Principal component analysis for image
processing and object orientation

Principal component analysis

@ Principal component analysis (PCA) is a machine learning technique
which is widely used for data compression in image processing (data
visualization) or in the determination of object orientation.

@ PCA problem is closely related to the numerical linear algebra
(NLA) problem of finding eigenvalues and eigenvectors for the
covariance matrix.

@ We will study application of different methods for solution of
nonsymmetric eigenvalue problems (inverse iteration with shift,
orthogonal iteration, QR iteration and QR-iteration with shift) for
image compression and object rotation.

Principal component analysis

@ The goal of this project is numerical studies of different methods for
solution of nonsymmetric eigenvalue problems applied for PCA in
image compression and object rotation using following numerical
linear algebra (NLA) algorithms: inverse iteration with shift,
orthogonal iteration, QR iteration and QR-iteration with shift.

@ Note that all described above NLA algorithms can be found in the
book L. Beilina, E. Karchevskii, M. Karchevskii, Numerical Linear
Algebra: Theory and Applications, Springer, 2017, and all
matlab-programs for solution of nonsymmetric eigenvalue problems
(inverse iteration with shift, orthogonal iteration, QR iteration and
QR-iteration with shift) are free for download from the GitHub link

https://github.com/springer-math/
Numerical_Linear_Algebra_Theory_and_Applications

In the project we will study application of programs from this link
for PCA in image compression and object rotation.

Principal component analysis

Project exercises

@ Discover convergence of following algorithms for solution of
nonsymmetric eigenvalue problems applied for PCA in image
compression and object rotation:
inverse iteration with shift, orthogonal iteration, QR iteration and
QR-iteration with shift.

@ Compare performance of all algorithms with respect to applicability,
reliability, accuracy, and efficiency.

@ Programs written in Matlab should demonstrate performance of
every algorithm on the concreteexample of image compression or
orientation.

Principal component analysis

Example of application of linear systems: image

compression using SVD

Definition SVD Let A be an arbitrary m-by-n matrix with m > n. Then
we can write A= ULV, where U is m-by-n and satisfies utu=1V
is n-by-n and satisfies VTV = I, and ¥ = diag(oy,...,0,), where

01> -->0,>0. The columns uy,...,u, of U are called left singular
vectors. The columns vy,...,v, of V are called right singular vectors.
The o; are called singular values. (If m < n, the SVD is defined by
considering AT .)

Theorem

Write V = [v1,v2,...,v,] and U = [uy, to, . .., u,], so

A=UTVT =" ojuv] (a sum of rank-1 matrices). Then a matrix
of rank k < n closest to A (measured with || - ||2 is Ax = Zf;l oiuv]

and ||A — Aklla = ok11. We may also write A, = UL, VT where
)Zk = diag(al,...,ak,O,...,O).

Principal component analysis

Example of application of linear systems: image
compression using SVD

50

a) Original image b) Rank k=20 approximation

Principal component analysis

Example of application of linear systems:

compression using SVD in Matlab

See path for other pictures:
/matlab-2012b /toolbox/matlab/demos
load clown.mat;

Size(X) = m x n = 320 x 200 pixels.
[U,S,V] = svd(X);

colormap(map);

k=20;
image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)");
Now: size(U)= m X k, size(V)= n x k.

Principal component analysis

Example of application of linear systems: image
compression using SVD in Matlab

c) Rank k=20 approximation d) Rank k=50 approximation

Principal component analysis

Example of application of linear systems: image

compression using SVD for arbitrary image

To get image on the previous slide, | took picture in jpg-format
and loaded it in matlab like that:

A = imread('autumn.jpg’);

You can not simply apply SVD to A: svd(A) Undefined function
'svd’ for input arguments of type 'uint8'.

Apply type "double” to A: DA = double(A), and then perform

[U,S,V] = svd(DA);

colormap('gray’);

k=20;

image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)");

Now: size(U)= m x k, size(V)= n x k.

Principal component analysis
Project literature

The proposed project books:

@ Al: Miroslav Kurbat, An Introduction to Machine Learning,
Springer, 2017.

@ Al: Christopher M. Bishop, Pattern recognition and machine
learning, Springer, 20009.
@ NLA problems:

L. Beilina, E. Karchevskii, M. Karchevskii, Numerical Linear
Algebra: Theory and Applications, Springer, 2017. Book is available
at Cremona.

Matlab and C++ programs for examples in this book are available
for download from the course homepage: go to the link of the book
and click to

GitHub Page with MATLAB Source Codes

on the bottom of this page.

	Principal component analysis

