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Algorithms for the Nonsymmetric Eigenvalue Problem

We assume that A is real.

Power method

This method can find only the largest eigenvalue for A and the
corresponding eigenvector.

Inverse iteration

We find all other eigenvalues and eigenvectors applying method for
(A− σI )−1 for some shift σ.

Orthogonal iteration

Lets compute entire invariant subspace.

QR iteration

reorganized orthogonal iteration, ultimate algorithm.

Hessenberg reduction

Tridiagonal and bidiagonal reduction
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Power Method

ALGORITHM. Power method: Given x0, we iterate

i = 0
repeat
yi+1 = Axi
xi+1 = yi+1/||yi+1||2 (approximate eigenvector)

λ̃i+1 = xTi+1Axi+1 (approximate eigenvalue)
i = i + 1

until convergence
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Inverse Iteration

We will overcome the drawbacks of the power method just described by
applying the power method to (A− σI )−1 instead of A, where σ is called
a shift. This will let us converge to the eigenvalue closest to σ, rather
than just λ1. This method is called inverse iteration or the inverse power
method.
ALGORITHM. Inverse iteration: Given x0, we iterate

i = 0
repeat
yi+1 = (A− σI )−1xi
xi+1 = yi+1/||yi+1||2 (approximate eigenvector)

λ̃i+1 = xTi+1Axi+1 (approximate eigenvalue)
i = i + 1

until convergence
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To analyze the convergence, note that A = SΛS−1 implies
A− σI = S(Λ− σI )S−1 and so (A− σI )−1 = S(Λ− σI )−1S−1. Thus
(A− σI )−1 has the same eigenvectors si as A with corresponding
eigenvalues ((Λ− σI )−1)jj = (λj − σ)−1. The same analysis as before
tells us to expect xi to converge to the eigenvector corresponding to the
largest eigenvalue in absolute value.
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Assume that |λk − σ| is smaller than all the other |λi − σ| so that

(λk − σ)−1 is the largest eigenvalue in absolute value. Also, write
x0 = S([ξ1, . . . , ξn]

T ) as before, and assume ξk 6= 0. Then

(A− σI )−ix0 = (S(Λ− σI )−iS−1)S








ξ1
ξ2
...
ξn







= S






ξ1(λ1 − σ)−i

...
ξn(λn − σ)−i






= ξk(λk − σ)−iS












ξ1
ξk
(λk−σ
λ1−σ

)i

...
1
...

ξn
ξk
(λk−σ
λn−σ

)i












,

where the 1 is in entry k . Since all the fractions (λk − σ)/(λi − σ) are
less than one in absolute value, the vector in brackets approaches ek , so
(A− σI )−ix0 gets closer and closer to a multiple of Sek = sk , the
eigenvector corresponding to λk . As before, λ̃i = xTi Axi also converges
to λk .
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The advantage of inverse iteration over the power method is the
ability to converge to any desired eigenvalue (the one nearest the
shift σ).

By choosing σ a very close to a desired eigenvalue, we can converge
very quickly and thus not be as limited by the proximity of nearby
eigenvalues as is the original power method.

The method is particularly effective when we have a good
approximation to an eigenvalue and want only its corresponding
eigenvector.
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Examples of running of Inverse iteration method in Matlab
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Example 1. Comp. eig.:0.0020016, Ref. eig.:0        0
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Example 2. Comp. eig.:1.1644, Ref. eig.:12      −11    −0.32      1.2
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Example 3. Comp. eig.:1.4522, Ref. eig.:1.5+0i         −0.73−8.1i         −0.73+8.1i
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Example 4. Comp. eig.:2.4128, Ref. eig.:2.4+0i        −0.24−0.33i        −0.24+0.33i          −0.079+0i            0.57+0i

σ = 2
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Examples of running of Inverse iteration method in Matlab
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Example 1. Comp. eig.:0.0099784, Ref. eig.:0        0
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Example 2. Comp. eig.:12.3246, Ref. eig.:12      −11    −0.32      1.2
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Example 1. In this example we tested the matrix

A =

[

0 10
0 0

]

which has exact eigenvalues λ = (0, 0) with multiplicity m = 2. From Figure we observe that Inverse
Iteration method could converge to the reference eigenvalues for both shifts σ = 2 and σ = 10. We note
that by applying the Power method to this matrix as output eigenvalue we could get only NaN.

Example 2. We recall that reference eigenvalues in this case are
λ = (12.3246,−11.1644,−0.3246, 1.1644).
In this example we observe nice convergence too, see Figure. For the shift σ = 2 we could get eigenvalue
1.1644 which is the same as the last reference eigenvalue. This is because shift σ = 2 is closer to this
eigenvalue than to all others. For the shift σ = 10 algorithm converged to the first reference eigenvalue
12.3246, as expected.
This test confirms that the Inverse iteration method converges to the eigenvalue which is closest to the
shift σ.

Example 3. Figure shows nice convergence in this case too for both shifts σ. Recall, that Power method
does not converged at all, compare results on Figures.

Example 4.
From Figure we observe nice convergence to the first eigenvalue of the matrix A for both shifts σ = 2, 10.
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Orthogonal Iteration

Our next improvement will permit us to converge to a
(p > 1)-dimensional invariant subspace, rather than one eigenvector at a
time. It is called orthogonal iteration (and sometimes subspace iteration
or simultaneous iteration).
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ALGORITHM. Orthogonal iteration: Let Z0 be an n × p orthogonal
matrix. Then we iterate

i = 0
repeat
Yi+1 = AZi

Factor Yi+1 = Zi+1Ri+1 (using Algorithm QR decomposition)
(Zi+1 spans an approximate
invariant subspace)

i = i + 1
until convergence
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An informal analysis of the method of Orthogonal iteration

Assume |λp| > |λp+1|. If p = 1, this method and its analysis are
identical to the power method.

When p > 1, we write span{Zi+1} = span{Yi+1} = span{AZi}, so
span{Zi} = span{AiZ0} = span{SΛiS−1Z0}. Note that

SΛiS−1Z0 = S diag(λi
1, . . . , λ

i
n)S

−1Z0

= λi
pS











(λ1/λp)
i

. . .

1
. . .

(λn/λp)
i











S−1Z0.
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Since | λj

λp
| ≥ 1 for j ≤ p and | λj

λp
| < 1 if j > p, we get






(λ1/λp)
i

. . .

(λn/λp)
i




 S−1Z0 =

[

V p×p
i

W
(n−p)×p

i

]

= Xi ,

where Wi approaches zero like (λp+1/λp)
i , and Vi does not approach

zero. Indeed, if V0 has full rank (a generalization of the assumption that
ξ1 6= 0), then Vi will have full rank too. Write the matrix of eigenvectors

. Then S = [s1, . . . , sn] ≡ [Sn×p
p , Ŝ

n×(n−p)
p ], i.e.Sp = [s1, . . . , sp]. Then

SΛiS−1Z0 = λi
pS [

Vi

Wi
] = λi

p(SpVi + ŜpWi ). Thus

span(Zi ) = span(SΛiS−1Z0) = span(SpVi + ŜpWi ) = span(SpXi )

converges to span(SpVi ) = span(Sp), the invariant subspace spanned by
the first p eigenvectors, as desired. �
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The use of the QR decomposition keeps the vectors spanning
span{AiZ0} of full rank despite roundoff.

Note that if we follow only the first p̃ < p columns of Zi through
the iterations of the algorithm, they are identical to the columns
that we would compute if we had started with only the first p̃
columns of Z0 instead of p columns. In other words, orthogonal
iteration is effectively running the algorithm for p̃ = 1, 2, . . . , p all at
the same time. So if all the eigenvalues have distinct absolute
values, the same convergence analysis as before implies that the first
p̃ ≤ p columns of Zi converge to span{s1, . . . , sp̃} for any p̃ ≤ p.

Thus, we can let p = n and Z0 = I in the orthogonal iteration
algorithm. The next theorem shows that under certain assumptions,
we can use orthogonal iteration to compute the Schur form of A.
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THEOREM. Consider running orthogonal iteration on matrix A with
p = n and Z0 = I . If all the eigenvalues of A have distinct absolute
values and if all the principal submatrices S(1 : j , 1 : j) have full rank,
then Ai ≡ ZT

i AZi converges to the Schur form of A, i.e., an upper
triangular matrix with the eigenvalues on the diagonal. The eigenvalues
will appear in decreasing order of absolute value.
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Method of Orthogonal Iteration

lambda0= inf(n,1);
iter =1;
// here, dim(A)= n × n
Q = eye(n);
// we choose number of iterations here
for k = 1:100
Y = A*Q;
[Q,R] = qr(Y);
// Compute Shur form of A
T=Q’*A*Q;
//Find eigenvalues from Real Schur block
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computed lambda = sort(eigs);
computed lambda = computed lambda’;
if(norm(abs(computed lambda - lambda0 )) <eps )
break ;
end
lambda0 = computed lambda ;
iter = iter + 1;
end
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Performance of Method of Orthogonal Iteration
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Example 1.  Nr. of it. in method of Orthogonal iteration:7
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Example 2.  Nr. of it. in method of Orthogonal iteration:8
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Example 3.  Nr. of it. in method of Orthogonal iteration:12
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Example 4.  Nr. of it. in method of Orthogonal iteration:15
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Example 5.  Nr. of it. in method of Orthogonal iteration:24
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Example 6.  Nr. of it. in method of Orthogonal iteration:101
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Example 1. In this example we tested such called Hilbert matrix of the size 10 × 10 which is a well known
example of a badly conditioned matrix. Elements of this matrix are given by 1/(i + j − 1), where i, j are
indices for the nodes in x and y directions, correspondingly. From Figure we observe that we have obtained
all computed eigenvalues of this matrix which coincides with reference eigenvalues already at 7-th iteration.

Example 2. Here we tested Hilbert matrix of the size 20 × 20. Again, we have computed almost exact
eigenvalues of this matrix at 8-th iteration, see Figure.

Example 3. This is the same as example 3 in the Power method. Figure shows nice convergence to the one
real and two complex eigenvalues of the matrix A at 12-th iteration.

Example 4. This is the same as example 2 in the Power method. Figure shows convergence to the four real
eigenvalues of the matrix A at 15-th iteration.

Example 5. Here we tested the matrix

A =











3 7 8 9 12
5 −7 4 −7 8
1 1 −1 1 −1
4 3 2 1 7
9 3 2 5 4











which has three real and two complex reference eigenvalues
λ = (19.9655,−8.2137 + 2.3623i,−8.2137 − 2.3623i,−3.4043,−0.1337).
From Figure we observe convergence of the all computed eigenvalues to reference eigenvalues at 24-th
iteration.

Example 6. Here we choose the size of the matrix dim(A) = 10 × 10. Elements of this matrix are
uniformly distributed pseudorandom numbers on the open interval (0, 1).
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QR Iteration

ALGORITHM. QR iteration: Given A0, we iterate

i = 0
repeat
Factor Ai = QiRi (the QR decomposition)
Ai+1 = RiQi

i = i + 1
until convergence

Since Ai+1 = RiQi = QT
i (QiRi )Qi = QT

i AiQi , Ai+1 and Ai are
orthogonally similar.
We claim that the Ai computed by QR iteration is identical to the matrix
ZT
i AZi implicitly computed by orthogonal iteration.
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LEMMA. Let Ai be the matrix computed by Algorithm of QR iteration.
Then Ai = ZT

i AZi , where Zi is the matrix computed from orthogonal
iteration (Algorithm of Orthogonal iteration) starting with Z0 = I . Thus
Ai converges to Schur form if all the eigenvalues have different absolute
values.

Proof. We use induction.

Assume Ai = ZT
i AZi . From Algorithm of Orthogonal iteration, we

can write AZi = Zi+1Ri+1, where Zi+1 is orthogonal and Ri+1 is
upper triangular. Thus, A = ZT

i Zi+1Ri+1.

Then ZT
i AZi = ZT

i (Zi+1
︸ ︷︷ ︸

Q

Ri+1) is the product of an orthogonal

matrix Q = ZT
i Zi+1 and an upper triangular matrix

R = Ri+1 = ZT
i+1AZi since AZi = Zi+1Ri+1;
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This must be the QR decomposition Ai = QR , since the QR
decomposition is unique (except for possibly multiplying each
column of Q and row of R by -1).

Then

Ai+1 = ZT
i+1AZi+1 = (ZT

i+1AZi)
︸ ︷︷ ︸

Ri+1

(ZT
i Zi+1) = Ri+1 (Z

T
i Zi+1)

︸ ︷︷ ︸

Q

= RQ.

This is precisely how the QR iteration maps Ai to Ai+1.
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ALGORITHM. QR iteration with a shift: Given A0, we iterate

i = 0
repeat
Choose a shift σi near an eigenvalue of A
Factor Ai − σi I = QiRi (QR decomposition)
Ai+1 = RiQi + σi I
i = i + 1

until convergence
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LEMMA. Ai and Ai+1 are orthogonally similar.

Proof. Ai+1 = RiQi + σi I = QT
i QiRiQi + σiQ

T
i Qi =

QT
i (QiRi + σi I )Qi = QT

i AiQi . �
If Ri is nonsingular, we may also write

Ai+1 = RiQi + σi I = RiQiRiR
−1
i + σiRiR

−1
i

= Ri (QiRi + σi I )R
−1
i = RiAiR

−1
i .
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If σi is an exact eigenvalue of Ai then we claim that QR iteration
converges in one step: since σi is an eigenvalue, Ai − σi I is singular,
so Ri is singular, and so some diagonal entry of Ri must be zero.
Suppose Ri (n, n) = 0. This implies that the last row of RiQi is 0, so
the last row of Ai+1 = RiQi + σi I equals σie

T
n , where en is the nth

column of the n-by-n identity matrix. In other words, the last row of
Ai+1 is zero except for the eigenvalue σi appearing in the (n, n)
entry. This means that the algorithm has converged, because Ai+1

is block upper triangular, with a trailing 1-by-1 block σi ; the leading
(n − 1)-by-(n − 1) block A′ is a new, smaller eigenproblem to which
QR iteration can be solved without ever modifying σi again:

Ai+1 =

[
A′ a
0 σi

]

When σi is not an exact eigenvalue, then we will accept Ai+1(n, n)
as having converged when the lower left block Ai+1(n, 1 : n − 1) is
small enough. Recall from our earlier analysis that we expect
Ai+1(n, 1 : n − 1) to shrink by a factor |λk − σi |/minj 6=k |λj − σi |,
where |λk − σi | = minj |λj − σi |.
If σi is a very good approximation to eigenvalue λk - fast conv.
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Examples of Performance of Method of QR Iteration.
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Example 1.  Nr. of it. in method of QR iteration:5
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Example 2.  Nr. of it. in method of QR iteration:6
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Example 3.  Nr. of it. in method of QR iteration:12
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Example 4.  Nr. of it. in method of QR iteration:9
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Example 5.  Nr. of it. in method of QR iteration:33
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Example 6.  Nr. of it. in method of QR iteration:101
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Tested on matrices
A =[5 1, 10, 10; 0, 5, 1, 1; 0,0,5,1; 0,0,0,5];
A=[3,7,8,9;5,-7,4,-7;1,1,-1,-1;4,3,-2,-1];
A =[0 -5 2; 6 0 -12; 1 3 0];
A=[3,7,8,9;5,-7,4,-7;1,-1,1,-1;9,3,2,5];
A=[3,7,8,9,12;5,-7,4,-7,8;1,1,-1,1,-1;4,3,2,1,7;9,3,2,5,4];
A =[1 20; 0 1];
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QR iteration with shift
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Example 1.  Nr. of it. in method of QR it. with shift:101
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Example 2.  Nr. of it. in method of QR it. with shift:79
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Example 3.  Nr. of it. in method of QR it. with shift:6

 

 

Exact eigenvalues

Computed eigenvalues

1 1.5 2 2.5 3 3.5 4
−15

−10

−5

0

5

10

15

Real part of eigenvalues

Im
a

g
. 

p
a

rt
 o

f 
e

ig
e

n
v
a

lu
e

s

Example 4.  Nr. of it. in method of QR it. with shift:15
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σ = Ann

We again test the same matrices as in the method of Orthogonal iteration. Results of the convergence of the
algorithm when the shift is chosen as σ = Ann at every iteration of this algorithm are presneted in figure above.
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QR iteration with shift
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Wilkinson’s shift

Wilkonson’s shift: let shift σi is chosen as an eigenvalue of the matrix
[

an−1,n−1 an−1,n

an,n−1 an,n

]

which is closest to the value an,n of the matrix Ai .
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Hessenberg matrix

A Hessenberg matrix is a special kind of square matrix, one that is
”almost” triangular. To be exact, an upper Hessenberg matrix has zero
entries below the first subdiagonal, and a lower Hessenberg matrix has
zero entries above the first superdiagonal. They are named after Karl
Hessenberg. For example:







1 4 2 3
3 4 1 7
0 2 3 4
0 0 1 3







is upper Hessenberg and







1 2 0 0
5 2 3 0
3 4 3 7
5 6 1 1







is lower Hessenberg.
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Hessenberg Reduction

Given a real matrix A, we seek an orthogonal Q so that QAQT is
upper Hessenberg. The algorithm is a simple variation on the idea
used for the QR decomposition.
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EXAMPLE. We illustrate the general pattern of Hessenberg reduction
with a 5-by-5 example. Each Qi below is a 5-by-5 Householder reflection,
chosen to zero out entries i + 2 through n in column i and leaving entries
1 through i unchanged.

1. Choose Q1 so

Q1A =









x x x x x
x x x x x
0 x x x x
0 x x x x
0 x x x x









andA1 ≡ Q1AQ
T
1 =









x x x x x
x x x x x
0 x x x x
0 x x x x
0 x x x x









.

Q1 leaves the first row of Q1A unchanged, and QT
1 leaves the first

column of Q1AQ
T
1 unchanged, including the zeros.
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2. Choose Q2 so

Q2A1 =









x x x x x
x x x x x
0 x x x x
0 0 x x x
0 0 x x x









andA2 ≡ Q2A1Q
T
2 =









x x x x x
x x x x x
0 x x x x
0 0 x x x
0 0 x x x









.

Q2 changes only the last three rows of A1, and QT
2 leaves the first two

columns of Q2A1Q
T
2 unchanged, including the zeros.
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3. Choose Q3 so

Q3A2 =









x x x x x
x x x x x
0 x x x x
0 0 x x x
0 0 0 x x









andA3 = Q3A2Q
T
3 =









x x x x x
x x x x x
0 x x x x
0 0 x x x
0 0 0 x x









.

which is upper Hessenberg. Altogether
A3 = Q3A2Q

T
3 = Q3Q2A1Q

T
2 QT

3 = (Q3Q2Q1)A(Q
T
1 QT

2 QT
3 ) ≡ QAQT .

⋄
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The general algorithm for Hessenberg reduction is as follows.
ALGORITHM. Reduction to upper Hessenberg form:

if Q is desired , set Q = I
for i = 1 : n − 2

ui = House(A(i + 1 : n, i))
Pi = I − 2uiu

T
i /∗ Qi = diag(I i×i ,Pi )

∗/
A(i + 1 : n, i : n) = Pi · A(i + 1 : n, i : n)
A(1 : n, i + 1 : n) = A(1 : n, i + 1 : n) · Pi

if Q is desired
Q(i + 1 : n, i : n) = Pi · Q(i + 1 : n, i : n) /∗ Q = Qi · Q ∗/

end if
end for
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Example

Part I: computation of upper Hessenberg form when we use
rounding.
We want zero out value of entry (3,1) in the following matrix:

A =





12 −51 4
6 167 −68
−4 24 −41



 .

First, we need to find a Hauseholder reflection that transforms the first
column of matrix A, vector x = (6,−4)T , to
‖x‖ e1 = (

√

62 + (−4)2, 0)T = (2
√
13, 0)T .

Recall algorithm of using Householder reflection for QR decomposition
(see lecture 8):

u = x+ αe1,

α = −sign(x1)‖x‖,

v =
u

‖u‖ .

to construct the Householder matrix Q = I − 2v vT .
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Here,
α = −2

√
13 and x = (6,−4)T

Therefore
u = (6− 2

√
13,−4)T ≈ (−1.21,−4)T

and v = u
‖u‖ ≈ (−0.29,−0.96)T , and then

Q1 = I − 2

(
−0.29
−0.96

)
(
−0.29 −0.96

)

= I −
(
0.1682 0.5568
0.5568 1.84

)

=

(
0.8318 −0.5568
−0.5568 −0.84

)

.
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Now observe that Q1A leaves the first row unchanged:

Q1A =





1 0 0
0 0.8318 −0.5568
0 −0.5568 −0.84



 ·





12 −51 4
6 167 −68
−4 24 −41





=





12 -51 4

7.2180 125.5474 −33.7336
0.0192 −113.1456 72.3024



,

and Q1AQ
T
1 leaves the first column of Q1A unchanged:

A1 = Q1AQ
T
1 =





12 −44.6490 25.0368
7.2180 123.2132 −41.5686
0.0192 −134.3725 2.2655



 .
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Example

Part II: computation of upper Hessenberg form without rounding.
We want zero out value of entry (3,1) in the following matrix:

A =





12 −51 4
6 167 −68
−4 24 −41



 .

First, we need to find a Hauseholder reflection that transforms the first
column of matrix A, vector x = (6,−4)T , to
‖x‖ e1 = (

√

62 + (−4)2, 0)T = (2
√
13, 0)T .

Recall algorithm of using Householder reflection for QR decomposition
(see lecture 8):

u = x+ αe1,

α = −sign(x1)‖x‖,

v =
u

‖u‖ .

to construct the Householder matrix Q = I − 2v vT .
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Here,
α = −2

√
13 and x = (6,−4)T

Therefore
u = (6− 2

√
13,−4)T ≈ (−1.2111,−4)T

and v = u
‖u‖ ≈ (−0.2898,−0.9571)T , and then

Q1 = I − 2

(
−0.2898
−0.9571

)
(
−0.2898 −0.9571

)

=

(
0.8321 −0.5547
−0.5547 −0.8321

)

.
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Now observe that Q1A leaves the first row unchanged:

Q1A =





1 0 0
0 0.8321 −0.5547
0 −0.5547 −0.8321



 ·





12 −51 4
6 167 −68
−4 24 −41





=





12 -51 4

7.2111 125.6396 −33.8367
0.0 −112.6041 71.8337



,

and Q1AQ
T
1 leaves the first column of Q1A unchanged:

A1 = Q1AQ
T
1 =





12 −44.6534 24.9615
7.2111 123.3077 −41.5385
0.0 −133.5385 2.6923



 .
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PROPOSITION. Hessenberg form is preserved by QR iteration.

Proof. It is easy to confirm that the QR decomposition of an upper
Hessenberg matrix like Ai − σI yields an upper Hessenberg Q (since the
jth column of Q is a linear combination of the leading j columns of
Ai − σI ). Then it is easy to confirm that RQ remains upper Hessenberg
and adding does not change this. �
DEFINITION. An upper Hessenberg matrix H is unreduced if all
subdiagonals are nonzero.
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Reduction to a lower Hessenberg form

Consider example in Matlab: program Hessenberg.m:
n =4;
A=[3,7,8,9;5,-7,4,-7;1,-1,1,-1;9,3,2,5];
A=A’;
Q=eye(n);
for i=1:n-2
x= A(i+1:n,i)
u=x;
u(1) = u(1)+ sign(x(1))*norm(x);
u=u/norm(u);
P= eye(n-i) - 2*(u*u’) ;
A(i +1:n ,i:n) =P*A(i +1:n,i:n) ;
A(1:n,i +1:n)=A(1:n,i +1: n)*P;
Q(i+1:n,i:n) = P*Q(i+1:n,i:n);
end
Q’*A’*Q
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Tridiagonal and Bidiagonal Reduction

If A is symmetric, the Hessenberg reduction process leaves A symmetric
at each step, so zeros are created in symmetric positions. This means we
need work on only half the matrix, reducing the operation count to
4
3n

3 + O(n2) or 8
3n

3 + O(n2) to form Qn−1, . . . ,Q1 as well. We call this
algorithm tridiagonal reduction.
We recall that the eigenvalues of the symmetric matrix ATA are the
squares of the singular values of A. Our eventual SVD algorithm will use
this fact, so we would like to find a form for A which implies that ATA is
tridiagonal. We will choose A to be upper bidiagonal, or nonzero only on
the diagonal and first superdiagonal. Thus, we want to compute
orthogonal matrices Q and V such that QAV is bidiagonal. The
algorithm, called bidiagonal reduction, is very similar to Hessenberg and
tridiagonal reduction.
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EXAMPLE. Here is a 4-by-4 example of bidiagonal reduction,
which illustrates the general pattern:

1. Choose Q1 so

Q1A =






x x x x
0 x x x
0 x x x
0 x x x




 andV1 so A1 ≡ Q1AV1 =






x x 0 0
0 x x x
0 x x x
0 x x x




 .

Q1 is a Householder reflection, and V1 is a Householder reflection
that leaves the first column of Q1A unchanged.
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2. Choose Q2 so

Q2A1 =







x x 0 0
0 x x x
0 0 x x
0 0 x x






andV2 so A2 ≡ Q2A1V2 =







x x 0 0
0 x x 0
0 0 x x
0 0 x x






.

Q2 is a Householder reflection that leaves the first row of A1 unchanged.
V2 is a Householder reflection that leaves the first two columns of Q2A1

unchanged.

3. Choose Q3 so

Q3A2 =







x x 0 0
0 x x 0
0 0 x x
0 0 0 x






andV3 = I so A3 = Q3A2.

Q3 is a Householder reflection that leaves the first two rows of A2

unchanged. We have obtained:
A3 = Q3A2V3 = Q3Q2A1V2V3 = (Q3Q2Q1)A(V1V2V3) = QAV is upper
diagonal matrix. ⋄
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In general, if A is n-by-n, then we get orthogonal matrices
Q = Qn−1 · · ·Q1 and V = V1 · · ·Vn−2 such that

QAV = A′

is upper bidiagonal.
Multiply both sides of A′ = QAV by A′T = (QAV )T = V TATQT to get:

A′TA′ = V TATQTQAV = V TATAV ,

so A′TA′ has the same eigenvalues as ATA; i.e., A′ has the same singular
values as A.
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Example of tridiagonal reduction using Householder

transformation

A =





5 4 3
4 6 1
3 1 7



 using Householder transformation (see alg. in Lecture

8) we make following steps:

Step1 . First compute α as

α = −sgn(a21)

√
√
√
√

n∑

j=2

a2j1 = −
√

(a221 + a231) = −
√

42 + 32 = −5.

Step 2. Using α we find r as

r =

√

1

2
(α2 − a21α) =

√

1

2
((−5)2 − 4 · (−5)) =

3
√
5√
2
.
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Step 3. Then we compute components of vector v :

v1 = 0,

v2 =
a21 − α

2r
=

3
√
2

2
√
5
,

v3 =
a31
2r

=

√
2

2
√
5
.

and we have

v (1) =






0
3
√
2

2
√
5√
2

2
√
5




 ,

Step 4 . Then compute matrix P1

P1 = I − 2v (1)(v (1))T

to get P1 =





1 0 0
0 −4/5 −3/5
0 −3/5 4/5




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Step 5.

After that we can obtain tridiagonal matrix A(1) as

A(1) = P1AP1 =





5 −5 0
−5 7.32 −0.76
0 −0.76 5.68.




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Example

We will construct tridiagonal matrix from the matrix

A =





5 4 3
4 6 1
3 1 7



 .

using Hauseholder transformations.
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Example

To perform tridiagonal reduction for the matrix A we use Hauseholder
transformation in following steps:

Choose x = (4, 3)T and compute

u = x + αe1,

where α = −sign(4) · ||x ||, ‖x‖ =
√
25 = 5, and thus α = −5.

Construct u = x + αe1 = (4, 3)T − (5, 0)T = (−1, 3)T .

Construct
v =

u

‖u‖
with ‖u‖ =

√
10.

Therefore v = (−1/
√
10, 3/

√
10)T .

Compute

Q ′ = I − 2vvT =

(
0.8 0.6
0.6 −0.8

)

.
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Construct the matrix of the Householder transformation as:

Q1 =





1 0 0
0 0.8 0.6
0 0.6 −0.8





Then compute

A1 = Q1A =





5 4 3
5 5.4 5
0 2.8 −5



 .

such that Q1 leaves the first row of Q1A unchanged.

Choose new vector x = (4, 3)T for AT
1 and compute

u = x + αe1,

where α = −sign(4) · ||x ||, ‖x‖ =
√
25 = 5, and thus α = −5.
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Construct u = x + αe1 = (4, 3)T − (5, 0)T = (−1, 3)T .

Construct
v =

u

‖u‖
with ‖u‖ =

√
10.

Therefore v = (−1/
√
10, 3/

√
10)T .

Compute

V ′ = I − 2vvT =

(
0.8 0.6
0.6 −0.8

)

.
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Construct the second matrix of the Householder transformation V1

as:

V1 =

[
1 0
0 V ′

]

to get

V1 =





1 0 0
0 0.8 0.6
0 0.6 −0.8





and then compute

Q1AV1 =





5 5 0
5 7.32 −0.76
0 −0.76 5.68



 .

such that V1 leaves the first column of A1 unchanged.
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Example of tridiagonalization using Given’s rotation

To make tridiagonal matrix from the matrix A =





−10 3 4
3 5 1
4 1 9





using Given’s rotation we have to zero out (3, 1) and (1, 3) elements of
the matrix A. Thus we use the Given’s rotation R(2, 3, θ) such that

G1 = R(2, 3, θ) =





1 0 0
0 c −s
0 s c





We compute

G1 · A =





1 0 0
0 c −s
0 s c



 ·





−10 3 4
3 5 1
4 1 9



 =





−10 3 4
3c − 4s 5c − s c − 9s
3s + 4c 5s + c s + 9c




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Element (3, 1) of the matrix will be zero if 3s + 4c = 0. This is true
when c = 4/5 and s = −3/5. To compute c , s we have used formulas:

r =
√

a2 + b2 =
√

32 + 42 = 5,

c =
a

r
= 3/5,

s =
−b

r
= −4/5.

Next, to get tridiagonal matrix we have to do :

A1 = G1AG1
T

=





1 0 0
0 3/5 4/5
0 −4/5 3/5



 ·





−10 3 4
3 5 1
4 1 9



 ·





1 0 0
0 3/5 −4/5
0 4/5 3/5



 =





−10 5 0
5 8.52 1.64
0 1.64 5.48





(1)
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Example to make upper triangular matrix using Given’s

rotation

Consider previous example and obtained matrix A1:

A1 =





−10 5 0
5 8.52 1.64
0 1.64 5.48





Now we want to zero out elements (2,1) and (3,2) in order to get upper
triangular matrix. To zero out element (2,1) we compute c , s from the
known a = −10 and b = 5 as

[
c −s
s c

]

·
[
a
b

]

=

[
r
0

]

to get:

r =
√

a2 + b2 =
√

−(10)2 + 52 ≈ 11.18,

c =
a

r
≈ −0.894

s =
−b

r
≈ −0.4472.
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Then the Given’s matrix will be

G =





c −s 0
s c 0
0 0 1





or

G =





−0.89445 0.44722 0
−0.44722 −0.89445 0

0 0 1




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Finally, we obtain the matrix:

A2 = GA1 =





−0.89445 0.44722 0
−0.44722 −0.89445 0

0 0 1



 ·





−10 5 0
5 8.52 1.64
0 1.64 5.48





=





11.1806 −0.6619356 0.7334408
−0.00005 −9.856814 −1.466898

0 1.64 5.4





(2)

Now to zero out element (3,2) we compute c , s from the known
a = −9.856814 and b = 1.64 to get:

r =
√

a2 + b2 =
√

(−9.856814)2 + (1.64)2 ≈ 9.9923,

c =
a

r
≈ −0.98644,

s =
−b

r
≈ −0.16413.
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The next Given’s matrix will be

G′ =





1 0 0
0 c −s
0 s c





or

G′ =





1 0 0
0 −0.98644 0.16413
0 −0.16413 −0.98644





Finally, we obtain the upper triangular matrix as A3 = G ′ · A2:

A3 = G′A2 =





11.1806 −0.6619 0.7334
0.0000 9.9923 2.3333
0.0000 0.0000 −5.0860



 (3)
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Regular Matrix Pencils and Weierstrass Canonical Form

The standard eigenvalue problem asks for which scalars z the matrix
A− zI is singular; these scalars are the eigenvalues. This notion
generalizes in several important ways.

DEFINITION. A− λB , where A and B are m-by-n matrices, is called a
matrix pencil, or just a pencil. Here is λ an indeterminate, not a
particular, numerical value.

DEFINITION. If A and B are square and det(A− λB) is not identically
zero (or when there exists at least one λ : det(A− λB) 6= 0), the pencil
A− λB is called regular. Otherwise it is called singular. When A− λB is
regular, p(λ) ≡ det(A− λB) is called the characteristic polynomial of
A− λB and the eigenvalues of A− λB are defined to be
(1) the roots of p(λ),
(2) ∞ (with multiplicity n − deg(p)) if deg(p) < n.
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EXAMPLE. Let

A− λB =





1
1

0



− λ





2
0

1



 .

Then p(λ) = det(A− λB) = (1− 2λ) · (1− 0λ) · (0− λ) = (1− 2λ)(−λ),
so the eigenvalues are λ = 1

2 , 0 and ∞. ⋄
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PROPOSITION. Let A− λB be regular ( when there exists at least one
λ : det(A− λB) 6= 0 ).

If B is nonsingular, all eigenvalues of A− λB are finite and the
same as the eigenvalues of AB−1 or B−1A.

If B is singular, A− λB has eigenvalue ∞ with multiplicity
n − rank(B).

If A is nonsingular, the eigenvalues of A− λB are the same as the
reciprocals of the eigenvalues ( or 1

λi
) of A−1B or BA−1, where a

zero eigenvalue of A−1B corresponds to an infinite eigenvalue of
A− λB .
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Proof.

If B is nonsingular and λ′ is an eigenvalue, then
0 = det(A− λ′B) = det(AB−1 − λ′I ) = det(B−1A− λ′I ) so λ′ is
also an eigenvalue of AB−1 and B−1A.

If B is singular, then take p(λ) = det(A− λB), write the SVD of B
as B = UΣV T , and substitute to get

p(λ) = det(A− λUΣV T ) = det(U(UTAV − λΣ)V T )

=± det(UTAV − λΣ).

Since rank(B) = rank(Σ), only rank(B) λ′s appear in UTAV − λΣ, so
the degree of the polynomial det(UTAV − λΣ) is rank(B).

If A is nonsingular, det(A− λB) = 0 and det(A(I − λA−1B)) = 0 if and
only if det(I − λA−1B) = 0 or det(I − λBA−1) = 0.

det(I − λA−1B) = 0 → det(
1

λ
I − A−1B) = 0

This equality can hold only if λ 6= 0 and 1/λ is an eigenvalue of A−1B
and BA−1. �
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DEFINITION. Let PL and PR be nonsingular matrices. Then pencils
A− λB and PLAPR − λPLBPR are called equivalent.

PROPOSITION. The equivalent regular pencils A− λB and
PLAPR − λPLBPR have the same eigenvalues. The vector x is a right
eigenvector of A− λB if and only if P−1

R x is a right eigenvector of
PLAPR − λPLBPR . The vector y is a left eigenvector of A− λB if and
only if (P∗

L )
−1y is a left eigenvector of PLAPR − λPLBPR .

Proof.

det(A− λB) = 0 if and only if det(PL(A− λB)PR) = 0.

(A− λB)x = 0 if and only if PL(A− λB)PRP
−1
R x = 0.

(A− λB)∗y = 0 if and only if P∗
R(A− λB)∗P∗

L (P
∗
L )

−1y = 0. �
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THEOREM. Weierstrass canonical form. Let A− λB be regular. Then
there are nonsingular PL and PR such that

PL(A− λB)PR = diag(Jn1(λ1)− λIn1 , . . . , Jnk (λnk )− λInk ,Nm1
, . . . ,Nmr

),

where Jni (λi ) is an ni -by-ni Jordan block with eigenvalue λi ,

Jni (λi ) =









λi 1
. . .

. . .

. . . 1
λi









,

and Nmi
is a ”Jordan block for λ = ∞ with multiplicity mi ,”

Nmi
=









1 λ

1
. . .
. . . λ

1









= Imi
− λJmi

(0).

For a proof, see [F. Gantmacher. The Theory of Matrices, vol. II
(translation). Chelsea, New York, 1959].
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