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Algorithms for the Nonsymmetric Eigenvalue Problem

Example

We will construct a lower triangular matrix using Given’s rotation
from the matrix

A =





5 4 3
4 6 1
3 1 7



 .
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Given’s matrix for j < k

function [G] = GivensMatrixLow(A, j,k)

a = A(k , k)
b = A(j , k)
r = sqrt(a2 + b2);
c = a/r ;
s = −b/r ;
G = eye(length(A));
G (j , j) = c ;
G (k , k) = c ;
G (j , k) = s;
G (k , j) = −s;
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Algorithms for the Nonsymmetric Eigenvalue Problem

>>G1up = GivensMatrixLow(A,2,3)

G1 =





1.000000000000000 0 0
0 0.989949493661166 −0.141421356237310
0 0.141421356237310 0.989949493661166





>> A1 =G1*A

A1 =





5.000000000000000 4.000000000000000 3.000000000000000
3.535533905932737 5.798275605729690 −0.000000000000000
3.535533905932738 1.838477631085023 7.071067811865475




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>>G2 = GivensMatrixLow(A1,1,3)

G2 =





0.920574617898323 0 −0.390566732942472
0 1.000000000000000 0

0.390566732942472 0 0.920574617898323





>> A2=G2*A1

A2 =





3.222011162644131 2.964250269632601 −0.000000000000000
3.535533905932737 5.798275605729690 −0.000000000000000
5.207556439232954 3.254722774520597 7.681145747868607





5 / 57



Algorithms for the Nonsymmetric Eigenvalue Problem

>>G3 = GivensMatrixLow(A2,1,2)

G3 =





0.890391914715406 −0.455194725594918 0
0.455194725594918 0.890391914715406 0

0 0 1.000000000000000





>> A3=G3*A2

A3 =





1.259496302198541 0 −0.000000000000000
4.614653291088246 6.512048806713364 −0.000000000000000
5.207556439232954 3.254722774520597 7.681145747868607




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Algorithms for the Nonsymmetric Eigenvalue Problem

Example

We will construct an upper triangular matrix using Given’s rotation
from the matrix

A =





5 4 3
4 6 1
3 1 7



 .
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Algorithms for the Nonsymmetric Eigenvalue Problem

>> G1=GivensMatrixUpper(A,2,1)

G1 =

0.7809 0.6247 0

-0.6247 0.7809 0

0 0 1.0000

>> A1=G1*A

A1 =

6.4031 6.8716 2.9673

0 2.1864 -1.0932

3.0000 1.0000 7.0000

>> G2=GivensMatrixUpper(A1,3,1)

G2 =

0.9055 0 0.4243

0 1.0000 0

-0.4243 0 0.9055
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>> A2=G2*A1

A2 =

7.0711 6.6468 5.6569

0 2.1864 -1.0932

0.0000 -2.0099 5.0799

>> G3=GivensMatrixUpper(A2,3,2)

G3 =

1.0000 0 0

0 0.7362 -0.6768

0 0.6768 0.7362

>> A3=G3*A2

A3 =

7.0711 6.6468 5.6569

-0.0000 2.9698 -4.2426

0.0000 0.0000 3.0000

9 / 57



Algorithms for the Nonsymmetric Eigenvalue Problem

Example

Transform the given matrix A to a tridiagonal by a single transformation
based on a Given’s rotation.

A =





7 4 3
4 5 2
3 2 2





To obtain the tridiagonal matrix using Given’s rotation we have to zero
out (1, 3), (3, 1) elements of the matrix A.
To do that we compute elements of Givens matrix G and then compute
GAGT . Values of c , s are computed from the known a = 4 and b = 3 as

[
c −s
s c

]

·
[
a
b

]

=

[
r
0

]

10 / 57



Algorithms for the Nonsymmetric Eigenvalue Problem

Example

We get formulas:

r =
√

a2 + b2 =
√

42 + 32 = 5,

c =
a

r
= 4/5 = 0.8,

s =
−b

r
= −3/5 = −0.6.

The Given’s matrix will be

G =





1 0 0
0 c −s
0 s c





or

G =





1 0 0
0 0.8 0.6
0 −0.6 0.8




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Example

Then the tridiagonal matrix will be computed as

GAGT =





7 5 0
5 5.84 −0.88
0 −0.88 1.16




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Algorithms for the Nonsymmetric Eigenvalue Problem

Example

We will construct tridiagonal matrix from the matrix

A =





5 4 3
3 6 1
4 1 7



 .

using Hauseholder transformations.
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Example

To perform tridiagonal reduction for the matrix A we use Hauseholder
transformation in following steps:

Choose x = (3, 4)T and compute

u = x + αe1,

where α = −sign(3) · ||x ||, ‖x‖ =
√
25 = 5, and thus α = −5.

Construct u = x + αe1 = (3, 4)T − (5, 0)T = (−2, 4)T .

Construct
v =

u

‖u‖
with ‖u‖ =

√
20.

Therefore v = (−2/
√

(20), 4/
√

(20))T .

Compute

Q ′ = I − 2vvT =

(
0.6 0.8
0.8 −0.6

)

.
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Algorithms for the Nonsymmetric Eigenvalue Problem

Construct the matrix of the Householder transformation as:

Q1 =





1 0 0
0 0.6 0.8
0 0.8 −0.6





Then compute

A1 = Q1A =





5 4 3
5 4.4 6.2
0 4.2 −3.4



 .

such that Q1 leaves the first row of Q1A unchanged.

Choose new vector x = (4, 3)T for AT
1 and compute

u = x + αe1,

where α = −sign(4) · ||x ||, ‖x‖ =
√
25 = 5, and thus α = −5.

15 / 57



Algorithms for the Nonsymmetric Eigenvalue Problem

Construct u = x + αe1 = (4, 3)T − (5, 0)T = (−1, 3)T .

Construct
v =

u

‖u‖
with ‖u‖ =

√
10.

Therefore v = (−1/
√
10, 3/

√
10)T .

Compute

V ′ = I − 2vvT =

(
0.8 0.6
0.6 −0.8

)

.
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Construct the second matrix of the Householder transformation V1

as:

V1 =

[
1 0
0 V ′

]

to get

V1 =





1 0 0
0 0.8 0.6
0 0.6 −0.8





and then compute

Q1AV1 =





5 5 0
5 7.24 −2.32
0 1.32 5.24



 .

such that V1 leaves the first column of A1 unchanged.
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Algorithms for the Nonsymmetric Eigenvalue Problem

Canonical Forms

DEFINITION. The polynomial p(λ) = det(A− λI ) is called the
characteristic polynomial of A. The roots of p(λ) = 0 are the
eigenvalues of A.
Since the degree of the characteristic polynomial p(λ) equals n, the
dimension of A, it has n roots, so A has n eigenvalues.

DEFINITION. A nonzero vector x satisfying Ax = λx is a (right)
eigenvector for the eigenvalue λ. A nonzero vector y such that
y∗A = λy∗ is a left eigenvector. (Recall that y∗ = (ȳ)T is the conjugate
transpose of y .)
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Algorithms for the Nonsymmetric Eigenvalue Problem

DEFINITION. Let S be any nonsingular matrix. Then A and B = S−1AS
are called similar matrices, and S is a similarity transformation.
PROPOSITION. Let B = S−1AS , so A and B are similar. Then A and B
have the same eigenvalues, and x (or y) is a right (or left) eigenvector of
A if and only if S−1x (or S∗y) is a right (or left) eigenvector of B .

Proof. Using the fact that det(X · Y ) = det(X ) · det(Y ) for any square
matrices X and Y , we can write

det(A− λI ) = det(S−1(A− λI )S) = det(B − λI ).

So A and B have the same characteristic polynomials. Ax = λx holds if
and only if S−1AS

︸ ︷︷ ︸

B

S−1x
︸ ︷︷ ︸

x∗

= λ S−1x
︸ ︷︷ ︸

x∗

or B(S−1x) = λ(S−1x). Similarly,

y∗A = λy∗ if and only if y∗SS−1AS = λy∗S or (S∗y)∗B = λ(S∗y)∗. �
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THEOREM. Jordan canonical form. Given A, there exists a nonsingular S
such that S−1AS = J, where J is in Jordan canonical form. This means
that J is block diagonal, with J = diag(Jn1(λ1), Jn2(λ2), . . . , Jnk (λk)) and

Jni (λi ) =









λi 1 0
. . .

. . .

. . . 1
0 λi









ni×ni

.

J is unique, up to permutations of its diagonal blocks.

For a proof of this theorem, see a book on linear algebra such as
[F. Gantmacher. The Theory of Matrices, vol. II (translation). Chelsea,
New York, 1959] or [P. Halmos. Finite Dimensional Vector Spaces. Van
Nostrand, New York, 1958].
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Algorithms for the Nonsymmetric Eigenvalue Problem

Each Jm(λ) is called a Jordan block with eigenvalue λ of algebraic
multiplicity m.

If some ni = 1, and λi is an eigenvalue of only that one Jordan
block, then λi is called a simple eigenvalue.

If all ni = 1, so that J is diagonal, A is called diagonalizable;
otherwise it is called defective.

An n-by-n defective matrix does not have n eigenvectors. Although
defective matrices are ”rare” in a certain well-defined sense, the fact
that some matrices do not have n eigenvectors is a fundamental fact
confronting anyone designing algorithms to compute eigenvectors
and eigenvalues.

Symmetric matrices are never defective.
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Algorithms for the Nonsymmetric Eigenvalue Problem

PROPOSITION.

A Jordan block has one right eigenvector, e1 = [1, 0, . . . , 0]T , and
one left eigenvector, en = [0, . . . , 0, 1]T .

Therefore, a matrix has n eigenvectors matching its n eigenvalues if
and only if it is diagonalizable.

In this case, S−1AS = diag(λi ). This is equivalent to
AS = S diag(λi ), so the i-th column of S is a right eigenvector for
λi .

It is also equivalent to S−1A = diag(λi )S
−1 , so the conjugate

transpose of the ith row of S−1 is a left eigenvector for λi .

If all n eigenvalues of a matrix A are distinct, then A is
diagonalizable.
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Algorithms for the Nonsymmetric Eigenvalue Problem

Proof. Let J = Jm(λ) for ease of notation. It is easy to see Je1 = λe1
and eTn J = λeTn , so e1 and en are right and left eigenvectors of J,
respectively. To see that J has only one right eigenvector (up to scalar
multiples), note that any eigenvector x must satisfy (J − λI )x = 0, so x
is in the null space of

J − λI =









0 1
. . .

. . .

. . . 1
0









.

But the null space of J − λI is clearly span(e1), so there is just one
eigenvector. If all eigenvalues of A are distinct, then all its Jordan blocks
must be 1-by-1, so J = diag(λ1, . . . , λn) is diagonal. �
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Algorithms for the Nonsymmetric Eigenvalue Problem

Example

We illustrate the concepts of eigenvalue and eigenvector with a problem
of mechanical vibrations. We will see a defective matrix arise in a natural
physical context.
Newton’s law F = ma applied to this system yields

mi ẍi (t) = ki (xi−1(t)− xi (t))
force on mass from spring i

+ki+1(xi+1(t)− xi (t))
force on mass from spring i + 1

−bi ẋi (t)
force on mass from damper i
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Example

or
Mẍ(t) = −Bẋ(t)− Kx(t),

where M = diag(m1, . . . ,mn), B = diag(b1, . . . , bn), and

K =










k1 + k2 −k2
−k2 k2 + k3 −k3

. . .
. . .

. . .

−kn−1 kn−1 + kn −kn
−kn kn










.

We assume that all the masses mi are positive. M is called the mass
matrix, B is the damping matrix, and K is the stiffness matrix.
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Example

Electrical engineers analyzing linear circuits arrive at an analogous
equation by applying Kirchoff’s and related laws instead of Newton’s law.
In this case x represents branch currents, M represent inductances, B
represents resistances, and K represents admittances (reciprocal
capacitances).
We will use a standard trick to change this second-order differential
equation to a first-order differential equation, changing variables to

y(t) =

[
ẋ(t)
x(t)

]

.
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Example

This yields

ẏ(t) =

[
ẍ(t)
ẋ(t)

]

=

[
−M−1Bẋ(t)−M−1Kx(t)

ẋ(t)

]

=

[
−M−1B −M−1K

I 0

]

·
[

ẋ(t)
x(t)

]

=

[
−M−1B −M−1K

I 0

]

· y(t) ≡ Ay(t).
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Example

To solve ẏ(t) = Ay(t), we assume that y(0) is given (i.e., the initial
positions x(0) and velocities ẋ(0) are given).

One way to write down the solution of this differential equation is
y(t) = eAty(0), where eAt is the matrix exponential. We will give
another more elementary solution in the special case where A is
diagonalizable; this will be true for almost all choices of mi , ki , and
bi .

When A is diagonalizable, we can write A = SΛS−1, where
Λ = diag(λ1, . . . , λn).

Then ẏ(t) = Ay(t) is equivalent to ẏ(t) = SΛS−1y(t) or
S−1ẏ(t) = ΛS−1y(t) or ż(t) = Λz(t), where z(t) ≡ S−1y(t) .

This diagonal system of differential equations żi (t) = λizi (t) has
solutions zi (t) = eλi tzi (0). Since z(t) ≡ S−1y(t) and
z(0) ≡ S−1y(0) then Sz(t) ≡ y(t) and so
y(t) = Sdiag(eλ1t , . . . , eλnt)S−1y(0) = SeΛtS−1y(0).
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Disadvantages of Jordan form

First reason: It is a discontinuous function of A, so any rounding error
can change it completely.

Example

Let

Jn(0) =









0 1
. . .

. . .

. . . 1
0









,

which is in Jordan form. For arbitrarily small ǫ, adding i · ǫ to the (i , i)
entry changes the eigenvalues to the n distinct values i · ǫ, and so the
Jordan form changes from Jn(0) to diag(ǫ, 2ǫ, . . . , nǫ). ⋄
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Disadvantages of Jordan form

Second reason: It cannot be computed stably in general. In other words,
when we have finished computing S and J, we cannot guarantee that
S−1(A+ δA)S = J for some small δA.

Example

Suppose S−1AS = J exactly, where S is very ill-conditioned.
(κ(S) = ||S || · ||S−1|| is very large.) Suppose that we are extremely lucky
and manage to compute S exactly and J with just a tiny error δJ with
||δJ|| = O(ε)||A||. How big is the backward error? In other words, how
big must δA be so that S−1(A+ δA)S = J + δJ ? We get

S−1AS
︸ ︷︷ ︸

J

+ S−1δAS
︸ ︷︷ ︸

δJ

= J + δJ → δA = SδJS−1,

and all that we can conclude is that
||δA|| ≤ ||S || · ||δJ|| · ||S−1|| = κ(S) · ||δJ|| = O(ε)κ(S)||A||. Thus ||δA||
may be much larger than ε||A|| because of κ(S), which prevents
backward stability. ⋄
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From Jordan to Schur canonical form

Instead of computing S−1AS = J, where S can be an arbitrarily
ill-conditioned matrix, we will restrict S to be orthogonal (so
κ2(S) = 1) to guarantee stability.

We cannot get a canonical form as simple as the Jordan form any
more.
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THEOREM. Schur canonical form. Given A, there exists a unitary matrix
Q (Q∗Q = QQ∗ = I ) and an upper triangular matrix T such that
Q∗AQ = T . The eigenvalues of A are the diagonal entries of T .

Proof. We use induction on n. It is obviously true if A is 1 by 1. Now let
λ be any eigenvalue and u a corresponding eigenvector normalized so
||u||2 = 1. Choose Ũ so U = [u, Ũ] is a square unitary matrix. (Note
that λ and u may be complex even if A is real.) Then

U∗ · A · U =

[
u∗

Ũ∗

]

· A · [u, Ũ] =

[
u∗Au u∗AŨ
Ũ∗Au Ũ∗AŨ

]

.
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Now we can write u∗Au = λu∗u = λ, and Ũ∗Au = λŨ∗u = 0 so

U∗AU ≡
[

λ ã12
0 Ã22

]

. By induction, there is a unitary P , so

P∗Ã22P = T̃ is upper triangular. Then

U∗AU =

[
λ ã12
0 PT̃P∗

]

=

[
1 0
0 P

] [
λ ã12P

0 T̃

] [
1 0
0 P∗

]

,

so [
1 0
0 P∗

]

U∗

︸ ︷︷ ︸

Q∗

AU

[
1 0
0 P

]

︸ ︷︷ ︸

Q

=

[
λ ã12P

0 T̃

]

= T

is upper triangular and Q = U[
1 0
0 P

] is unitary as desired. ⋄
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Remarks on Schur canonical form

Notice that the Schur form is not unique, because the eigenvalues
may appear on the diagonal of T in any order.

This introduces complex numbers even when A is real. When A is
real, we prefer a canonical form that uses only real numbers,
because it will be cheaper to compute.

This means that we will have to sacrifice a triangular canonical form
and settle for a block-triangular canonical form.
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Real Schur canonical form

THEOREM. Real Schur canonical form. If A is real, there exists a real
orthogonal matrix V such that V TAV = T is quasi-upper triangular.
This means that T is block upper triangular with 1-by-1 and 2-by-2
blocks on the diagonal. Its eigenvalues are the eigenvalues of its diagonal
blocks. The 1-by-1 blocks correspond to real eigenvalues, and the 2-by-2
blocks to complex conjugate pairs of eigenvalues.
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Computing Eigenvectors from the Schur Form

Let Q∗AQ = T be the Schur form. Then if Tx = λx , we have

Tx = λx → (Q∗AQ)x = Tx = λx → AQx = QTx = λQx

, so Qx is an eigenvector of A. So to find eigenvectors Qx of A, it
suffices to find eigenvectors x of T .
Suppose that λ = tii has multiplicity 1 (i.e., it is simple). Write
(T − λI )x = 0 as

0 =





T11 − λI T12 T13

0 0 T23

0 0 T33 − λI









x1
x2
x3





=





(T11 − λI )x1 + T12x2 + T13x3
T23x3

(T33 − λI )x3



 ,

where T11 is (i − 1)-by-(i − 1), T22 = λ is 1-by-1, T33 is
(n − i)-by-(n − i), and x is partitioned correspondingly.
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Since λ is simple, both T11 − λI and T33 − λI are nonsingular, so
(T33 − λI )x3 = 0 implies x3 = 0. Therefore (T11 − λI )x1 = −T12x2.
Choosing (arbitrary) x2 = 1 means x1 = −(T11 − λI )−1T12, so

x =





(λI − T11)
−1T12

1
0



 ,
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Condition number of the eigenvalue λ

THEOREM. Let λ be a simple eigenvalue of A with right eigenvector x
and left eigenvector y , normalized so that ||x ||2 = ||y ||2 = 1. Let λ+ δλ
be the corresponding eigenvalue of A+ δA. Then

δλ = y∗δAx
y∗x

+ O(||δA||2) or

|δλ| ≤ ||δA||
|y∗x| + O(||δA||2) = secΘ(y , x)||δA||+ O(||δA||2),

where Θ(y , x) is the acute angle between y and x . In other
words,secΘ(y , x) = 1/|y∗x | is the condition number of the eigenvalue λ.
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Proof. Subtract Ax = λx from (A+ δA)(x + δx) = (λ+ δλ)(x + δx) to
get

Aδx + δAx + δAδx
︸ ︷︷ ︸

0

= λδx + δλx + δλδx
︸ ︷︷ ︸

0

.

Ignore the second-order terms (those with two ”δ terms” as factors:
δAδx and δλδx) and multiply by y∗ to get

y∗Aδx
︸ ︷︷ ︸

cancels

+y∗δAx = y∗λδx
︸ ︷︷ ︸

cancels

+y∗δλx .

Now y∗Aδx cancels y∗λδx , so we can solve for δλ = (y∗δAx)/(y∗x) as
desired. �
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COROLLARY. Let A be symmetric (or normal: AA∗ = A∗A). Then
|δλ| ≤ ||δA||+ O(||δA||2).

Proof. If A is symmetric or normal, then its eigenvectors are all
orthogonal, i.e., Q∗AQ = Λ with QQ∗ = I . So the right eigenvectors x
(columns of Q) and left eigenvectors y (conjugate transposes of the rows
of Q∗) are identical, and 1/|y∗x | = 1. �
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Bauer-Fike Theorem.

THEOREM. Bauer-Fike. Let A have all simple eigenvalues (i.e., be
diagonalizable). Call them λi , with right and left eigenvectors xi and yi ,
normalized so ||xi ||2 = ||yi ||2 = 1. Then the eigenvalues of A+ δA lie in

disks Bi , where Bi has center λi and radius n ||δA||2
|y∗

i
xi | .

Our proof will use Gershgorin’s theorem.
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GERSHGORIN’S THEOREM

GERSHGORIN’S THEOREM. Let B be an arbitrary matrix. Then the
eigenvalues λ of B are located in the union of the n disks defined by
|λ− bii | ≤

∑

j 6=i |bij | for i = 1 to n.
We will also need two lemmas which we present on the next slides.
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LEMMA. Let S = [x1, . . . , xn] the nonsingular matrix of right
eigenvectors. Then

S−1 =








y∗
1 /y

∗
1 x1

y∗
2 /y

∗
2 x2
...

y∗
n /y

∗
n xn







.

Proof of Lemma. We know that A is diagonalizible and thus S−1AS = Λ,
or AS = SΛ, where Λ = diag(λ1, . . . , λn), since the columns xi of S are
eigenvectors. This is equivalent to S−1ASS−1

︸ ︷︷ ︸

I

= ΛS−1 or S−1A = ΛS−1,

so the rows of S−1 are conjugate transposes of the left eigenvectors yi .
So

S−1 =






y∗
1 · c1
...

y∗
n · cn






for some constants ci . But I = S−1S , so 1 = (S−1S)ii = y∗
i xi · ci , and

ci =
1

y∗

i
xi

as desired. �
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LEMMA. If each column of (any matrix) S has two-norm equal to 1,
||S ||2 ≤

√
n. Similarly, if each row of a matrix has two-norm equal to 1,

its two-norm is at most
√
n.

Proof of Lemma. ||S ||2 = ||ST ||2 = max||x||2=1 ||ST x ||2. Each
component of ST x is bounded by 1 by the Cauchy-Schwartz inequality,
so ||ST x ||2 ≤ ||[1, . . . , 1

︸ ︷︷ ︸

n

]T ||2 =
√
n. �
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Proof of the Bauer-Fike theorem.
We will apply Gershgorin’s theorem to S−1(A+ δA)S = Λ + F , where
Λ = S−1AS = diag(λ1, . . . , λn) and F = S−1δAS . The idea is to show
that the eigenvalues of A+ δA lie in balls centered at the λi with the
given radii. To do this, we take the disks containing the eigenvalues of
Λ + F that are defined by Gershgorin’s theorem,

|λ− (λi + fii )| ≤
n∑

j 6=i

|fij |,

and enlarge them slightly to get the disks

|λ− λi | ≤
n∑

j

1 · |fij | ≤ (
n∑

j

1)1/2





n∑

j

|fij |2




1/2

byCauchy − Schwarz

≤ n1/2





n∑

j

|fij |2




1/2

byCauchy − Schwarz

= n1/2 · ||F (i , :)||2.
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Now we need to bound the two-norm of the i-th row F (i , :) of
F = S−1δAS :

||F (i , :)||2 = ||(S−1δAS)(i , :)||2
≤ ||(S−1)(i , :)||2 · ||δA||2 · ||S ||2

︸ ︷︷ ︸

≤√
n

≤ n1/2

|y∗
i xi |

· ||δA||2 by Lemmas.

Combined this equation with equation above, this proves the theorem.

|λ− λi
︸︷︷︸

centers

| ≤ n1/2 · ||F (i , :)||2

≤ n1/2 · n1/2

|y∗
i xi |

· ||δA||2 =
n

|y∗
i xi |

· ||δA||2
︸ ︷︷ ︸

radius

�
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THEOREM. Let λ be a simple eigenvalue of A, with unit right and left
eigenvectors x and y and condition number c = 1/|y∗x |. Then there is a
δA such that A+ δA has a multiple eigenvalue at λ, and

||δA||2
||A||2

≤ 1√
c2 − 1

.

When c ≫ 1, i.e., the eigenvalue is ill-conditioned, then the upper bound
on the distance is 1/

√
c2 − 1 ≈ 1

c
, the reciprocal of the condition

number.
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Algorithms for the Nonsymmetric Eigenvalue Problem

We assume that A is real.

Power method

This method can find only the largest eigenvalue for A and the
corresponding eigenvector.

Inverse iteration

We find all other eigenvalues and eigenvectors applying method for
(A− σI )−1 for some shift σ.

Orthogonal iteration

Lets compute entire invariant subspace.

QR iteration

reorganized orthogonal iteration, ultimate algorithm.

Hessenberg reduction

Tridiagonal and bidiagonal reduction
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Power Method

ALGORITHM. Power method: Given x0, we iterate

i = 0
repeat
yi+1 = Axi
xi+1 = yi+1/||yi+1||2 (approximate eigenvector)

λ̃i+1 = xTi+1Axi+1 (approximate eigenvalue)
i = i + 1

until convergence
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Let us first apply this algorithm in the very simple case when
A = diag(λ1, ..., λn), with |λ1| > |λ2| ≥ · · · ≥ |λn|). In this case the
eigenvectors are just the columns ei of the identity matrix. Note that xi
can also be written xi = Aix0/||Aix0||2, since the factors 1/||yi+1||2 only
scale xi+1 to be a unit vector and do not change its direction. Taking
S = I lets us write x0 = S(S−1x0) = [ξ1, . . . , ξn]

T , or

Aix0 ≡ Ai








ξ1
ξ2
...
ξn







=








ξ1λ
i
1

ξ2λ
i
2

...
ξnλ

i
n







= ξ1λ

i
1








1
ξ2
ξ1
(λ2

λ1
)i

...
ξn
ξ1
(λn

λ1
)i







,

where we have assumed ξ1 6= 0. Since all the fractions λj/λ1 are less
than 1 in absolute value, Aix0 becomes more and more nearly parallel to
e1, so xi = Aix0/||Aix0||2 becomes closer and closer to ±ei , the
eigenvector corresponding to the largest eigenvalue λ1. The rate of
convergence depends on how much smaller than 1 the ratios
|λ2/λ1| ≥ · · · ≥ |λn/λ1|) are, the smaller the faster. Since xi converges
to ±e1, λ̃i = xTi Axi converges to λ1, the largest eigenvalue.
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Assumptions on power method

In the simplest case we applied algorithm when A is diagonal.

Consider now general case: assume that A = SΛS−1 is
diagonalizable, with Λ = diag(λ1, . . . , λn) and the eigenvalues
sorted so that |λ1| > |λ2| ≥ · · · ≥ |λn|. Write S = [s1, . . . , sn],
where the columns si are the corresponding eigenvectors and also
satisfy ||si ||2 = 1; in the previous slide we had S = I . This lets us
write x0 = S(S−1x0) ≡ S([ξ1, . . . , ξn]

T). Also, since A = SΛS−1,
we can write

Ai = (SΛS−1) · · · (SΛS−1)
︸ ︷︷ ︸

i times

= SΛiS−1

since all the S−1 · S pairs cancel.
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This finally lets us write

Aix0 = SΛiS−1
︸ ︷︷ ︸

Ai

· S








ξ1
ξ2
...
ξn








︸ ︷︷ ︸

x0

= S








ξ1λ
i
1

ξ2λ
i
2

...
ξnλ

i
n







= ξ1λ

i
1S








1
ξ2
ξ1
(λ2

λ1
)i

...
ξn
ξ1
(λn

λ1
)i







.

As before, the vector j in brackets converges to e1, so Aix0 gets closer
and closer to a multiple of Se1 = s1, the eigenvector corresponding to λ1.
Therefore, λ̃i = xTi Axi converges to sT1 As1 = sT1 λ1s1 = λ1.
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A minor drawback of this method is the assumption that ξ1 6= 0,
i.e., that x0 is not the invariant subspace span{s2, . . . , sn} this is
true with very high probability if x0 is chosen at random.

A major drawback is that it converges to the
eigenvalue/eigenvector pair only for the eigenvalue of largest
absolute magnitude, and its convergence rate depends on |λ2/λ1|,
a quantity which may be close to 1 and thus cause very slow
convergence. Indeed, if A is real and the largest eigenvalue is
complex, there are two complex conjugate eigenvalues of largest
absolute value |λ1| = |λ2|, and so the above analysis does not work
at all. In the extreme case of an orthogonal matrix, all the
eigenvalues have the same absolute value, namely, 1.

To plot the convergence of the power method, see
HOMEPAGE/Matlab/powerplot.m.
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Examples of running of Power method in Matlab
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Example4. Comp. eig.:2.8923, Ref. eig.:2.9+0i        −0.48−0.42i        −0.48+0.42i        0.062−0.12i        0.062+0.12i

Results are described in the next two slides.
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Example 1. In this example we test the matrix

A =





5 0 0
0 2 0
0 0 −5





with exact eigenvalues (5, 2,−5). The Power method can converge as to the exact first eigenvalue 5 as
well as to the completely erroneous eigenvalue, see Figure. This is because two eigenvalues of this matrix,
5 and −5, have the same absolute values: |5| = | − 5|. Thus, assumption 2 about convergence of the
Power method is not fulfilled.

Example 2. In this example the matrix A is given by

A =









3 7 8 9
5 −7 4 −7
1 −1 1 −1
9 3 2 5









This matrix has four different reference real eigenvalues λ = (λ1, ..., λ4) given by
λ = (12.3246,−11.1644,−0.3246, 1.1644).
Now all assumptions about matrix A are fulfilled and the Power method has converged to the reference
eigenvalue 12.3246, see Figure. We note that reference eigenvalues on this figure are rounded.
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Example 3. Now we take the matrix

A =





0 5 −2
6 0 −12
1 3 0





with one real and two complex eigenvalues:
λ = (1.4522,−0.7261 + 8.0982i,−0.7261 − 8.0982i).
We observe at Figure that Power method does not converge in this case again. This is because assumption
4 on the convergence of the power method is not fulfilled.

Example 4. In this example the matrix A has size 5 × 5. Elements of this matrix are uniformly distributed
pseudorandom numbers on the open interval (0, 1). Using the Figure we observe that in the first round of
our computations we have obtained good approximation to the eigenvalue 2.9 thought not all assumptions
about Power method are fulfilled. This means that on the second round of computations we can get
completely different erroneous eigenvalue. This example is similar to the example 1 where convergence was
not achieved.
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Inverse Iteration

We will overcome the drawbacks of the power method just described by
applying the power method to (A− σI )−1 instead of A, where σ is called
a shift. This will let us converge to the eigenvalue closest to σ, rather
than just λ1. This method is called inverse iteration or the inverse power
method.
ALGORITHM. Inverse iteration: Given x0, we iterate

i = 0
repeat
yi+1 = (A− σI )−1xi
xi+1 = yi+1/||yi+1||2 (approximate eigenvector)

λ̃i+1 = xTi+1Axi+1 (approximate eigenvalue)
i = i + 1

until convergence
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