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Algorithms for the Nonsymmetric Eigenvalue Problem

Algorithms for the Nonsymmetric Eigenvalue Problem

We assume that A is real.

Power method

This method can find only the largest eigenvalue for A and the
corresponding eigenvector.

Inverse iteration

We find all other eigenvalues and eigenvectors applying method for
(A— i)~ for some shift o.

Orthogonal iteration

Lets compute entire invariant subspace.

QR iteration

reorganized orthogonal iteration, ultimate algorithm.
Hessenberg reduction

Tridiagonal and bidiagonal reduction
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Power Method

ALGORITHM. Power method: Given xg, we iterate

i=0

repeat
Yir1 = Ax;
Xiy1 = Yit1 /llyi+1llz  (approximate eigenvector)
Ait1 = X Axig1 (approximate eigenvalue)
i=i+1

until convergence
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Inverse lteration

We will overcome the drawbacks of the power method just described by
applying the power method to (A — o/)~! instead of A, where o is called
a shift. This will let us converge to the eigenvalue closest to o, rather
than just A\;. This method is called inverse iteration or the inverse power
method.

ALGORITHM. Inverse iteration: Given xg, we iterate

i=0

repeat
Yisr=(A—ol)"tx
Xiv1 = Yiv1/|lyi+1ll2  (approximate eigenvector)
5\,-+1 = X;11AXi+1 (approximate eigenvalue)
i=i+1

until convergence
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To analyze the convergence, note that A = SAS™! implies
A—ol=SAN-0cl)S~tandso (A—al)"t =S(A—0ol)"1S7L. Thus
(A —al1)71 has the same eigenvectors s; as A with corresponding
eigenvalues ((A — a/)™1); = (A\j — o). The same analysis as before
tells us to expect x; to converge to the eigenvector corresponding to the
largest eigenvalue in absolute value.
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Assume that |\, — o| is smaller than all the other |)\; — 0| so that
(A — o)~ ! is the largest eigenvalue in absolute value. Also, write
xo = S([€1,---,&4]T) as before, and assume & # 0. Then

2 &M\ —o)!
(A—ol)7ixg = (S(N—0ol)7'S™H)S : =S :
é:n En(An — U)_i

[ & ()\k*U)I’

&k

)\1—0'

= &M\—0)7'S 1 ,

&n )\.—0 i
L §7(>\:70)
where the 1 is in entry k. Since all the fractions (Ax — o)/(A; — o) are
less than one in absolute value, the vector in brackets approaches e, so
(A—ol)"'xo gets closer and closer to a multiple of Sex = s, the
eigenvector corresponding to \g. As before, \; = x,-TAx,- also converges
to Ag.
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@ The advantage of inverse iteration over the power method is the

ability to converge to any desired eigenvalue (the one nearest the
shift o).

@ By choosing o a very close to a desired eigenvalue, we can converge
very quickly and thus not be as limited by the proximity of nearby
eigenvalues as is the original power method.

@ The method is particularly effective when we have a good
approximation to an eigenvalue and want only its corresponding
eigenvector.
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Examples of running of Inverse iteration method in Matlab

Example 1. Comp. ig :0.0020016, Ref. eig:0 0 Example 2. Comp. eig.11.1644, Ref. eig.12 -1 032 12
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Examples of running of Inverse iteration method in Matlab

Example 1. Comp. eig 00039784, Ret.¢ig:0 0 Exampl 2. Comp. eig:12.3246, Ret sig:12_ 11 03212
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@ Example 1. In this example we tested the matrix

which has exact eigenvalues A = (0, 0) with multiplicity m = 2. From Figure we observe that Inverse
Iteration method could converge to the reference eigenvalues for both shifts o = 2 and o = 10. We note
that by applying the Power method to this matrix as output eigenvalue we could get only Nal.

@ Example 2. We recall that reference eigenvalues in this case are
A = (12.3246, —11.1644, —0.3246, 1.1644).
In this example we observe nice convergence too, see Figure. For the shift & = 2 we could get eigenvalue
1.1644 which is the same as the last reference eigenvalue. This is because shift o = 2 is closer to this
eigenvalue than to all others. For the shift o = 10 algorithm converged to the first reference eigenvalue
12.3246, as expected.
This test confirms that the Inverse iteration method converges to the eigenvalue which is closest to the
shift o.

@ Example 3. Figure shows nice convergence in this case too for both shifts . Recall, that Power method
does not converged at all, compare results on Figures.

[*] Example 4.
From Figure we observe nice convergence to the first eigenvalue of the matrix A for both shifts o = 2, 10.
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Orthogonal Iteration

Our next improvement will permit us to converge to a

(p > 1)-dimensional invariant subspace, rather than one eigenvector at a
time. It is called orthogonal iteration (and sometimes subspace iteration
or simultaneous iteration).
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ALGORITHM. Orthogonal iteration: Let Zy be an n x p orthogonal
matrix. Then we iterate

i=0
repeat
Yir1 = AZ;
Factor Yiy1 = Ziv1Riv1  (using Algorithm QR decomposition)
(Zi+1 spans an approximate
invariant subspace)
i=i+1
until convergence
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An informal analysis of the method of Orthogonal iteration

® Assume |Ap| > |Apt1|. If p=1, this method and its analysis are
identical to the power method.

@ When p > 1, we write span{Z;;1} = span{Y; 1} = span{AZ;}, so
span{Z;} = span{A'Zy} = span{SA'S™1Z;}. Note that

SNS71Zy = S diag(Mj,...,\,)S 12
(Ar/Ap)'

= S 1 S-1Z,.

(An/Ap)!



Algorithms for the Nonsymmetric Eigenvalue Problem

Since|;‘—£\21forj§pand |:\\—£\<1ifj>p, we get

(A1/Ap)’

pxp

STz, = = X,

) W‘(’{—P)XP
(An/Ap)’ ’

where W; approaches zero like (Ap1+1/)p)", and V; does not approach
zero. Indeed, if V has full rank (a generalization of the assumption that
&1 #0), then V; will have full rank too. Write the matrix of eigenvectors

. Then S =s1,...,s,] = [ngp,g,fx("_p)], i.e.Sp =[s1,...,5p]. Then
SNS™1Zy = A5 VVV ] = Xi(S,Vi + $,W). Thus
span(Z;) = span(SA'S71Zy) = span(S, Vi + 5, W;) = span(S,X;)

converges to span(S,V;) = span(S,), the invariant subspace spanned by
the first p eigenvectors, as desired. [
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@ The use of the QR decomposition keeps the vectors spanning
span{A'Zy} of full rank despite roundoff.

@ Note that if we follow only the first p < p columns of Z; through
the iterations of the algorithm, they are identical to the columns
that we would compute if we had started with only the first p
columns of Z; instead of p columns. In other words, orthogonal
iteration is effectively running the algorithm for 5 =1,2,...,p all at
the same time. So if all the eigenvalues have distinct absolute
values, the same convergence analysis as before implies that the first
p < p columns of Z; converge to span{s,..., sz} for any p < p.

@ Thus, we can let p = n and Zy = I in the orthogonal iteration
algorithm. The next theorem shows that under certain assumptions,
we can use orthogonal iteration to compute the Schur form of A.
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THEOREM. Consider running orthogonal iteration on matrix A with
p=nand Zy = /. If all the eigenvalues of A have distinct absolute
values and if all the principal submatrices S(1: j,1: ) have full rank,
then A; = Z,-TAZ,' converges to the Schur form of A, i.e., an upper
triangular matrix with the eigenvalues on the diagonal. The eigenvalues
will appear in decreasing order of absolute value.
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Method of Orthogonal Iteration

lambda0= inf(n,1);

iter =1;

// here, dim(A)=nx n

Q = eye(n);

// we choose number of iterations here
for k = 1:100

Y = A*Q;

(QR] = ar(Y),

// Compute Shur form of A
T=Q"*A*Q;

//Find eigenvalues from Real Schur block
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computed_lambda = sort(eigs);
computed_lambda = computed_lambda’;
if(norm(abs(computed_lambda - lambda0 )) <eps )

break ;

end

lambda0 = computed_lambda ;
iter = iter + 1;

end
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Performance of Method of Orthogonal Iteration

Example 1. Nr. of it. in method of Orthogonal iteration:7

Example 2. Nr. of it. in method of Orthogonal iteration:8
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@ Example 1. In this example we tested such called Hilbert matrix of the size 10 x 10 which is a well known
example of a badly conditioned matrix. Elements of this matrix are given by 1/(i + j — 1), where i, j are
indices for the nodes in x and y directions, correspondingly. From Figure we observe that we have obtained
all computed eigenvalues of this matrix which coincides with reference eigenvalues already at 7-th iteration.

Example 2. Here we tested Hilbert matrix of the size 20 X 20. Again, we have computed almost exact
eigenvalues of this matrix at 8-th iteration, see Figure.

Example 3. This is the same as example 3 in the Power method. Figure shows nice convergence to the one
real and two complex eigenvalues of the matrix A at 12-th iteration.

Example 4. This is the same as example 2 in the Power method. Figure shows convergence to the four real
eigenvalues of the matrix A at 15-th iteration.

Example 5. Here we tested the matrix

>
Il
© bR oW

1 1
3 2 1 7
3 5

which has three real and two complex reference eigenvalues

A = (19.9655, —8.2137 + 2.3623i, —8.2137 — 2.3623i, —3.4043, —0.1337).

From Figure we observe convergence of the all computed eigenvalues to reference eigenvalues at 24-th
iteration.

@ Example 6. Here we choose the size of the matrix dim(A) = 10 x 10. Elements of this matrix are
uniformly distributed pseudorandom numbers on the open interval (0, 1).
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QR lteration

ALGORITHM. QR iteration: Given Ag, we iterate

i=0

repeat
Factor Ai = QiR; (the QR decomposition)
A1 = RQ;
i=i+1

until convergence

Since Aix1 = RiQi = QT (QiR)Qi = QT A;Q;, Aiy1 and A; are
orthogonally similar.

We claim that the A; computed by QR iteration is identical to the matrix
ZT AZ; implicitly computed by orthogonal iteration.
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LEMMA. Let A; be the matrix computed by Algorithm of QR iteration.
Then A; = Z,-TAZ,-, where Z; is the matrix computed from orthogonal

iteration (Algorithm of Orthogonal iteration) starting with Zo = /. Thus
A; converges to Schur form if all the eigenvalues have different absolute

values.

Proof. We use induction.

® Assume A; = ZT AZ;. From Algorithm of Orthogonal iteration, we
can write AZ; = Zi+1Rj11, where Z;;; is orthogonal and R;; is
upper triangular. Thus, A= ZTZ1R;;1.

® Then ZTAZ = Z,-T(Z;H Rit+1) is the product of an orthogonal
——

Q
matrix @ = Z;7 Z;;1 and an upper triangular matrix
R = R,'+1 = Z’T_,’__lAZ, since AZ, = Z,'+1 R;+1;
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@ This must be the QR decomposition A; = @R, since the QR
decomposition is unique (except for possibly multiplying each
column of Q and row of R by -1).

@ Then

1

A1 = Z1AZiy = (Z1LAZ)(Z Zi11) = Risa (2] Zia) = RQ.
— N——

Rit1 Q

@ This is precisely how the QR iteration maps A; to A;;1.
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ALGORITHM. QR iteration with a shift: Given Ag, we iterate

i=0

repeat
Choose a shift o; near an eigenvalue of A
Factor A; — il = Q;R; (QR decomposition)
Air1 = RiQi + oil
i=i+1

until convergence
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LEMMA. A; and Aj41 are orthogonally similar.

Proof. Aiy1 = RiQi+0il = QT QR Qi +0:Q" Qi =
QI(QR +0i)Q = QTAQ;. O

If R; is nonsingular, we may also write

Ayl = RQi+oil=RQRR '+oRR "
= R(QR +o:)R™'=RAR™.
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@ If o is an exact eigenvalue of A; then we claim that QR iteration
converges in one step: since o; is an eigenvalue, A; — o}/ is singular,
so R; is singular, and so some diagonal entry of R; must be zero.
Suppose R;(n,n) = 0. This implies that the last row of R;Q; is 0, so
the last row of A;;1 = R;Q; + o,/ equals o;e], where e, is the nth
column of the n-by-n identity matrix. In other words, the last row of
A;11 is zero except for the eigenvalue o; appearing in the (n, n)
entry. This means that the algorithm has converged, because A1
is block upper triangular, with a trailing 1-by-1 block o;; the leading
(n— 1)-by-(n — 1) block A’ is a new, smaller eigenproblem to which
QR iteration can be solved without ever modifying o; again:

/
A1 = [ /3 ;’_ ]

@ When o; is not an exact eigenvalue, then we will accept Ai11(n, n)
as having converged when the lower left block A;;1(n,1:n—1)is
small enough. Recall from our earlier analysis that we expect
Ait1(n,1: n—1) to shrink by a factor |\ — oj|/ minjx |Aj — il
where ‘)\k — (T," = minj |/\J — O','|.

@ If o is a very good approximation to eigenvalue Ay - fast conv.
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Examples of Performance of Method of QR lteration.

imag. part of cigenvalues Imag. part of egenvalues.

Imag. part of sigenvalues

Example 1. Nr. of it in method of QR iteration:5

Example 2. Nr. of it. in method of QR teration:6
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Tested on matrices

A =[51, 10, 10; 0, 5, 1, 1; 0,0,5,1; 0,0,0,5];
A=[3,7,8,9;5,-7,4,-7;1,1,-1,-1;4,3,-2,-1];

A =[0-5 0-12;130];
A=[3,7,8,9;5,-7,4,-7;1,-1,1,-1;9,3,2,5];
A=[3,7,8,9,12;5-7,4,-7,8;1,1,-1,1,-1;4,3,2,1,7;9,3,2,5 4];
A =[120;01];
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QR iteration with shift

Imag. partof igenvalues

We again test the same matrices as in the method of Orthogonal iteration. Results of the convergence of the
algorithm when the shift is chosen as o = A, at every iteration of this algorithm are presneted in figure above.

Example 1. Nr. of it in method of QR it. with shift:101

Example 2. Nr.of t.in method of QR i, with shift.79
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QR iteration with shift

Wilkinson's shift

Wilkonson's shift. let shift o; is chosen as an eigenvalue of the matrix
dn—1,n—1 @n—1,n

dn,n—1 dn,n

which is closest to the value a, , of the matrix A;.
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Hessenberg matrix

A Hessenberg matrix is a special kind of square matrix, one that is
"almost” triangular. To be exact, an upper Hessenberg matrix has zero
entries below the first subdiagonal, and a lower Hessenberg matrix has
zero entries above the first superdiagonal. They are named after Karl
Hessenberg. For example:

1 4 2 3
3 417
0 2 3 4
0 01 3
is upper Hessenberg and
12 00
5 2 30
3 4 37
56 11

is lower Hessenberg.
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Hessenberg Reduction

Given a real matrix A, we seek an orthogonal @ so that QAQT is
upper Hessenberg. The algorithm is a simple variation on the idea
used for the QR decomposition.
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EXAMPLE. We illustrate the general pattern of Hessenberg reduction
with a 5-by-5 example. Each Q; below is a 5-by-5 Householder reflection,
chosen to zero out entries / + 2 through n in column i and leaving entries
1 through i unchanged.

1. Choose @ so

QIA = and A1 = Q]_AQlT =

O OO X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

O OO X X

@, leaves the first row of @;A unchanged, and QlT leaves the first
column of QlAQlT unchanged, including the zeros.
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2. Choose @, so

QA = and Ay = QA Q) =

O O O X X
o O X X X
X X X X X
X X X X X
X X X X X
O O O X X
o O X X X
X X X X X
X X X X X
X X X X X

Q> changes only the last three rows of Ay, and QQT leaves the first two
columns of A; QQT unchanged, including the zeros.
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3. Choose @3 so

Q3A2 = and A3 = Q3A2 Q3T =

OO O X X
o o X X %
o X X X X
X X X X X
X X X X X
OO O X X
o o X X %
o X X X X
X X X X X
X X X X X

which is upper Hessenberg. Altogether
As = Q3AQ] = QQAIQ) Q = (Qs@QQ)A(Q QF Q) = QAQT.

<&
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The general algorithm for Hessenberg reduction is as follows.
ALGORITHM. Reduction to upper Hessenberg form:

if Qisdesired, set Q = |

fori=1:n-—2
u; = House(A(i +1: n,i))
P,' =1 —2U,'U,-T /* Q,' = diag(/iXi,P,')*/
A(i+1:ni:n)=P-A(i+1:n,i:n)
Al:ni+1:n=Al:ni+1:n) P

if Q is desired
Qii+1:ni:n)=P-Q(i+1l:ni:n) /*"Q=Qi Q~/
end if

end for
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Example

Part I: computation of upper Hessenberg form when we use

rounding.
We want zero out value of entry (3,1) in the following matrix:

12 -51 4
A=1| 6 167 —68
—4 24 —41

First, we need to find a Hauseholder reflection that transforms the first
column of matrix A vector x= (6,—-4)7, to

x| e1 = (/62 + 2.0)7 = (2v13,0).

Recall algorlthm of usmg Householder reflection for QR decomposition
(see lecture 8):

u=Xx-+ «aeq,
a = —sign(x)|x];
_u
lull

to construct the Householder matrix Q =/ —2v v'.
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Here,
a=—-2vV13 and x = (6,—4)"

Therefore
u=(6-2v13, -4)" ~(-1.21,-4)7
and v = %~ (—0.29,-0.96)7, and then

[ull

~0.29
Q=1-2 (_0.96> (—0.29 —0.96)
_,_ (01682 05568
— "7 \os5568  1.84

([ 0.8318 —0.5568
~ \—-0.5568 —0.84 /-
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Now observe that Q1A leaves the first row unchanged:

1 0 0 12 -51 4
@QA=|0 08318 —-05568)-( 6 167 —68
0 —0.5568 —0.84 -4 24 41
12 -51 4

= | 7.2180 125.5474 —33.7336
0.0192 —113.1456 72.3024

and @ AQ; leaves the first column of Q;A unchanged:

12 —44.6490  25.0368
A= QAQ] = | 7.2180 123.2132 —41.5686
0.0192 —134.3725  2.2655
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Example

Part Il: computation of upper Hessenberg form without rounding.
We want zero out value of entry (3,1) in the following matrix:

12 -51 4
A=|6 167 -68
—4 24 —41

First, we need to find a Hauseholder reflection that transforms the first
column of matrix A, vector x = (6, —4)7, to

Ixll e1 = (/& + (—4)2,0)T = (2V/13.0)".

Recall algorithm of using Householder reflection for QR decomposition
(see lecture 8):

u—=Xx-+ aeq,

o = —sign(a)llx|l
- u
Jul

to construct the Householder matrix Q = 1 — 2v v.
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Here,
a=-2V13 and x = (6,-4)"

Therefore
u=(6-2v13,-4)" ~ (-1.2111,-4)7
and v = % ~ (—0.2898, —0.9571)", and then

[ull

—0.2808
Q=1-2 (_0.9571> (—0.2808 —0.9571)

/08321 —0.5547
~ \-05547 —0.8321)"
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Now observe that Q1A leaves the first row unchanged:

1 0 0 12 51 4
@QA=|0 08321 —-05547)-| 6 167 —68
0 —0.5547 -0.8321 -4 24 41
12 -51 4

= (72111 125.6396 —33.8367
0.0 —112.6041 71.8337

and @ AQ; leaves the first column of Q;A unchanged:

12 —44.6534  24.9615
A= QAQ] = | 7.2111 1233077 —41.5385
0.0 —133.5385 2.6923
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PROPOSITION. Hessenberg form is preserved by QR iteration.

Proof. It is easy to confirm that the QR decomposition of an upper
Hessenberg matrix like A; — o/ yields an upper Hessenberg Q (since the
jth column of @ is a linear combination of the leading j columns of

A; — ol). Then it is easy to confirm that RQ remains upper Hessenberg
and adding does not change this. [

DEFINITION. An upper Hessenberg matrix H is unreduced if all
subdiagonals are nonzero.
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Reduction to a lower Hessenberg form

Consider example in Matlab: program Hessenberg.m:
n =4;
A=[3,7,8,9;5,-7,4,-7;1,-1,1,-1,9,3,2,5];
A=A";

Q=eye(n);

for i=1:n-2

x= A(i+1:n,i)

u=x;

u(1) = u(1)+ sign(x(1))*norm(x);
u=u/norm(u);

P= eye(n-i) - 2%(u*u’) ;

A(i +1:n ,i:n) =P*A(i +1:n,i:n) ;
A(L:n,i +1:n)=A(1:n,i +1: n)*P;
Q(i+1:n,i:n) = P*Q(i+1:n,i:n);

end

Q*A™Q
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Tridiagonal and Bidiagonal Reduction

If Ais symmetric, the Hessenberg reduction process leaves A symmetric
at each step, so zeros are created in symmetric positions. This means we
need work on only half the matrix, reducing the operation count to
2%+ 0(n?) or $n® + O(n?) to form Qn_1,..., Q1 as well. We call this
algorithm tridiagonal reduction.

We recall that the eigenvalues of the symmetric matrix AT A are the
squares of the singular values of A. Our eventual SVD algorithm will use
this fact, so we would like to find a form for A which implies that AT A is
tridiagonal. We will choose A to be upper bidiagonal, or nonzero only on
the diagonal and first superdiagonal. Thus, we want to compute
orthogonal matrices @ and V such that QAV is bidiagonal. The
algorithm, called bidiagonal reduction, is very similar to Hessenberg and
tridiagonal reduction.



Algorithms for the Nonsymmetric Eigenvalue Problem

EXAMPLE. Here is a 4-by-4 example of bidiagonal reduction,
which illustrates the general pattern:

1. Choose @7 so

QlA = and V1 SO Al = QlA\/l =

O O O X
X X X X
X X X X
X X X X
O O O X
X X X X
X X X O
X X X O

Q@7 is a Householder reflection, and V; is a Householder reflection
that leaves the first column of Q1A unchanged.
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2. Choose @, so

x x 0 O x x 0 0
0 x x x _ 10 x x O
QAL=| 0 0 x x | dVasohk=QAVa=| & 0
0 0 x x 0 0 x x

Q. is a Householder reflection that leaves the first row of A; unchanged.
V5 is a Householder reflection that leaves the first two columns of @QA;
unchanged.

3. Choose Q3 so

Q3A2 = and V3 =1 so A3 = Q3A2.

O O O X
O O X X
o X X O
X X O o

Qs is a Householder reflection that leaves the first two rows of Aj
unchanged. We have obtained:

Az = Q3A2 V3 = Q3 QA1 Vo Va3 = (Q3Q2Q1)A(VA Vo Vi) = QAV is upper
diagonal matrix. ¢
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In general, if A is n-by-n, then we get orthogonal matrices
QR=Qy1--Q and V= V;---V,_5 such that

QAV = A

is upper bidiagonal.
Multiply both sides of A’ = QAV by AT = (QAV)T = VTATQT to get:

ATA =VTATQTQAV = VTATAV,
so A'T A’ has the same eigenvalues as AT A; i.e., A’ has the same singular
values as A.
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Example of tridiagonal reduction using Householder
transformation

5 4 3

A= |4 6 1| using Householder transformation (see alg. in Lecture
317
8) we make following steps:

@ Stepl . First compute « as

a = —sgn(ax)

@ Step 2. Using « we find r as

r= 507 o) = a4 (s =22
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@ Step 3. Then we compute components of vector v:

vi =0,
an —a 3v2
2r 2v/5’
asy \ﬁ
V3= — = — .,
2r 25

Vo =

and we have

&O

S |3

=

@ Step 4 . Then compute matrix P!
Pt =1 — 2y (T

1 0 0
toget PL= |0 —4/5 -3/5
0 —3/5 4/5



Algorithms for the Nonsymmetric Eigenvalue Problem

@ Step 5.
After that we can obtain tridiagonal matrix A as
5 -5 0

AL — plapl — |5 732 —0.76
0 -076 5.68.
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Example

We will construct tridiagonal matrix from the matrix

5 4 3
A= 14 6
31

~ =

using Hauseholder transformations.
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Example

To perform tridiagonal reduction for the matrix A we use Hauseholder
transformation in following steps:

@ Choose x = (4,3)" and compute

u=x-+ aey,
where oo = —sign(4) - ||x]|, ||x]| = v/25 =5, and thus a = —5.
@ Construct u=x+ ae; = (4,3)7 —(5,0)" = (-1,3)7.

@ Construct

_u
YT Tl
with |Ju]| = V10.
Therefore v = (—1/4/10,3/v/10)7.
@ Compute

;o1 (08 06
@=1-2w _(0.6 —0.8>'
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@ Construct the matrix of the Householder transformation as:

1 0 0
@ =10 08 06
0 06 -0.38
@ Then compute
5 4 3
Al=@QiA=1|5 54 5
0 28 -5

such that @ leaves the first row of Q;A unchanged.

@ Choose new vector x = (4,3)" for A] and compute

u=Xx-+ aey,

where oo = —sign(4) - ||x]|, ||x]| = V25 =5, and thus a = —5.
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@ Construct u = x + ae; = (4,3)" —(5,0)7 = (-1,3)7.
@ Construct
u
v=—
[Jull
with ||u|| = /10.
Therefore v = (—1/4/10,3/1/10)7.

@ Compute

, oo 7 (08 06
Vi=lmaw _<0.6 0.8)'
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@ Construct the second matrix of the Householder transformation V;

1] 0
4= [otvr]
to get
1 0 0
Vi=|(0 08 0.6
0 06 -0.8
and then compute
5 5 0

@QiAV; =[5 732 -0.76
0 —-0.76 5.68

such that V4 leaves the first column of A; unchanged.
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Example of tridiagonalization using Given's rotation

—-10 3 4
To make tridiagonal matrix from the matrix A= | 3 5 1
4 9

1
using Given's rotation we have to zero out (3,1) and (1, 3) elements of
the matrix A. Thus we use the Given's rotation R(2,3,6) such that

1 0
G1=R(2,3,0)= |0 ¢ —s
0 s

We compute

3 4 —10 3 4
5 1| = (3c—4s bc—s c¢c—9s
1 9 3s4+4c 5s+c s+9c

G A=

com
nw o o
\
7))
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Element (3,1) of the matrix will be zero if 3s + 4c = 0. This is true
when ¢ =4/5 and s = —3/5. To compute c,s we have used formulas:

r=va+bp=324+4=5
a
c—;—3/57

-b
— 22— _y4ys.
s=— /5

Next, to get tridiagonal matrix we have to do :

1 0 0 —10 3 4] 1 o0 0 -0 5 0
AL =GiAG; = |0 3/5 4/5|-| 3 5 1|-|0 3/5 —4/5|=|5 852 164
0 .

—4/5 3/5 4 19 0 4/5 3/5
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Example to make upper triangular matrix using Given's
rotation

Consider previous example and obtained matrix A;:

-10 5 0
Aj=| b 852 1.64
0 1.64 5.48

Now we want to zero out elements (2,1) and (3,2) in order to get upper
triangular matrix. To zero out element (2,1) we compute ¢, s from the
known a = —10 and b=5 as

-0

r=+va+ b =/-(102 + 5 ~ 11.18,
~ —0.894

s= _Tb ~ —0.4472.

to get:

Sl
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Then the Given's matrix will be

|
»

c
G=|s
0

[>T
= O O

or
—0.89445 0.44722 O

G = |—-0.44722 —-0.89445 0
0 0 1
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Finally, we obtain the matrix:

—0.89445 0.44722 O -10 5 0
Ay = GA; = |—0.44722 —0.89445 0| -| 5 852 1.64
0 0 1 0 164 548

11.1806 —0.6619356 0.7334408
= [—0.00005 —9.856814 —1.466898
0 1.64 5.4

Now to zero out element (3,2) we compute ¢, s from the known
a = —9.856814 and b = 1.64 to get:

r=1+/a?+ b2 = /(—9.856814)2 + (1.64)2 ~ 9.9923,

c= ; ~ —0.98644,

s = %b ~ —0.16413.
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The next Given's matrix will be

G =

oo
nw 0 o
|
w0

or
1 0 0

G = |0 —0.98644 0.16413
0 —0.16413 —0.98644

Finally, we obtain the upper triangular matrix as A3 = G’ - A:

11.1806 —0.6619 0.7334
A3 =G'Ay = | 0.0000 9.9923  2.3333 (3)
0.0000  0.0000 —5.0860
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Regular Matrix Pencils and Weierstrass Canonical Form

The standard eigenvalue problem asks for which scalars z the matrix
A — zl is singular; these scalars are the eigenvalues. This notion
generalizes in several important ways.

DEFINITION. A — AB, where A and B are m-by-n matrices, is called a
matrix pencil, or just a pencil. Here is A an indeterminate, not a
particular, numerical value.

DEFINITION. If A and B are square and det(A — AB) is not identically
zero (or when there exists at least one A : det(A — AB) # 0), the pencil
A — AB is called regular. Otherwise it is called singular. When A — AB is
regular, p()\) = det(A — AB) is called the characteristic polynomial of

A — AB and the eigenvalues of A — AB are defined to be

(1) the roots of p(A),

(2) oo (with multiplicity n — deg(p)) if deg(p) < n.
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EXAMPLE. Let

e[ o)

Then p(A) =det(A—AB) =(1—2X)- (1 —=0X)-(0—X) = (1 —2))(=N),
so the eigenvalues are A = % 0 and oco. ©
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PROPOSITION. Let A — AB be regular ( when there exists at least one
A:det(A—AB)#0).

@ If B is nonsingular, all eigenvalues of A — AB are finite and the
same as the eigenvalues of AB~! or B—1A.

@ If B is singular, A — AB has eigenvalue co with multiplicity
n — rank(B).

@ If Ais nonsingular, the eigenvalues of A — AB are the same as the
reciprocals of the eigenvalues (or + ) of A=*B or BA~!, where a
zero eigenvalue of A~1B corresponds to an infinite eigenvalue of
A—)B.
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Proof.
@ If B is nonsingular and )\’ is an eigenvalue, then
0 =det(A— NB)=det(AB~1 — \/) =det(B"*A— XN1)so X is
also an eigenvalue of AB~! and B~ A.

@ If B is singular, then take p(A) = det(A — AB), write the SVD of B
as B= UX VT, and substitute to get

p(\) = det(A — AUZVT) = det(U(UTAV = \E)VT)
=+det(UTAV — AL).

Since rank(B) = rank(X), only rank(B) X’s appear in UTAV — AT, so
the degree of the polynomial det(UT AV — \X) is rank(B).

@ If Ais nonsingular, det(A — AB) = 0 and det(A(/ — AMA~1B)) =0 if and
only if det(/ — AMA=1B) = 0 or det(/ — ABA™1) = 0.

1
det(/ — AMA7!B) =0 — det({/ — AT1B) =0

This equality can hold only if A # 0 and 1/ is an eigenvalue of A"1B
and BA™1. O



Weierstrass Canonical Form

DEFINITION. Let P, and Pg be nonsingular matrices. Then pencils
A — AB and P APr — AP BPg are called equivalent.

PROPOSITION. The equivalent regular pencils A— AB and
PLAPr — AP BPg have the same eigenvalues. The vector x is a right
eigenvector of A — AB if and only if PEIX is a right eigenvector of
P APr — AP BPgr. The vector y is a left eigenvector of A — AB if and
only if (P;)~ly is a left eigenvector of PLAPr — AP, BPk.
Proof.

o det(A— AB) =0 if and only if det(P.(A — AB)Pgr) = 0.

@ (A—AB)x=0ifand only if P,(A— AB)PrPg'x = 0.

@ (A—AB)*y =0ifandonly if P5(A— AB)*P;(P;)"ly=0. O



Weierstrass Canonical Form

THEOREM. Weierstrass canonical form. Let A — AB be regular. Then
there are nonsingular P, and Pg such that

PL(A = AB)Pg = diag(Jn, (A1) = Mgy - s Ing ) = Moy Nomys -+ Nim, ),

where J,.(A;) is an n;-by-n; Jordan block with eigenvalue \;,

A1
Jn,-()\i) = . . )
’ 1
Aj
and N, is a "Jordan block for A = oo with multiplicity m;,”
1 A
1 .
Np, = = Iy, — Adm, (0).

D
1

For a proof, see [F. Gantmacher. The Theory of Matrices, vol. Il
(translation). Chelsea, New York, 1959].
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