Introduction on Inverse Problems. Description of different approaches.

Michel Cristofol

I2M-CNRS Université d'Aix-Marseille, Ecole Centrale.

> Chalmers December 2019

> > ▲□▶▲□▶▲□▶▲□▶ □ のQ@

Five parts

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- I. General introduction on Inverse Problems
- II. The parabolic operators
- III. The Dirichlet to Neumann approach
- IV. The Carleman estimates approach
- V. The pointwise method approach

B. ill-posed problems !!! o C. They are everywhere !!!! 000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Part I

General introduction on Inverse Problems.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Inverse problem !!! what is this ?

A tentative of definition:

The inverse map of a direct problem !!!

Mandatory The direct problem must be well posed (in the sense of Hadamard : Existence, Uniqueness and continuity (stability) of solutions with respect to data). **Exemple:**

$u\mapsto u'$

is the inverse problem associated to the direct problem

$$u\mapsto\int u,$$

but no the reverse definition.

D1

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Inverse problem : a physical definition

Direct problem: Determine the physical state *u* produced by the knowledge of environmental parameters $(\alpha, ...)$ and constraints.

Inverse problem: Determine some physical parameter $\alpha \in U$ from measurements $y_u \in V$ related to the physical state u. In most of the situation the forward map

 $A: U \to V; \alpha \mapsto y_u$

is well defined injective and continuous.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Inverse problem : ill-posed problems !!!

Roughly speaking:

Measurements space is mostly L^2 functions and the closure of the range of operator *A* is compactly embedded in L^2 . Then

 A^{-1} : *Range* $A \subset V \rightarrow U$ cannot be continuous

 \Rightarrow the inverse problem $y \mapsto \alpha$ is unstable.

D1&D1bis&D2

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Inverse problem : a wide range of domains

A non exhaustive list

- 1. Medical imaging (ultrasound, tomography (EIT, TAT), scanners, X rays, magnetic resonance imaging (MRI) ...)
- 2. petroleum engineering
- 3. chemistry (determination of the constant of reaction)
- 4. radars (shape determination of an obstacle)
- 5. submarine acoustic (shape determination of an obstacle)
- 6. Quantum mechanic (determination of potential, ...)
- 7. image processing (restoration of blurred images)
- 8. non destructive testing
- 9. . . .

B. ill-posed problems !!!

C. They are everywhere !!!! OOO

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Three goals

- Uniqueness !!!
- stability !!
- reconstruction !

with as less as possible of observations ...

Theoretical/Numerical approaches

These two approaches are complementaries and in a lot of cases (at this time) only the numerical approach gives some results. Several methods among others:

- regularization ("light" transformation of the equation studied into a new problem with better properties)
- minimization of a functional via least square method or more sophisticated one (optimisation methods)
- Bayesian methods (based on a prior information and specific calculations)

• ...

See the numerical part of this course for nice calculations

B. Properties

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Part II

The parabolic operators.

Diffusion equation (or Heat equation): elementary formulation

This PD equation models (e.g.) the dispersion of a population along the time:

 $\partial_t u(x,t) = D\Delta u(x,t), x \in \mathbb{R}^d, t > 0,$

where u(x, t) corresponds to the density of population and D > 0.

Diffusion equation: stochastic approach in 1D

- Assuming that an individual is at point x_0 at time 0 what is the probability that the individual is at point $x \in \mathbb{R}$ at time t > 0?

- If a group of individuals starts at point x_0 at time 0 what is the density of population at point $x \in \mathbb{R}$ at time t > 0?

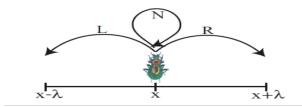
These questions are linked and we will carry out a PDE describing the evolution of the density of probability associated to the position of an individual.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

D3

B. Properties O

1D Random walk (D4&5, 6, 7, 8, 9)



- This approach is based on the Fick law which links the flux *J* of particles through a surface with the concentration of these particles u(x, t) on this surface: $J = -D(x, t)\partial_x u(x, t)$ with D(x, t) the diffusivity coefficient.

- This model fit with physical phenomena such propagation of **microscopic particles.**

D10&11

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A. Definitions

Multidimensional cases

Two versions, with D(x, t) > 0 a real valued function:

- 1. Fokker-Planck (macroscopic model): $\partial_t u(x,t) = \Delta(D(x,t)u(x,t)), x \in \mathbb{R}^d, t > 0$, where *D* is the mobility coefficient
- 2. Fick (heat diffusion): $\partial_t u(x,t) = div(D(x,t)\nabla u(x,t)), x \in \mathbb{R}^d, t > 0$, where *D* is the diffusivity coefficient

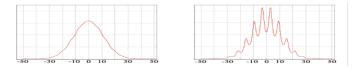
Commentaries:

- Recall : $\Delta(Du) = div(\nabla[Du]) = div(D\nabla u) + div(u\nabla D)$.

- If *D* is constant, Fick and Fokker-Planck are similar models, but in heterogeneous media the Fick model homogenizes and on the other hand the Fokker-Planck model concentrates the solution in the domain where *D* is small.

B. Properties O

Fick versus Fokker-Planck (D12)



▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A@

B. Properties

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Fundamental solution

Consider the diffusion equation

$$\partial_t u = \Delta u, t > 0, x \in \mathbb{R}^d.$$
 (1)

We are looking for a fundamental solution of (1) which will allow us to write a solution of the Cauchy problem associated to (1), see next slide.

Lemma

A fundamental solution of (1) is

$$\varphi(x,t)=\frac{1}{(\sqrt{4\pi t})^d}e^{-\frac{|x|^2}{4t}},$$

and

$$\forall t > 0, \int_{\mathbb{R}^d} \varphi(x, t) dx = 1.$$

D13&14, 15