Applied Numerical Linear Algebra. Lecture 13

Algorithms for the Symmetric Eigenproblem

Rayleigh Quotient Iteration (RQI)

ALGORITHM. Rayleigh quotient iteration (RQI): Given xp with

[|xo|| = 1, and a user-supplied stopping tolerance tol, we iterate
po = p(x0, A) = Xﬂ}izo
i=1
repeat
vi=(A=pi—1l)"txi_1
xi = yi/llyill2
pi = p(Xiv A)
i=i+1

until convergence (||Ax; — pixi||2 < tol)

When the stopping criterion is satisfied, Theorem tells us that p; is within
tol of an eigenvalue of A.

Algorithms for the Symmetric Eigenproblem

If one uses the shift o; = a,, in QR iteration and starts Rayleigh quotient
iteration with xo = [0,...,0,1]7, then the connection between QR and
inverse iteration can be used to show that the sequence of ¢; and p; from
the two algorithms are identical. In this case we will prove that
convergence is almost always cubic.

Algorithms for the Symmetric Eigenproblem

THEOREM. Rayleigh quotient iteration is locally cubically convergent;
i.e., the number of correct digits triples at each step once the error is
small enough and the eigenvalue is simple.

Proof. We claim that it is enough to analyze the case when A is
diagonal. To see why, write QT AQ = A, where Q is the orthogonal
matrix whose columns are eigenvectors, and A = diag(ay, ..., a,) is the
diagonal matrix of eigenvalues. Now change variables in Rayleigh
quotient iteration to X = Q" x; and i = Q" y;. Then

TAv. ¢TOTAOS $TAS.
pi = p(xi, A) = i TAX' = X'ATQ AQAX' = X'ATAAX' = p(%i,\)
X x; £ QT QX pabg

and from algorithm RQI it follows that y; 11 = (A — p;/)~1x; and thus
QY1 = (A—pil)71Q%;, so

Jir1 = QT(A=pil)7'Q% = (QTAQ — pil) "% = (A — pil) '

Therefore, running Rayleigh quotient iteration with A and xg is equivalent
to running Rayleigh quotient iteration with A and X3. Thus we will
assume without loss of generality that A = A is already diagonal, so the
eigenvectors of A are g;, the columns of the identity matrix.

Algorithms for the Symmetric Eigenproblem

Suppose without loss of generality that x; is converging to e;, so we can
write x; = e + d;, where ||d;||2 = € < 1. To prove cubic convergence, we
need to show that x;11 = e; + djy1 with ||div1][2 = O(e3).

We first note that

1= X,-TX,' = (61 + d,')T(61 + d,') = e1T61 +2 ele,- +d,-Td,' =1+2d1 + €
~—

di1
so that
2e/ dj+€> =0 (1)
~
din
or 2dj1 + €2 =0, or diy = —€2/2. Therefore
x,-T/\x,- T T T T
pPi=—7F = (61 + d,) /\(e1 + d,) = e, Ney +2e; Nd; + d;' \d;
X;i Xi N~——
o (2)

=a; — (—2¢/ Adi — dAd})) = o1 — = a1 — e + d Adj,

n

and since by (1) we have —2e/ d; = €2 then
n= —2617_/\d,' — d,-T/\d,' = 01162 — d,-T/\d,'.

Algorithms for the Symmetric Eigenproblem

We see that n = —2e/ Ad; — d"Ad; = a1e? — d. Ad; and thus
Inl < loale® + [IAll21ldi|5 < [oale® + [|A]]2€* < 2||A]]2€2,

so p; = a; —n = ay + O(e?) is a very good approximation to the
eigenvalue a;.

Algorithms for the Symmetric Eigenproblem

Now, from algorithm RQI we have y; 1 = (A — p;l)"1x;, we can write

Yier = (N = pil) 7' xi

-
Xi X Xij
= < because (N — p;1)~* = diag
a1 —pi Qg = pj an = pi aj = pi
1+dy d dn |
= 1 , G o because x; = e; + d;
a1y — pi Q2 — pPj Qp — Pi
-
1—é2/2 d; d;
= , sy because pi = a1 — 1
n a; —Qa1+1 Qap— a1 +1n
1-é/2 d;
= / [, > 21 sy andd,-;l:—ez/Q
n (1—€/2)(a2 — a1 +n)
dinm) }T 1—¢€%/2 .
= . (e1 + d; 1).
(1-€/2)(an — a1 +mn) U i

(3)

Algorithms for the Symmetric Eigenproblem

To bound ||dj.1|
|aj — a1 + 1| > gap(ea, A) = |n

2, we note that we can bound each denominator using
, o using also obtained bound

[l < leale + [IAl2ld;] |3 < 2]|A]]2€?
we get

[[dill2[n| € 2||A]|2¢?

[ldisall2 < (1= 2/2)(gap(an, N — 1) — (1= &/2)(gap(an,) — 2]\ o)

or ||diy1l2 = O(€3). Finally, by algorithm how to compute Rayleigh
quotient we have that x; = y;/||yi||» and thus
Xiy1 = €1 + dip1 = yip1/||yit1l|2 or

1—¢2/2 5
<6/ . (el J'_ d,-+1)>
_ Yitr n _ 5 5
Xiy1 = ialh ~ 1-¢) . = (e1 +diy1)/|ler + disa]]2.
" | ———— (&1 + dis1)l2

Since x;11 = e + diy1 we see ||di1]]2 = O(€®) as well. OJ

Algorithms for the Symmetric Eigenproblem

Divide-and-Conquer

@ This method is the fastest now available if you want all eigenvalues
and eigenvectors of a tridiagonal matrix whose dimension is larger
than about 25. (The exact threshold depends on the computer.)

@ It is quite subtle to implement in a numerically stable way. Indeed,
although this method was first introduced in 1981 [J. J. M. Cuppen.
A divide and conquer method for the symmetric tridiagonal
eigenproblem. Numer. Math., 36:177-195, 1981], the "right”
implementation was not discovered until 1992 [M. Gu and S.
Eisenstat. A stable algorithm for the rank-1 modification of the
symmetric eigenproblem. Computer Science Dept. Report
YALEU/DCS/RR-916, Yale University, September 1992;M. Gu and
S. C. Eisenstat. A divide-and-conquer algorithm for the symmetric
tridiagonal eigenproblem. SIAM J. Matrix Anal Appl, 16:172-191,
1995]).

Algorithms for the Symmetric Eigenproblem

ai b1 0 0

b1 an b2 0 0

dm—1 bm—l 0

7|0 bui an b O 0
o 0 0 bm dm+1 bm+1 0

0 0 0 bmi1

0 O 0 bp—1

Algorithms for the Symmetric Eigenproblem

a; b 0 0
b a b, 0 0
e dm—1 bm,1 0
T— 0 bn.1 am—>by O 0 0 bm bm
o 0 0 0 dm+1 — bm bm+1 0 bm bm
0 0 0 bmi1
0 0 0 bn_1
0 0 0 0 b1 an
0
.
-1 °T2°]+bm : [0.0 1 1 0.0]=|,"1 °T2°]+bmv4v
0

Algorithms for the Symmetric Eigenproblem

Assume that we have eigendecomposition of T3, T, such that
T = QM Q and Ty = QA2QF . Then we can write that

[T 0.0 r [@MQT 0.0
T—[o...o T }*b'"""’ —{ 0.0 QMQf

[@ 0.0 A 0.0 Qf 0.0
_{o...o @ }'([0...0 Ao]+bm“'“T)'[o..l.o Qf]

Let define the diagonal matrix

[M 0.0
D‘[o...o A }

}—Fbmv-vT

We observe that the eigenvalues of T are the same as of
D+bpu-ul =D+ pu-u’.

Algorithms for the Symmetric Eigenproblem

@ 1. We want to find eigenvalues of D + bpu-u” =D + pu-u’

@ 2. Assumption: we assume that diagonal elements of D are sorted
such that d; > ... > d,, and D — A/ is nonsingular

@ 3. To find eigenvalues we compute the characteristic polynomial
D + pu-u” — M noting that
D+pu-u” =X =(D-X)(I+p(D—X)"tu-ul)

@ By assumption we have det(D — Al) # 0 and thus
det(I +p(D — A)"tu-uT) =0.

Algorithms for the Symmetric Eigenproblem

LEMMA. If x and y are vectors, det(/ +xy”) =1+ y"x.

Thus, using this lemma we can get that

2

s
= ()
g™

det(I4+p(D— M) tu- u”) =14+ u" p(D—A)ru=14p»
N——— Y Vv N—m—— i—1

X yT yT X

We see that eigenvalues of T are roots of the secular equation f(A) = 0.
The secular equation can be solved using Newton's method with starting
point in (d,',d,'+1).

LEMMA. If a is an eigenvalue of D + puu”, then (D — o) tu is its
eigenvector. Since D — al is diagonal, this costs O(n) flops to compute.

Algorithms for the Symmetric Eigenproblem

ALGORITHM. Finding eigenvalues and eigenvectors of a symmetric
tridiagonal matrix using divide-and-conquer:
proc dc_eig (T, Q,A) from input T compute

outputs Q and N where T = QAQT

if T is 1-by-1

return Q =1, AN=T
else

form T = 0

-
0 T } + bjvv

call de_eig (T1, Q1,M\1)

call dc_eig (T, Q2,\2)

form D + puu’ from Ay, Mo, Q1, Q2

find eigenvalues \ and eigenvectors Q' of D + puu’

form Q = &G 0 - Q' = eigenvectors of T
0 @
return Q and \

end if

Algorithms for the Symmetric Eigenproblem
Computing the Eigenvectors Stably

@ Lemma below provides formula for the computing of eigenvectors.
LEMMA. If « is an eigenvalue of D + puu”, then (D — al)~tu is its
eigenvector.

@ This formula is not stable in the case when two eigenvalues are

close to each other. Let «j, vjy;1 are close to each other. Then
(D — a;)"tu and (D — a;1) "t are inaccurate and far from

orthogonal.

@ An alternative formula was found which is based on the Léwner's
theorem.

Algorithms for the Symmetric Eigenproblem

THEOREM. (Léwner). Let D = diag(dh, ..., d,) be diagonal with
dp < ...<d;. Let a, < ... < a; be given, satisfying the interlacing
property

dy<ap<- - <dp<a<d<aq<---<d <ag.

Then there is a vector { such that the «; are the exact eigenvalues of
D =D+ ai". The entries of i are given by

n 1/2
l Hj:l,jyéi(dj - di)

Algorithms for the Symmetric Eigenproblem

Proof. The characteristic polynomial of D can be written both as

det(D — A1) =T]7_;(ej — A) and as det(D — A/) = det(D + a3 — M) =

det(D(/ + D=1aaT) — M) = det((D — M)(I + (D — AI)~*aaT)) or

n

n ﬁ2
H(df_)‘) ' 1+;dji)\

Jj=1

17y (e — \) = det(D — \I)

J=

2
= |I@-»| |1+ X o7

=1 | j=1

j#i

n [}2

| I @G-
j=1

Algorithms for the Symmetric Eigenproblem

n n ~D
_ J
= | =] - 1+ZdﬁA
__j:l] j=1
_n T n 012
- |e-»|- 1+ ¥ 3%
=1 J j=1
JFI
+| II d=»]-a
Jj=1
JFI
(2

Note that (1) = (2).

Algorithms for the Symmetric Eigenproblem

Setting A = d; and noting that Hjnzl(dj —d;) =0 for j = j yield

n

[1(ej —di) = a7 H (dj —

Jj=1 j=1

JFi

or .,

02 = 1}:1(0@' —d;)
Hj:l,j;éi(dj - di)
Using the interlacing property, we can show that the fraction on the right

is positive, so we can take its square root to get the desired expression for
.

> 0.

Algorithms for the Symmetric Eigenproblem

Stable divide-and-conquer algorithm

Here is the stable algorithm for computing the eigenvalues and
eigenvectors (where we assume for simplicity of presentation that p = 1).
ALGORITHM. Compute the eigenvalues and eigenvectors of D + uu'.

u2

@ Solve the secular equation 1+ "7 75 = 0 to get the eigenvalues
via Newton's method

a; of D+ uu™ via Newton's method.

@ Use Lowner's theorem to compute & so that the «; are "exact”
eigenvalues of D + 047 .
@ Use following Lemma to compute the eigenvectors of D=D+aa"
reformulated for D = D + 047
Lemma:

If o is an eigenvalue of D + pdd ™, then (D — al)~1i is its
eigenvector.

Algorithms for the Symmetric Eigenproblem

Example of the Matlab’s program: eigenvalues will be on

the diagonal of L, eigenvectors - columns of Q

function [Q,L] = DivideandConq(T)
% Compute size of input matrix T:
[m,n] = size(T);

% here we will divide the matrix
m2 = floor(m/2);

%if m=0 we shall return
if m2 == 0 %1 by 1

Q=1 L=T;

return;

%else we perform recursive computations
else

[T,T1,T2,bm,v] = formT(T,m2);

%recursive computations
[Q1,L1] = DivideandConq(T1);

[Q2,L2] = DivideandConq(T2);

%pick out the last and first columns of the transposes:
QIT = Q1’5

Q2T = Q2°;

u = [Q1T(:,end); Q2T(:,1)];

%Creating the D-matrix:

D = zeros(n);

D(1:m2,1:m2) = L1;
D((m2+1) :end, (m2+1) :end) = L2;

Algorithms for the Symmetric Eigenproblem

% The Q matrix (with Q1 and Q2 on the "diagonals")
Q = zeros(n);

Q(1:m2,1:m2) = Q1;

Q((m2+1) :end, (m2+1) :end) = Q2;

%Creating the matrix B, which determinant is the secular equation:
% det B = f(\lambda)=0
B = D+bm*u*u’;

% Compute eigenvalues as roots of the secular equation
% f(\lambda)=0 using Newton’s method

eigs = NewtonMethod(D,bm,u);

Q3 = zeros(m,n);

% compute eigenvectors for corresponding eigenvalues
for i = 1:length(eigs)

Q3(:,i) = (D-eigs(i)*eye(m))\u;

Q3(:,i) = Q3(:,i)/norm(Q3(:,i));

end

%Compute eigenvectors of the original input matrix T

Q = Q*03;

% Present eigenvalues of the original matrix input T
%(they will be on diagonal)

L = zeros(m,n);

L(1:(m+1):end) = eigs;

return;
end

end

Algorithms for the Symmetric Eigenproblem
Bisection and Inverse Iteration

@ The Bisection algorithm exploits Sylvester's inertia theorem to find
only those k eigenvalues that one wants, at cost O(nk). Recall that
Inertia(A) = (v, (,), where v, ¢ and 7 are the number of
negative, zero, and positive eigenvalues of A, respectively. Suppose
that X is nonsingular; Sylvester's inertia theorem asserts that
Inertia(A) = Inertia(X T AX).

@ Now suppose that one uses Gaussian elimination to factorize
A —zl = LDLT, where L is nonsingular and D diagonal. Then
Inertia(A — zI) = Inertia(D). Since D is diagonal, its inertia is
trivial to compute. (In what follows, we use notation such as
"#d; < 0" to mean "the number of values of dj; that are less than
zero.”)

Algorithms for the Symmetric Eigenproblem

We can write Inertia(A — z/) = Inertia(D) as:

Inertia(A — Z/) (#d,',‘ < 0,#d; =0, #d; > 0)
= (#negative eigenvalues of A — z/,
zero eigenvalues of A — z/,
positive eigenvalues of A — z/)
= (#eigenvaluesof A < z,
eigenvaluesof A = z,

eigenvalues of A > z).

Algorithms for the Symmetric Eigenproblem

The number of eigenvalues in the interval [z, 2,)

@ Suppose z; < z, and we compute Inertia(A — z /) and
Inertia(A — z/).

@ Then the number of eigenvalues in the interval [z1, z) equals (#
eigenvalues of A < zp) — (# eigenvalues of A < z).

@ To make this observation into an algorithm, define

Negcount(A, z) = # eigenvaluesof A < z.

Algorithms for the Symmetric Eigenproblem

Bisection algorithm

ALGORITHM. Bisection: Find all eigenvalues of A inside [a, b) to a given error tolerance tol:
n, = Negcount(A, a)
np = Negcount(A, b)
if ny = np, quit ... because there are no eigenvalues in [a, b)
put [a, na, b, np] onto Worklist
/* Worklist contains a list of intervals [a, b) containing
eigenvalues n — n, through n — np + 1, which the algorithm
will repeatedly bisect until they are narrower than tol. */
while Worklist is not empty do
remove [low, njoy,, up, nyp] from Worklist
if (up — low < tol) then
print "there are nup nlow eigenvalues in [low, up)”
else
mid = (low + up)/2
Nmid = Negcount(A, mid)
if Nmid > Njoy then ... there are eigenvalues in [low, mid)
put [low, njoy, , mid, ny,iq] onto Worklist
end if
if nup > Npiq then ... there are eigenvalues in [mid, up)
put [mid, npiq, up, nyp] onto Worklist
end if
end if
end while

Algorithms for the Symmetric Eigenproblem

From Negcount(A,z) it is easy to compute Gaussian elimination since

ay—z b
bl dy) —Z
A—zl = =LDLT
bn—2 dn—1—Z bn—l
bn—l an — Z
1 di ... 1 A
. h 1 d> 1
B l—1
/n—l 1 dn]_
and
a —Z= dl, (4)
dih = by, (5)
P 1di—1+di = a; — z, (6)
dil; = b;. (7)

Substitute ; = b;/d; into I? ;d;_1 + d; = a; — z to get:

2
bi—l

d,' = (a,-—z) — d~_1,

Algorithms for the Symmetric Eigenproblem

Implementation of Negcount(A,z) in Matlab: it is enough

to compute number of negative eigenvalues, for example

function [neg] = Negcount(A,z)

d=zeros(length(A),1);

d(1)=A(1,1)-z;

for i = 2:length(A)
d(1)=(A(1,1)-2)-(A(1,1i-1)72)/d(i-1);

end

Jicompute number of negative eigenvalues of A

neg=0;

for i = 1:length(4)
if d(i)<0

neg = neg+l;

Algorithms for the Symmetric Eigenproblem

Jacobi’'s Method

Given a symmetric matrix A = Ag, Jacobi's method produces a sequence
A1, Ay, ... of orthogonally similar matrices, which eventually converge to
a diagonal matrix with the eigenvalues on the diagonal. A;;; is obtained
from A; by the formula A;1; = J,-TA,-J,-, where J; is an orthogonal matrix
called a Jacobi rotation. Thus

Am = J,;{,_flAmflJmfl
= J,Z;_l-j,z;_QAmf2Jm72Jm71 =
= JmT_l...JJAOJO...Jm71
= JTAJ

	Algorithms for the Symmetric Eigenproblem

