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Cauchy problem in Rd

Consider the Cauchy Problem (S){
∂tu = ∆u, t > 0, x ∈ Rd ,
u(x ,0) = u0(x), x ∈ Rd .

From the fundamental solution we get an explicit solution of (S)

Theorem
Let u0 ∈ C(Rd ) ∩ L∞(Rd ). If

u(x , t) =
1

(
√

4πt)d

∫
Rd

e−
|x−y|2

4t u0(y)dy ,

then:

• u ∈ C∞(]0,∞[×Rd )

• u checks ∂tu = ∆u, t > 0, x ∈ Rd ,

• limt→0 u(t , x0) = u0(x0),
• ∫Rd u(t , x)dx =

∫
Rd u0(x)dx .

(D16&17, 18)
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Remarks

• Mass conservation
• Infinite speed of propagation, if u0 is bounded, continuous and

positive, even if u0 is compactly supported. It is false in the case
of porous media ∂tu = ∆um,m > 1.

• Regularization effect (u0 is assumed to be continuous and
bounded, but as soon as t > 0, then u ∈ C∞(R+

∗ × Rd )).
(D18)
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Cauchy problem in a bounded set Ω

The problem  ∂tu = ∆u, t > 0, x ∈ Ω,
Initial condition u(0, x) = u0(x), x ∈ Ω,

+ boundary condition on ∂Ω for t ≥ 0
(1)

The more classical boundary conditions:
• Dirichlet condition (absorbing condition):

u(t , x) = 0, t > 0, x ∈ ∂Ω, like a precipice
• Neumann condition (reflecting condition)

∂u
∂ν (x , t) = ∇u(t , x).ν(x) = 0, t > 0, x ∈ ∂Ω where ν(x) is the
outward normal at the point x at ∂Ω.

• Robin conditions: α(t , x) ∂u
∂ν + β(t , x)u = 0, t > 0, x ∈ ∂Ω with

α2 + β2 > 0.
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Existence, uniqueness and regularity of the solution
We are interested here in the strong (or classical) solutions

Theorem
1. Dirichlet case: If u0 ∈ C2,α(Ω), α > 0 and u0 = ∆u0 = 0 on ∂Ω,

there exists a unique solution u of (1) with u ∈ C2
1 (R+ × Ω) and

u ∈ C∞(R∗+ × Ω).

2. Neumann case: If u0 ∈ C2,α(Ω), α > 0 and ∂u0
∂ν = 0 on ∂Ω, there

exists a unique solution u of (1) with u ∈ C2
1 (R+ × Ω) and

u ∈ C∞(R∗+ × Ω).

- Here, C2,α(Ω) is the Holder space of the function C2(Ω) which
second derivative is Holder.
g is α−holderienne if [g]α = sup

x,y∈Ω,x 6=y

|g(x)− g(y)|
|x − y |α

is finite.

- C2
1 (R+ × Ω) corresponds to continuous functions on R+ which

space derivative until order 2 and the time derivative are continuous
on R+ × Ω.
(D19)
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The diffusion-reaction models

Consider ∂tu = D∆u + f (x ,u), t ≥ 0, x ∈ Ω,
Initial condition u(0, x) = u0(x), x ∈ Ω,

+ Dirichlet or Neumann boundary condition on ∂Ω for t ≥ 0.
(2)

The reaction term f (x ,u) allows to give a more precise modeling of
the problem studied, e.g. in case of population model it can describe
the death and birth events.

e.g. the F-KPP models.

(D21)
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The diffusion-reaction models:
existence, uniqueness

Theorem
Assume f = f (x ,u) verifies f , ∂uf ∈ C(Ω× R) and is Lipschitz in x.
Assume u0 ∈ C2,α(Ω) and u0 verifies compatibility condition. Then
the problem (2) admits an unique solution in C2

1 (R+ × Ω).
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Parabolic equations:
We can generalize the previous results to a more general formulation
of a parabolic problem as an initial/boundary value problem as
follows: ∂tu + Lu = f (x , t), t ∈ (0,T ], x ∈ Ω,

Initial condition u(0, x) = u0(x), x ∈ Ω,
+ Dirichlet or Neumann boundary condition on ∂Ω for t ∈ [0,T ],

(3)
for T > 0 and where L denotes for each time t a second order partial
differential operator having either the divergence form

Lu = −
n∑

i,j=1

(aij (x , t)uxj )xi +
n∑

i=1

bi (x , t)uxi + c(x , t)u

or else the non divergence form

Lu = −
n∑

i,j=1

aij (x , t)uxi xj +
n∑

i=1

bi (x , t)uxi + c(x , t)u
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Parabolic equations:

Definition
We say that the partial differential operator ∂

∂t + L is (uniformly)
parabolic if there exists a constant θ > 0 such that

n∑
i,j=1

aij (x , t)ξiξj ≥ θ|ξ|2,

for all (x , t) ∈ Ω× (0,T ], and ξ ∈ Rn.
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Improved regularity: weak solutions for (3)

Some of the methods tackled in this talk need some regularity
assumptions. For this we study the generous regularities properties
that we can get for the solution of a parabolic equation.

We assume that
aij ,bi , c ∈ L∞(Ω× (0,T ]), aij = aji and u0 ∈ L2(Ω), f ∈ L2(Ω× (0,T ]),
and for simplicity, we assume homogeneous Dirichlet boundary
condition. We define the bilinear form:

b(u, v , t) :=

∫
Ω

n∑
i,j=1

aij (., t)uxi vxj +
n∑

i=1

bi (., t)uxi v + c(., t)uv dx ,

for u, v ∈ H1
0 (Ω) and a.e. 0 ≤ t ≤ T .
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Improved regularity: weak solutions for (3)

Definition
We say that a function

u ∈ L2(0,T ; H1
0 (Ω)), with u′ ∈ L2(0,T ; H−1(Ω))

is a weak solution of the problem (3) provided
• < u′, v > +b(u, v , t) = (f , v)

for each v ∈ H1
0 (Ω) and a.e. 0 ≤ t ≤ T , and

• u(0) = u0



C. Models D. A toy problem to solve

Improved regularity: weak solutions for (3)

The strategy:

First we prove the existence and the uniqueness of weak solution for
(3). This first step involves the construction of Galerkin
approximations and we carry out solutions from standard theory for
ordinary differential equations then we derive energy estimates.

In a second step, basing ourselves on these results we prove
existence of strong solutions and get results of higher regularity for
the solution of (3).
(D21-1,2)
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Improved regularity: formal calculation

We want to have an idea of the level of regularity we can hope for the
weak solution of (3). At this point we assume that this solution is
sufficiently smooth and tends to 0 when |x | → ∞ to carry out some
computations and derive estimates for the L2 norms for

ut , |Du|, |D2u| and |Dut |

in terms of the L2 norms of

f , ft , |Du0| and D2u0.

(D21-3,4,5)
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Improved regularity for weak solution - Part I
Theorem
• Assume

u0 ∈ H1
0 (Ω), f ∈ L2(0,T ; L2(Ω))

suppose also u ∈ L2(0,T ; H1
0 (Ω)), with u′ ∈ L2(0,T ; H−1(Ω)), is

the weak solution of (3). Then we have

u ∈ L2(0,T ; H2(Ω)) ∩ L∞(0,T ; H1
0 (Ω)),u′ ∈ L2(0,T ; L2(Ω)),

and we have the estimate

ess sup
0≤t≤T

‖u(t)‖H1
0 (Ω) + ‖u‖L2(0,T ;H2(Ω)) + ‖u′‖L2(0,T ;L2(Ω)),

≤ C
(
‖f‖L2(0,T ;L2(Ω)) + ‖u0‖H1

0 (Ω)

)
.

Where C depends only on Ω,T and the coefficients.

(D21-6)
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Improved regularity for weak solution -Part II
Theorem (following)
• If in addition,

u0 ∈ H2(Ω), f ′ ∈ L2(0,T ; L2(Ω))

then

u ∈ L∞(0,T ; H2(Ω))),u′ ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H1
0 (Ω),

u′′ ∈ L2(0,T ; H−1(Ω))

and we have the estimate

ess sup
0≤t≤T

(‖u(t)‖H2(Ω) + ‖u′‖L2(Ω)) + ‖u′‖L2(0,T ;H1
0 (Ω))

+‖u′′‖L2(0,T ;H−1(Ω)) ≤ C
(
‖f‖H1(0,T ;L2(Ω)) + ‖u0‖H2(Ω)

)
.

(D21-6)
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Higher regularity (D21-7,8,9,10)

Theorem
Assume

u0 ∈ H2m+1(Ω),
∂k f
∂tk ∈ L2(0,T ; H2m−2k (Ω)); (k = 0, . . . ,m),

assume also that all the order compatibility conditions hold. Then

∂k u
∂tk ∈ L2(0,T ; H2m+2−2k (Ω)), (k = 0, . . . ,m + 1)

and we have the estimate

m+1∑
k=0

‖∂
k u
∂tk ‖L2(0,T ;H2m+2−2k (Ω))

≤ C

(
m∑

k=0

‖∂
k f
∂tk ‖L2(0,T ;H2m−2k (Ω)) + ‖u0‖H2m+1(Ω)

)
.

Where C depends only on m,Ω,T and the coefficients of L.
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Infinite differentiability (D21-11)

Theorem
Assume

u0 ∈ C∞(Ω̄), f ∈ C∞(Ω× (0,T ])

assume also that all the mth− order compatibility conditions hold for
m = 0,1 . . ..
Then the problem (3) has a unique solution

u ∈ C∞(Ω× (0,T ])
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Two interesting models:
I- Fisher-Kolmogorov Petrovsky Piskunov

The more classical reaction-diffusion term (Fisher-KPP) is in the form:

f (x ,u) = u(r(x)− γ(x)u), x ∈ Ω,u ∈ R.

The term r(x) corresponds to the intrinsic growth rate of a population,
it can be positive or negative.
The term γ(x) corresponds to the intraspecific coefficient which is
positive.

It appears in several fields of applications such as physics, in
combustion flame propagation models, in chemistry, in ecology, to
study the dynamics of a population as well as in population genetics.
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Two interesting models:
II- Lotka-Volterra

Consider a single-species model in 1D:

∂u
∂t

= D1
∂2u
∂x2 + r1(x) u − a11(x) u2, for t > 0, x ∈ (a,b) ⊂ R,

where D1 > 0, r1 is the intrinsic growth rate and a11 > 0 is the
intraspecific competition coefficient.
Assume that a second species v enters in competition with species u
then, the two-species system can be modeled by the Lotka-Volterra
competition model:

∂u
∂t

= D1
∂2u
∂x2 + r1 u − a11 u2 − a12 uv ,

∂v
∂t

= D2
∂2v
∂x2 + r2 v − a21 uv − a22 v2,

for t > 0, x ∈ (a,b) ⊂ R.

with D2 > 0, r2 is the 2nd species intrinsic growth rate and a22 > 0
corresponds to the 2nd species intraspecific competition coefficient.
a12 and a21 respectively measure the impact of species 2 upon
species 1 (resp. of species 1 upon species 2).
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Others specific parabolic equations
and some original associated inverse problems

1. Degenerate (D22)

2. Memory term (D23)

3. Fractional derivative (D24 25)

4. Kernel of dispersion (D26)

5. General diffusion equation (D27)

6. Unbounded domain (D28, 28-1)
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A basic inverse problem solved with powerful tools

We are interested by the determination (meaning uniqueness or (and)
reconstruction) of the x−dependent potential q in the following
parabolic problem :

∂tu(t , x)−∆u(t , x) + q(x)u(t , x) = 0, for x ∈ Ω, t ∈ (0,T ),

u|∂Ω×(0,T ) = 0.
(4)

using as less as possible of measurements.

Remark: this problem is similar to the reconstruction of a space
dependent source term in the form: f (x)R(x , t) where R(x , t) is
assumed to be known.
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