
Numerical Linear Algebra. Computer Labs

Notes

• To pass this course you should do any 2 computer assignments
described below.

• You can work in groups by 2 persons.

• Sent final report for every computer assignment with description
of your work together with Matlab or C++/PETSc programs
to my e-mail before deadline. Report should have description
of used techniques, tables and figures confirming your investi-
gations. Analysis of obtained results is necessary to present in
section “Numerical examples” and summarized results - in sec-
tion “Conclusions”. You can download latex or pdf-template for
report from the course homepage.

• Matlab and C++ programs for examples in the book [1] are avail-
able for download from the course homepage: go to the link of
the book [1] and click to “GitHub Page with MATLAB R© Source
Codes” on the bottom of this page.

1

Computer exercise 1 (1 b.p.)

Apply Bisection Algorithm (you can find this algorithm in the book [1],
see question 8.3, Algorithm 8.11) Bisection, to find the roots of the
polynomial

p(x) = (x− 1)3(x− 5)2(x− 7)3 = 0

for different input intervals x = [xleft, xright]. Use this algorithm to
determine the roots of some of your own polynomial. Note that in
the Bisection Algorithm p(x) should be evaluated using Horner’s rule.

Write your own Matlab’s program which can use as a template the
Matlab program

Bisection.m

from the ‘GitHub Page with MATLAB R© Source Codes. Confirm that
changing the input interval for x = [xleft, xright] slightly changes the
computed root drastically. Modify the algorithm to use the relative
condition number for polynomial evaluation given by (8.26) of [1]:

cond(p) :=

∑d

i=0 |cixi|
∣

∣

∣

∑d

i=0 cix
i

∣

∣

∣

to stop bisecting when the round-off error in the computed value of p(x)
gets so large that its sign cannot be determined. Present your results
similarly with results of Figures 8.2, 8.3 in the book [1]. Compare your
results with results of these figures.

Hints:

• Study Example 8.3, page 262, of [1].

• Note, that in Horner’s rule ai denote coefficients of the polynomial

p(x) =
d

∑

i=0

aix
i,

where d is the degree of the polynomial. Thus, you need first
compute coefficients of the polynomial p(x). For example, exact
coefficients of polynomial p(x) = (x− 9)9 are:

a = [−387420489; 387420489;−172186884; 44641044;

− 7440174; 826686;−61236; 2916;−81; 1].
(1)

Use the Matlab function

2

coeffs

to compute the coefficients of a polynomial p(x).

• Compute error bound bp = △ as in the algorithm 8.6 of [1] for ev-
ery point x ∈ [xleft, xright]. Below is example of Matlab’s function
which can be used to compute this error bound:

function [P,bp] = evaluate_polynomial_by_Horners_rule(a,x,eps)

% Parameters: a contains the coeficients of the plynomial p(x)

% P is the value of p(x) at x.

% eps is the mechine epsilon

d = numel(a);

P = a(d);

bp = abs(a(d));

for i = d - 1:(-1):1

P = x*P + a(i);

bp = abs(x)*bp + abs(a(i));

end

%error bound

bp = 2*(d - 1)*eps*bp;

end

Here, eps is the machine epsilon. Use following machine eps in
Matlab:

eps = 2.2204460492503131e-16

3

Computer exercise 2 (1 b.p.)

Consider the nonlinear model equation

y(T) = A · exp
E

T−T0

presenting one of the models of the viscosity of glasses (see paper G.
S. Fulcher, “ANALYSIS OF RECENT MEASUREMENTS OF THE
VISCOSITY OF GLASSES” on the course homepage). Here, T is
the known temperature, y(T) is the known output data. Determine
parameters A,E, T0 which are positive constants by knowing T and
output data y(T).

Hints:

1. Transform first the nonlinear function y(T) to the linear one and
formulate then the linear least squares problem. Discretize T
by N points and compute discrete values of y(T) as yi = y(Ti)
for the known values of parameters A,E, T0. Then forget about
these parameters (we will call them exact parameters A∗, E∗, T ∗

0)
and solve the linear least squares problem to recover these exact
parameters.

2. You can choose exact parameters A∗, E∗, T ∗
0 as well as the tem-

perature T as some positive constants. For example, take E∗ =
6 · 103, A∗ = exp−2.64, T ∗

0 = 400, T = 750 + 10 ∗ i, i = 1, ..., N ,
where N is the number of discretization points. See Table II in
the paper G. S. Fulcher, “ANALYSIS OF RECENT MEASURE-
MENTS OF THE VISCOSITY OF GLASSES” for some other
possible choises of these constants.

3. Add random noise δ to data y(T) using the formula

yδ(T) = y(T)(1 + δα),

where α ∈ (−1, 1) is randomly distributed number and δ ∈ [0, 1] is
the noise level. For example, if noise in data is 5%, then δ = 0.05.

4. Solve the linear least squares problem using the method of normal
equations, QR and then SVD decompositions. Analyze obtained
results by computing the relative errors eA, eE, eT0

in the com-
puted parameters depending on the different noise level δ ∈ [0, 1]
in data yσ(T) for every method.

4

The relative errors eA, eE, eT0
in the computed parametersA,E, T0

compute as:

eA =
|A− A∗|
|A∗| ,

eE =
|E − E∗|

|E∗| ,

eT0
=

|T0 − T ∗
0 |

|T ∗
0 |

.

(2)

Here, A∗, E∗, T ∗
0 are exact values and A,E, T0 are computed one.

Present results how relative errors (2) depend on the random noise
δ ∈ [0, 1] in graphical form and in the corresponding table.

5. Choose different number of discretization points N in the interval
for temperature T and present results of computations in graph-
ical form and in the corresponding table. More precisely, present
how relative errors (2) depend on the number of measurements N
if you solve the linear least squares problem using 3 methods: the
method of normal equations, QR and then SVD decomposition.

6. Using results obtained in items 4 and 5, analyze, what is the min-
imal number of observations N to get reasonable reconstruction
of parameters A,E, T0 within the noise level σ ?

5

Computer exercise 3 (2 b.p.)

In this exercise we will study different linear and quadratic classifiers:
least squares classifier, perceptron learning algorithm, WINNOW algo-
rithm using training sets described below. Implement in MATLAB all
these classification algorithms and present decision lines for following
training sets:

• I) for randomly distributed data yi, i = 1, ...,m generated by

−1.2 + 0.5x+ y = 0

on the interval x = [−10, 10]. Generate random noise δ to data
y(x) using the formula

yσ(x) = y(x)(1 + δα),

where α ∈ (−1, 1) is randomly distributed number and δ ∈ [0, 1] is
the noise level. For example, if noise in data is 5%, then δ = 0.05.
Perform different experiments with different number of gener-
ated data m > 0 which you choose as you want (for example,
m=10,100,1000).

• II) Generate your own data and try separate them. You can take
experimental data from the link

https://archive.ics.uci.edu/ml/datasets.html

Or download *.xlsx file with data for grey seals and classify time-
dependent data in this file for length and weight of seals. Another
option is classification of weight-dependent data on length and
thikness of seals.

Try answer to the following questions:

• Analize what happens with performance of perceptron learning
algorithm if we take different learning rates η ∈ (0, 1] ? For what
values of η perceptron learning algorithm is more sensitive and
when the iterative process is too slow?

• Analyze which one of the studied classification algorthms perform
best and why?

• Try to explain why least squares approach can fail in the case
when usual linear classifier is used.

6

Hints:

1. In this exercise we will assume that we will work in domains with
two classes: positive class and negative class. We will assume
that each training example x can have values 0 or 1 and we will
label positive examples with c(x) = 1 and negative with c(x) = 0.

2. We will also assume that these classes are linearly separable.
These two classes can be separated by a linear function of the
form

ω0 + ω1x+ ω2y = 0, (3)

where x, y are Cartesian coordinates. Note that the equation (3)
can be rewritten for the case of a linear least squares problem as

ω0 + ω1x = −ω2y (4)

or as
− ω0

ω2

− ω1

ω2

x = y. (5)

3. Suppose that we have measurements yi, i = 1, ...,m in (5) and our
goal is to determine coefficients in (5) from these measurements.
We can determine coefficients ω0, ω1, ω2 by solving the following
least squares problem:

min
ω

‖Aω − y‖22 (6)

with ω = [ω1, ω2]
T = [−ω0

ω2

,−ω1

ω2

]T , rows in matrix A given by

[1, xk], k = 1, ...,m,

and vector y = [y1,, ym]
T .

4. The Perceptron learning algorithm is presented below. Deci-
sion line then can be presented in Matlab for already computed
weights by Perceptron learning algorithm using the formula (5).

Perceptron learning algorithm

Assume that two classes c(x)=1 and c(x)=0 are linearly separable.

7

Step 0. Initialize all weights ωi in

n
∑

i=0

ωixi = 0

to small random numbers (note x0 = 1). Choose an appropriate learn-
ing rate η ∈ (0, 1].

Step 1. For each training example x = (x1, ..., xn) whose class is
c(x) do:

• (i) Assign h(x) = 1 if
n

∑

i=0

ωixi > 0

and assign h(x) = 0 otherwise.

• (ii) Update each weight using the formula

ωi = ωi + η · [c(x)− h(x)] · xi.

Step 2. If c(x) = h(x) for all training examples stop, otherwise
go to Step 1.

Computer exercise 4 (3 b.p.)

This exercise can be viewed as a training example for Master’s project
“Efficient implementation of Helmholtz equation with applications in
medical imaging”, see Master’s projects homepage for description of
this project.

Solve the Helmholtz equation

∆u(x, ω) + ω2ε′(x)u(x, ω) = iωJ,

lim
|x|→∞

u (x, ω) = 0. (7)

in two dimensions using C++/PETSC. Here, ε′(x) is the spatially dis-
tributed complex dielectric function which can be expressed as

ε′(x) = εr(x)
1

c2
− iµ0

σ(x)

ω
, (8)

where εr(x) = ε(x)/ε0 and σ(x) are the dimensionless relative dielectric
permittivity and electric conductivity functions, respectively, ε0, µ0 are

8

the permittivity and permeability of the free space, respectively, and
c = 1/

√
ε0µ0 is the speed of light in free space., and ω is the angular

frequency.
Take appropriate values for ω, ε′, J . For example, take

ω = {40, 60, 80, 100}, εr = {2, 4, 6}; σ = {5, 0.5, 0.05}, J = 1.

Analyze obtained results for different ω, εr, σ, J .
Information about PETSc can be found on the link:

https://www.mcs.anl.gov/petsc/

Hints:

1. Study Example 12.5 of the course book [1] where is presented
solution of the Dirichlet problem for the Poisson’s equation on
a unit square using different iterative methods implemented in
C++/PETSc. C++/PETSc programs for solution of this prob-
lem are available for download from the course homepage: go to
the link of the book [1] and click to “GitHub Page with MATLAB R©
Source Codes” on the bottom of this page, choose then

PETSC_code

The different iterative methods are encoded by numbers 1-7 in
the main program

Main.cpp

in the following order:

– 1 - Jacobi’s method,

– 2 - Gauss-Seidel method,

– 3 - Successive Overrelaxation method (SOR),

– 4 - Conjugate Gradient method,

– 5 - Conjugate Gradient method (Algorithm 12.13),

– 6 - Preconditioned Conjugate Gradient method,

9

– 7 - Preconditioned Conjugate Gradient method (Algorithm
12.14).

Methods 1-5 use inbuilt PETSc functions, and methods 6,7 im-
plement algorithms 12.13, 12.14 of the book [1], respectively. For
example, we can run the program Main.cpp using SOR method
as follows:

> nohup Main 3 > result.m

After running the results will be printed in the file result.m and
can be viewed in Matlab using the command

surf(result).

2. Modify PETSc code of the Example 12.5 of [1] such that the
equation (7) can be solved. Note that solution of the equation
(7) is complex. You should include

#include <complex>

to be able work with complex numbers in C++. For example,
below is example of definition of the complex array in C++ and
assigning values to the real and imaginary parts:

complex<double> *complex2d = new complex<double>[nno];

double a = 5.4;

double b = 3.1;

for (int i=0; i < nno; i++)

{

complex2d[i].real() = a;

complex2d[i].imag() = b;

}

delete[] complex2d;

Example of the definition of the complex right hand side in PETSc
is presented below:

10

PetscScalar right_hand_side(const PetscReal x, const PetscReal y)

{

PetscReal realpart, imagpart;

PetscReal pi = 3.14159265359;

realpart = pi*sin(2*pi*x)*cos(2*pi*y);

imagpart = x*x + y*y;

PetscScalar f(rpart, ipart);

return f;

}

3. Example of Makefile for running C++/PETSc code at Chalmers
is presented in Example 12.5 of [1] and can be as follows:

PETSC_ARCH=/chalmers/sw/sup64/petsc-3.7.4

include ${PETSC_ARCH}/lib/petsc/conf/variables

include ${PETSC_ARCH}/lib/petsc/conf/rules

CXX=g++

CXXFLAGS=-Wall -Wextra -g -O0 -c -Iinclude -I${PETSC_ARCH}/include

LD=g++

LFLAGS=

OBJECTS=Main.o CG.o Create.o DiscretePoisson2D.o GaussSeidel.o

Jacobi.o PCG.o Solver.o SOR.o

Run=Main

all: $(Run)

$(CXX) $(CXXFLAGS) -o $@ $<

$(Run): $(OBJECTS)

$(LD) $(LFLAGS) $(OBJECTS) $(PETSC_LIB) -o $@

To compile PETSc with complex numbers you need to write in
Makefile:

PETSC_ARCH=/chalmers/sw/sup64/petsc-3.7.4c

11

4. Choose the two-dimensional convex computational domain Ω Ω =
[0, 1] × [0, 1]. Choose boundary condition at the boundary of
∂Ω such that the condition lim|x|→∞ u (x, ω) = 0 is satisfied, for

example, take some functions in the form of Gaussian exp−x2

.

5. Choose the following boundary condition u(x, ω) = −ωg(x, ω),
where g(x, ω) is given by (10). More precisely, solve the Helmholtz
equation

∆u(x, ω) + ω2ε(x)u(x, ω) = f(x, ω),

u(x, ω) = −ωg(x, ω).
(9)

Take as g(x, ω), x = (x1, x2), the function

u(x1, x2) = sin(2πx1) sin(2πx2) + ix1(1− x1)x2(1− x2) (10)

which is the exact solution of the equation (9) with the right hand
side

f(x1, x2) = −(8π2) sin(2πx1) sin(2πx2)− 2ix1(1− x1)− 2ix2(1− x2)

+ ω2ε(x)(sin(2πx1) sin(2πx2) + ix1(1− x1)x2(1− x2))

(11)

6. Try also the following boundary condition ∂nu(x, ω) = −ωg(x, ω).

7. Values of c, µ0, ε0 in (8) are known constants.

– Vacuum permittivity, sometimes called the electric constant
ε0 and measured in F/m (farad per meter):

ε0 ≈ 8.85 · 10−12

– The permeability of free space,or the magnetic constant µ0

measured in H/m (henries per meter):

µ0 ≈ 12.57 · 10−7

– The speed of light in a free space is given by formula c =
1/
√
ε0µ0 and is measured in m/c (metres per second):

c ≈ 300 000 000

References

[1] L. Beilina, E. Karchevskii, M. Karchevskii, Numerical Linear
Algebra: Theory and Applications, Springer, 2017.

12

