singular vectors υi are corresponding orthonormal

eigenvectors.

AT A = VΣUT UΣVT = VΣ2VT . This is an eigendecomposition of
AT A , with the columns of V the eigenvectors and the diagonal
entries of Σ2 the eigenvalues.
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3. The eigenvalues of the symmetric matrix AAT are σ2
i and

m − n zeroes. The left singular vectors ui are corresponding

orthonormal eigenvectors for the eigenvalues σ2
i . One can

take any m − n other orthogonal vectors as eigenvectors for

the eigenvalue 0.

Choose an m-by-(m − n) matrix Ũ so that [U, Ũ] is square and
orthogonal. Then write

AAT = UΣVT VΣUT = UΣ2UT =
[

U, Ũ
]

·
[

Σ2 0
0 0

]

·
[

U, Ũ
]T
.

This is an eigendecomposition of AAT .
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4. Let H = [
0 AT

A 0
], where A is square and A = UΣVT is the SVD

of A . Let Σ = diag(σ1, . . . , σn), U = [u1, . . . , un], and V = [υ1, . . . , υn].
Then the 2n eigenvalues of H are ±σi , with corresponding unit

eigenvectors 1√
2

[

υi

±ui

]

.
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We substitute A = UΣVT into H to get: H =

[

0 VΣUT

UΣVT 0

]

Choose orthogonal matrix G such that

G =
1
√

2

[

V V
U −U

]

It is orthogonal since I = GGT = 1
2

[

VVT + VVT 0
0 UUT + UUT

]

Then we observe that

G

[

Σ 0
0 Σ

]

GT =

[

0 VΣUT

UΣVT 0

]

= H

Then using the spectral theorem we can conclude that the 2n
eigenvalues of H are ±σi , with corresponding eigenvectors

1√
2

[

vi

±ui

]

.
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5. If A has full rank, the solution of minx ‖Ax − b‖2 is

x = VΣ−1UT b.

‖Ax − b‖22 = ||UΣVT x − b ||22. Since A has full rank, so does Σ, and
thus Σ is invertible. Now let [U, Ũ] be square and orthogonal as
above so

||UΣVT x − b ||22 =

∥

∥

∥

∥

∥

∥

[

UT

ŨT

]

(UΣVT x − b)

∥

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

∥

[

ΣVT x − UT b
−ŨT b

]
∥

∥

∥

∥

∥

∥

2

2

= ||ΣVT x − UT b ||22 + ‖Ũ
T b‖22.

This is minimized by making the first term zero, i.e., x = VΣ−1UT b.
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6. ‖A‖2 = σ1. If A is square and nonsingular, then ‖A−1‖−1
2 = σn and

‖A‖2 · ‖A−1‖2 = σ1
σn

.

It is clear from its definition that the two-norm of a diagonal matrix is the
largest absolute entry on its diagonal. Thus, by property of the norm,
‖A‖2 = ‖UT AV‖2 = ‖UT UΣVT V‖2 = ‖Σ‖2 = σ1 and
‖A−1‖2 = ‖VT A−1U‖2 = ‖Σ−1‖2 = σ−1

n .
Remark: ‖A−1‖2 = ‖VT A−1U‖2 = ‖VT (UΣVT )−1U‖2 = ‖Σ−1‖2 = σ−1

n .
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7. Write V = [υ1, υ2, . . . , υn] and U = [u1, u2, . . . , un], so
A = UΣVT =

∑n
i=1 σiuiυ

T
i (a sum of rank-1 matrices). Then a

matrix of rank k < n closest to A (measured with || · ||2) is
Ak =

∑k
i=1 σiuiυ

T
i and ||A − Ak ||2 = σk+1. We may also write

Ak = UΣk VT where Σk = diag(σ1, . . . , σk , 0, . . . , 0).
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7. Write V = [υ1, υ2, . . . , υn] and U = [u1, u2, . . . , un], so
A = UΣVT =

∑n
i=1 σiuiυ

T
i (a sum of rank-1 matrices). Then a matrix of

rank k < n closest to A (measured with || · ||2) is Ak =
∑k

i=1 σiuiυ
T
i and

||A − Ak ||2 = σk+1. We may also write Ak = UΣk VT where
Σk = diag(σ1, . . . , σk , 0, . . . , 0).
Ak has rank k by construction and

||A − Ak ||2 =

∥

∥

∥

∥

∥

∥

∥

n
∑

i=1

σiuiυ
T
i −

k
∑

i=1

σiuiυ
T
i

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

n
∑

i=k+1

σiuiυ
T
i

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

U



































0
σk+1

. . .

σn



































VT

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

= σk+1.
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It remains to show that there is no closer rank k matrix to A . Let B be any
rank k matrix, so its null space has dimension n − k . The space spanned
by {υ1, ..., υk+1} has dimension k + 1. Since the sum of their dimensions
is (n − k) + (k + 1) > n, these two spaces must overlap. Let h be a unit
vector in their intersection. Then

‖A − B‖22 ≥
∥

∥

∥(A − B)h
∥

∥

∥

2

2
= ‖Ah‖22 =

∥

∥

∥UΣVT h
∥

∥

∥

2

2

=
∥

∥

∥Σ(VT h)
∥

∥

∥

2

2
≥ σ2

k+1

∥

∥

∥VT h
∥

∥

∥

2

2
= σ2

k+1.

�
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Example of application of linear systems: image
compression using SVD

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200
50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

a) Original image b) Rank k=20 approximation
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Example of application of linear systems: image
compression using SVD in Matlab

See path for other pictures:
/matlab-2012b/toolbox/matlab/demos
load clown.mat;
Size(X) = m × n = 320 × 200 pixels.
[U,S,V] = svd(X);
colormap(map);
k=20;
image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’);
Now: size(U)= m × k , size(V)= n × k .
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Image compression using SVD in Matlab
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a) Original image b) Rank k=4 approximation b) Rank k=5 approximation
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c) Rank k=6 approximation d) Rank k=10 approximation d) Rank k=15 approximation
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Example of application of linear systems: image
compression using SVD for arbitrary image

To get image on the previous slide, I took picture in jpg-format and loaded
it in Matlab. You can also try to use following matlab code for your own
pictures:

A = imread(’Child.jpg’); // Real size of A: size(A) ans= 218 171 3

DDA=im2double(A); //convert from ’uint8’ fromat to double format

figure(1); image(DDA);

//size of DDA will be (1:m,1:n,1:3)

[U1,S1,V1] = svd(DDA(:,:,1)); // we perform SVD for every 3 entries of DDA

[U2,S2,V2] = svd(DDA(:,:,2));

[U3,S3,V3] = svd(DDA(:,:,3));

k=15; //number of approximations: this number you can change

svd1 = U1(:,1:k)*S1(1:k,1:k)*V1(:,1:k)’; //compute new approximated matrices svd1, svd2, svd3

svd2 = U2(:,1:k)*S2(1:k,1:k)*V2(:,1:k)’;

svd3 = U3(:,1:k)*S3(1:k,1:k)*V3(:,1:k)’;

DDAnew = zeros(size(DDA));

DDAnew(:,:,1) = svd1; DDAnew(:,:,2) = svd2; DDAnew(:,:,3) = svd3;

figure(2); image(DDAnew);
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Matrix norm. Induced norm

If vector norms on Km and Kn are given (K is field of real or complex
numbers), then one defines the corresponding induced norm or operator
norm on the space of m-by-n matrices as the following maxima:

‖A‖ = max{‖Ax‖ : x ∈ Kn with ‖x‖ = 1}

= max

{

‖Ax‖
‖x‖

: x ∈ Kn with x , 0

}

.

If m = n and one uses the same norm on the domain and the range, then
the induced operator norm is a sub-multiplicative matrix norm.
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Condition number of the square matrix

Condition number of the square matrix in any induced norm

k(A) = cond(A) = ‖A‖ · ‖A−1‖

Example

A =

[

1 0
0 1

]

; AT =

[

1 0
0 1

]

; AT A − λI =
[

1 − λ 0
0 1 − λ

]

= 0;

λ1 = 1, λ2 = 1; ||A ||2 = max
√

λ(AT A) = max(1, 1) = 1.
In this example,

A−1 = A ; ‖A−1‖2 = 1; k(A) = cond(A) = ‖A‖ · ‖A−1‖ = 1.
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Perturbation Theory for the Least Squares Problem

When A is not square, we define its condition number with respect to the
2-norm to be

k2(A) ≡ σmax(A)/σmin(A)

This reduces to the usual condition number when A is square. The next
theorem justifies this definition.
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THEOREM Suppose that A is m-by-n with m ≥ n and has full rank.
Suppose that x minimizes ‖Ax − b‖2. Let r = Ax − b be the residual. Let
x̃ minimize ‖(A + δA)x̃ − (b + δb)‖2. Assume
ǫ ≡ max( ‖δA‖2‖b‖2 ,

‖δb‖2
‖b‖2 ) <

1
k2(A)

=
σmin(A)
σmax (A)

. Then

‖x̃ − x‖
‖x‖

≤ ǫ ·
{

2 · k2(A)

cos θ
+ tan θ · k 2

2 (A)

}

+ O(ǫ2) ≡ ǫ · kLS + O(ǫ2),

where sin θ = ‖r‖2
‖b‖2 . In other words, θ is the angle between the vectors b

and Ax and measures whether the residual norm ‖r‖2 is large (near ‖b‖)
or small (near 0). kLS is the condition number for the least squares
problem.
Sketch of Proof. Expand x̃ = ((A + δA)T (A + δA))−1(A + δA)T (b + δb)
in powers of δA and δb. Then remove all non-linear terms, leave the
linear terms for δA and δb. �
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Rank-deficient Least Squares Problems

Proposition

Let A be m by n with m ≥ n and rank A = r < n. Then there is an
n − r dimensional set of vectors that minimize ||Ax − b ||2.
Proof

Let Az = 0. Then of x minimizes ||Ax − b ||2 then x + z also
minimizes ||A(x + z) − b ||2.
This means that the least-squares solution is not unique.
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Moore-Penrose pseudoinverse for a full rank A

Definition

Suppose that A is m by n with m > n and has full rank with
A = QR = UΣVT being a QR and SVD decompositions of A ,
respectively. Then

A+ ≡ (AT A)−1AT = R−1QT = VΣ−1UT

is called the Moore-Penrose pseudoinverse of A . If m < n then
A+ ≡ AT (AAT )−1.
The pseudoinverse of A allows write solution of the full-rank
overdetermined least squares problem as x = A+b. If A is square
and a full rank then this formula reduces to x = A−1b. The A+ is
computed as pinv(A) in Matlab.
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A+ ≡ (AT A)−1AT = ((QR)T QR)−1(QR)T = (RT QT QR)−1(QR)T

= (RT R)−1RT QT = R−1QT ;

A+ ≡ (AT A)−1AT = ((UΣVT )T UΣVT )−1 · (UΣVT )T

= (VΣUT UΣVT )−1VΣUT = (VΣ2VT )−1VΣUT = VΣ−1UT
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Moore-Penrose pseudoinverse for rank-deficient A

Definition

Suppose that A is m by n with m > n and is rank-deficient with
rank r < n. Let A = UΣVT = U1Σ1VT

1 being a SVD
decompositions of A such that

A =[U1,U2]

[

Σ1 0
0 0

]

[V1,V2]
T = U1Σ1VT

1

Here, size(Σ1) = r × r and is nonsingular, U1 and V1 have r
columns. Then

A+ ≡ V1Σ
−1
1 UT

1

is called the Moore-Penrose pseudoinverse for rank-deficient A .
The solution of the least-squares problem is always x = A+b,
when A is rank-deficient then x has minimum norm.
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The next proposition states that if A is nearly rank deficient then the
solution x of Ax = b will be ill-conditioned and very large.
Proposition

Let σmin > 0 is the smallest singular value of the nearly rank deficient A .
Then

1. If x minimizes ||Ax − b ||2, then ||x ||2 ≥ |u
T
n b |
σmin

where un is the last
column of U in SVD decomposition of A = UΣVT .

2. Changing b to b + δb can change x to x + δx where ||δx ||2 can
be estimated as ||δb ||2

σmin
, or the solution is very ill-conditioned.

Proof

1: We have that for the case of full-rank matrix A the solution of Ax = b
is given by x = (UΣVT )−1b = VΣ−1UT b. The matrix A+ = VΣ−1UT is
Moore-Penrose pseodoinverse of A . Thus, we can write also this solution
as x = VΣ−1UT b = A+b.
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Then taking norms from both sides of above expression we have:

||x ||2 = ||Σ−1UT b ||2 ≥ |(Σ−1UT b)n | =
|uT

n b |
σmin

, (1)

where |(Σ−1UT b)n | is the n-th column of this product.
2. We apply now (1) for ‖x + δx‖ instead of ‖x‖ to get:

||x + δx ||2 = ||Σ−1UT (b + δb)||2 ≥ |(Σ−1UT (b + δb))n |

=
|uT

n (b + δb)|
σmin

=
|uT

n b + uT
n δb |

σmin
.

(2)

We observe that |u
T
n b |
σmin

+
|uT

n δb |
σmin
≤ ||x + δx ||2 ≤ ||x ||2 + ||δx ||2.

Choosing δb parallel to un and applying again (1) for estimation of ‖x‖2
we have

||δx ||2 ≥
||δb ||2
σmin

. (3)
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In the next proposition we prove that the minimum norm solution x is
unique and may be well-conditioned if the smallest nonzero singular
value is not too small.
Proposition

When A is exactly singular, then x that minimize ||Ax − b ||2 can be
characterized as follows. Let A = UΣVT have rank r < n. Write svd of A
as

A =[U1,U2]

[

Σ1 0
0 0

]

[V1,V2]
T = U1Σ1VT

1

Here, size(Σ1) = r × r and is nonsingular, U1 and V1 have r columns. Let
σ = σmin(Σ1).Then

1. All solutions x can be written as x = V1Σ
−1
1 UT

1 + V2z

2. The solution x has minimal norm ||x ||2 when z = 0. Then
x = V1Σ

−1
1 UT

1 and ||x ||2 ≤ ||b ||2σ .

3. Changing b to b + δb can change x as ||δb ||2
σ

.
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Proof
We choose the matrix Ũ such that [U, Ũ] = [U1,U2, Ũ] be an m ×m
orthogonal matrix. Then

||Ax − b ||22 = ||[U1,U2, Ũ]T (Ax − b)||22

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





















UT
1

UT
2

ŨT





















(U1Σ1VT
1 x − b)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

= ||[Ir×r ,Om×(n−r), 0m×m−n]T (Σ1VT
1 x − [U1,U2, Ũ]T · b)||22

= ||[Σ1VT
1 x − UT

1 b;−UT
2 b;−ŨT b]T ||22

= ||Σ1VT
1 x − UT

1 b ||22 + ||U
T
2 b ||22 + ||Ũ

T b ||22

1. Then ||Ax − b ||2 is minimized when Σ1VT
1 x − UT

1 b = 0. We can also
write that the vector x = (Σ1VT

1 )
−1UT

1 b + V2z or x = V1Σ
−1
1 UT

1 b + V2z is
also solution of this minimization problem, because VT

1 V2z = 0 since
columns of V1 and V2 are orthogonal.
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2. Since columns of V1 and V2 are orthogonal, then by Pythagorean
theorem we have that ‖x‖22 = ||V1Σ

−1
1 UT

1 b ||2 + ||V2z||2 which is minimized
for z = 0.
3. Changing b to δb in the expression above we have:

||V1Σ
−1
1 UT

1 δb ||2 ≤ ‖V1Σ
−1
1 UT

1 ‖2 · ‖δb‖2 = ‖Σ−1
1 ‖2 · ‖δb‖2 =

||δb ||2
σ
, (4)

where σ is smallest nonzero singular value of A . In this proof we used
properties of the norm: ‖QAZ‖2 = ‖A‖2 if Q ,Z are orthogonal.

Larisa Beilina, http://www.math.chalmers.se/̃larisa/ Lecture 5



QR and SVD
Rank-deficient Least Squares Problems

How to solve rank-deficient least squares problems using
QR decomposition with pivoting

QR decomposition with pivoting is cheaper but can be less accurate than
SVD technique for solution of rank-deficient least squares problems.
If A has a rank r < n with independent r columns QR decomposition can
look like that

A = QR = Q ·





















R11 R12

0 0
0 0





















.

(5)

with nonzingular R11 is of the size r × r and R12 is of the size r × (n − r).
We can try to get

R =





















R11 R12

0 R22

0 0





















, (6)

where elements of R22 are very small and are of the order ε‖A‖2.
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If we set R22 = 0 and choose [Q , Q̃] which is square and orthogonal then
we will minimize

‖Ax − b‖22 =

∥

∥

∥

∥

∥

∥

[

QT

Q̃T

]

(Ax − b)

∥

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

∥

[

QT

Q̃T

]

(QRx − b)

∥

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

∥

[

Rx - QT b
- Q̃T b

]
∥

∥

∥

∥

∥

∥

2

2

= ‖Rx − QT b‖22 + ‖Q̃
T b‖22.

(7)

Here we again used properties of the norm: ‖QAZ‖2 = ‖A‖2 if Q ,Z are
orthogonal.
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Let us now decompose Q = [Q1,Q2] with x = [x1, x2]
T and

R =

[

R11 R12

0 0

]

(8)

such that equation (7) becomes

‖Ax − b‖22 =

∥

∥

∥

∥

∥

∥

[

R11 R12

0 0

]

·
[

x1

x2

]

−
[

QT
1 b

QT
2 b

]
∥

∥

∥

∥

∥

∥

2

2

+ ‖Q̃T b‖22

= ‖R11x1 + R12x2 − QT
1 b‖22 + ‖Q

T
2 b‖22 + ‖Q̃

T b‖22.
(9)

We take now derivative with respect to x to get (‖Ax − b‖22)
′
x = 0. We see

that minimum is achieved when

x =

[

R−1
11 (Q

T
1 b − R12x2)

x2

]

(10)

for any vector x2. If R11 is well-conditioned and R−1
11 R12 is small than the

choice x2 = 0 will be good one.
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The described method is not reliable for all rank-deficient least squares
problems. This is because R can be nearly rank deficient for the case
when no R22 is small. In this case can help QR decomposition with
column pivoting: we factorize AP = QR with permutation matrix P. To
compute this permutation we do as follows:
1. In all columns from 1 to n at step i we select from the unfinished
decomposition of part A in columns i to n and rows i to m the column
with largest norm and exchange it with i-th column.
2. Then compute usual Householder transformation to zero out column i
in entries i + 1 to m.
Recent research is devoted to more advanced algorithms called
rank-revealing QR algorithms which detects rank more faster and more
efficient.
C. Bischof, Incremental condition estimation, SIAM J.Matrix Anal.Appl.,
11:312-322, 1990.
T.Chan, Rank revealing QR factorizations, Linear Algebra Applications,
88/89:67-82, 1987.
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