
Applied Numerical Linear Algebra. Lecture 14

1 / 67

Bisection and Inverse Iteration

The Bisection algorithm exploits Sylvester’s inertia theorem to find
only those k eigenvalues that one wants, at cost O(nk). Recall that
Inertia(A) = (ν, ζ, π), where ν, ζ and π are the number of
negative, zero, and positive eigenvalues of A, respectively. Suppose
that X is nonsingular; Sylvester’s inertia theorem asserts that
Inertia(A) = Inertia(XTAX).

Now suppose that one uses Gaussian elimination to factorize
A− zI = LDLT , where L is nonsingular and D diagonal. Then
Inertia(A− zI) = Inertia(D). Since D is diagonal, its inertia is
trivial to compute. (In what follows, we use notation such as
”#dii < 0” to mean ”the number of values of dii that are less than
zero.”)

2 / 67

We can write Inertia(A− zI) = Inertia(D) as:

Inertia(A− zI) = (#dii < 0,#dii = 0,#dii > 0)
= (#negative eigenvalues of A− zI ,

zero eigenvalues of A− zI ,
#positive eigenvalues of A− zI)

= (# eigenvalues of A < z ,
eigenvalues of A = z ,
eigenvalues of A > z).

3 / 67

The number of eigenvalues in the interval [z1, z2)

Suppose z1 < z2 and we compute Inertia(A− z1I) and
Inertia(A− z2I).

Then the number of eigenvalues in the interval [z1, z2) equals (#
eigenvalues of A < z2) – (# eigenvalues of A < z1).

To make this observation into an algorithm, define

Negcount(A, z) = # eigenvalues of A < z .

4 / 67

Bisection algorithm

ALGORITHM. Bisection: Find all eigenvalues of A inside [a, b) to a given error tolerance tol:
na = Negcount(A, a)
nb = Negcount(A, b)
if na = nb , quit ... because there are no eigenvalues in [a, b)
put [a, na, b, nb] onto Worklist

/∗ Worklist contains a list of intervals [a, b) containing
eigenvalues n − na through n − nb + 1, which the algorithm
will repeatedly bisect until they are narrower than tol. ∗/

while Worklist is not empty do
remove [low, nlow , up, nup] from Worklist
if (up − low < tol) then

print ”there are nup nlow eigenvalues in [low, up)”
else

mid = (low + up)/2
nmid = Negcount(A,mid)
if nmid > nlow then ... there are eigenvalues in [low,mid)

put [low, nlow ,mid, nmid] onto Worklist
end if
if nup > nmid then ... there are eigenvalues in [mid, up)

put [mid, nmid , up, nup] onto Worklist
end if

end if
end while

5 / 67

From Negcount(A,z) it is easy to compute Gaussian elimination since

A− zI =

a1 − z b1
b1 a2 − z
...
... bn−2 an−1 − z bn−1

... ... bn−1 an − z

= LDLT

=

1
l1 1 ...
...
... ln−1 1

·

d1
... d2 ...
...
... .. dn

·

1 l1... ...
.. 1 ...
... ... ln−1

... ... 1

and

a1 − z = d1, (1)

d1l1 = b1, (2)

l2i−1di−1 + di = ai − z , (3)

di li = bi . (4)

Substitute li = bi/di into l2i−1di−1 + di = ai − z to get:

di = (ai − z)− b2i−1

di−1
,

This is the stable procedure since A − zI is tridiagonal matrix. 6 / 67

Implementation of Negcount(A,z) in Matlab

function [neg] = Negcount(A,z)

d=zeros(length(A),1);

d(1)=A(1,1)-z;

for i = 2:length(A)

d(i)=(A(i,i)-z)-(A(i,i-1)2)/d(i − 1);
end

%compute number of negative eigenvalues of A

neg=0;

for i = 1:length(A)

if d(i)<0

neg = neg+1;

end

end

end

7 / 67

Algorithms for the Symmetric Eigenproblem: Jacobi’s
Method

Given a symmetric matrix A = A0, Jacobi’s method produces a sequence
A1, A2, . . . of orthogonally similar matrices, which eventually converge to
a diagonal matrix with the eigenvalues on the diagonal. Ai+1 is obtained
from Ai by the formula Ai+1 = JTi AiJi , where Ji is an orthogonal matrix
called a Jacobi rotation. Thus

Am = JTm−1Am−1Jm−1

= JTm−1J
T
m−2Am−2Jm−2Jm−1 = · · ·

= JTm−1 · · · JT0 A0J0 · · · Jm−1

= JTAJ.

8 / 67

If we choose each Ji appropriately, Am approaches a diagonal matrix Λ
for large m. Thus we can write Λ ≈ JTAJ or JΛJT ≈ A. Therefore, the
columns of J are approximate eigenvectors.
We will make JTAJ nearly diagonal by iteratively choosing Ji to make
one pair of offdiagonal entries of Ai+1 = JTi AiJi zero at a time. We will
do this by choosing Ji to be a Givens rotation,

j k

Ji = R(j , k , θ) ≡
j

k

1
1

. . .

cos θ − sin θ
. . .

sin θ cos θ
. . .

1
1

,

where θ is chosen to zero out the j , k and k , j entries of Ai+1. To
determine θ (or actually cos θ and sin θ),

9 / 67

write

a
(i+1)
jj a

(i+1)
jk

a
(i+1)
kj a

(i+1)
kk

 =

cos θ
︸︷︷︸

c

− sin θ

sin θ
︸︷︷︸

s

cos θ

T

a
(i)
jj a

(i)
jk

a
(i)
kj a

(i)
kk

[
cos θ − sin θ
sin θ cos θ

]

=

[
λ1 0
0 λ2

]

,

where λ1 and λ2 are the eigenvalues of

a
(i)
jj a

(i)
jk

a
(i)
kj a

(i)
kk

 .

10 / 67

It is easy to compute cos θ and sin θ: Multiplying out the last expression,
using symmetry, abbreviating c ≡ cos θ and s ≡ sin θ, and dropping the
superscript (i) for simplicity yield

[
λ1 0
0 λ2

]

=

ajjc
2 + akks

2 + 2scajk sc(akk − ajj) + ajk(c
2 − s2)

︸ ︷︷ ︸

=0

sc(akk − ajj) + ajk(c
2 − s2)

︸ ︷︷ ︸

=0

ajj s
2 + akkc

2 − 2scajk

.

11 / 67

Setting the offdiagonals to 0 and solving for θ we get
0 = sc(akk − ajj) + ajk(c

2 − s2), or

ajj − akk
2ajk

=
c2 − s2

2sc
=

cos 2θ

sin 2θ
= cot 2θ ≡ τ .

We now let t = s
c = tan θ and note that

c2 − s2 = 2scτ, (5)

c2 − s2 − 2scτ = 0. (6)

Dividing both sides by c2 and noting that t = s
c we get:

1− t2 = 2tτ, (7)

−(t2 + 2τ t − 1) = 0. (8)

Thus, we solve t2 + 2τ t − 1 = 0 to get (via the quadratic formula)

t = sign(τ)

|τ |+
√
1+τ 2

, c = 1√
1+τ 2

and s = t · c . We summarize this derivation in

the following algorithm.

12 / 67

ALGORITHM. Compute and apply a Jacobi rotation to A in coordinates
j , k :
proc Jacobi-Rotation (A, j , k)
if |ajk | is not too small

τ = (ajj − akk)/(2 · ajk)
t = sign(τ)/(|τ |+

√
1 + τ 2)

c = 1/
√
1 + τ 2

s = t · c
A = RT (j , k , θ) · A · R(j , k , θ) ... where c = cos θ and s = sin θ
if eigenvectors are desired

J = J · R(j , k , θ)
end if

end if

13 / 67

Jacobi’s method to find the eigenvalues of a symmetric
matrix

The cost of applying R(j , k , θ) to A (or J) is only O(n) flops, because
only rows and columns j and k of A (and columns j and k of J) are
modified. The overall Jacobi algorithm is then as follows.

ALGORITHM. Jacobi’s method to find the eigenvalues of a symmetric
matrix :
repeat

choose aj,k pair
call Jacobi-Rotation(A, j , k)

until A is sufficiently diagonal

14 / 67

We still need to decide how to pick j , k pairs. There are several
possibilities. To measure progress to convergence and describe these
possibilities, we define

off(A) ≡
√

∑

1≤j<k≤n

a2jk .

Thus off(A) is the root-sum-of-squares of the (upper) offdiagonal entries
of A, so A is diagonal if and only if off(A) = 0. Our goal is to make
off(A) approach 0 quickly. The next lemma tells us that off(A) decreases
monotonically with every Jacobi rotation.

15 / 67

LEMMA. Let A′ be the matrix after calling Jacobi-Rotation(A, j , k) for
any j 6= k . Then off2(A′) = off2(A)− a2jk .

The next algorithm was the original version of the algorithm (from Jacobi
in 1846), and it has an attractive analysis although it is too slow to use.

ALGORITHM. Classical Jacobi’s algorithm:

while off(A) > tol (where tol is the stopping criterion set by user)
choose j and k so ajk is the largest off-diagonal entry in magnitude
call Jacobi-Rotation(A, j , k)

end while

16 / 67

THEOREM. After one Jacobi rotation in the classical Jacobi’s algorithm,

we have off(A′) ≤
√

1− 1
N off(A), where N = n(n−1)

2 = the number of

superdiagonal entries of A. After k Jacobi-Rotations off(·) is no more
than (1− 1

N)
k/2 off(A).

So the classical Jacobi’s algorithm converges at least linearly with the

error (measured by off(A)) decreasing by a factor of at least
√

1− 1
N at

a time. In fact, it eventually converges quadratically.

17 / 67

THEOREM. Jacobi’s method is locally quadratically convergent after N
steps (i.e., enough steps to choose each ajk once). This means that for i
large enough

off(Ai+N) = O(off2(Ai)).

In practice, we do not use the classical Jacobi’s algorithm because

searching for the largest entry is too slow: We would need to search n2−n
2

entries for every Jacobi rotation, which costs only O(n) flops to perform,
and so for large n the search time would dominate. Instead, we use the
following simple method to choose j and k .

18 / 67

ALGORITHM. Cyclic-by-row-Jacobi: Sweep through the off diagonals of
A rowwise.

repeat
for j = 1 to n − 1
for k = j + 1 to n
call Jacobi-Rotation (A, j , k)

end for
end for

until A is sufficiently diagonal

A no longer changes when Jacobi-Rotation(A, j , k) chooses only c = 1
and s = 0 for an entire pass through the inner loop. The cyclic Jacobi’s
algorithm is also asymptotically quadratically convergent like the classical
Jacobi’s algorithm [J. H. Wilkinson. The Algebraic Eigenvalue Problem.
Oxford University Press, Oxford, UK, 1965; p. 270].
The cost of one Jacobi ”sweep” (where each j , k pair is selected once) is
approximately half the cost of reduction to tridiagonal form and the
computation of eigenvalues and eigenvectors using QR iteration, and
more than the cost using divide-and-conquer. Since Jacobi’s method
often takes 5-10 sweeps to converge, it is much slower than the
competition.

19 / 67

Algorithms for the Singular Value Decomposition (SVD)

All the algorithms for the eigendecomposition of a symmetric matrix A,
except Jacobi’s method, have the following structure:

1 Reduce A to tridiagonal form T with an orthogonal matrix Q1:
A = Q1TQ

T
1 .

2 Find the eigendecomposition of T : T = Q2ΛQ
T
2 , where Λ is the

diagonal matrix of eigenvalues and Q2 is the orthogonal matrix
whose columns are eigenvectors.

3 Combine these decompositions to get A = (Q1Q2)Λ(Q1Q2)
T . The

columns of Q = Q1Q2 are the eigenvectors of A.

20 / 67

All the algorithms for the SVD of a general matrix G , except Jacobi’s
method, have an analogous structure:

1 Reduce G to bidiagonal form B with orthogonal matrices U1 and
V1: G = U1BV

T
1 . This means B is nonzero only on the main

diagonal and first superdiagonal.

2 Find the SVD of B : B = U2ΣV
T
2 , where Σ is the diagonal matrix

of singular values, and U2 and V2 are orthogonal matrices whose
columns are the left and right singular vectors, respectively.

3 Combine these decompositions to get G = (U1U2)Σ(V1V2)
T . The

columns of U = U1U2 and V = V1V2 are the left and right singular
vectors of G , respectively.

21 / 67

Practical algorithms for computing the SVD

1 QR iteration and its variations (LR iteration). This is the fastest
algorithm for small matrices up to size n = 25 to find all the
singular values of a bidiagonal matrix.

2 Divide-and-conquer. This is the fastest method to find all singular
values and singular vectors for matrices larger than n = 25.
However, it does not guarantee computation of tiny singular values.

3 Bisection and inverse iteration.

4 Jacobi’s method. SVD of a dense matrix G is computed implicitly
applying of Jacobi’s method to GGT or GTG .

22 / 67

QR Iteration and Its Variations : LR iteration

ALGORITHM. LR iteration: Let T0 be any symmetric positive definite
matrix. The following algorithm produces a sequence of similar
symmetric positive definite matrices Ti :
i = 0
repeat

Choose a shift τ 2i smaller than the smallest eigenvalue of Ti .
Compute the Cholesky factorization Ti − τ 2i I = BT

i Bi

(Bi is an upper triangular matrix with positive diagonal.)
Ti+1 = BiB

T
i + τ 2i I

i = i + 1
until convergence

23 / 67

LR iteration versus QR iteration

LR iteration is very similar in structure to QR iteration: We compute a
factorization, and multiply the factors in reverse order to get the next
iterate Ti+1. It is easy to see that Ti+1 and Ti are similar:

Ti+1 = BiB
T
i + τ 2i I = B−T

i BT
i

︸ ︷︷ ︸

I

BiB
T
i + τ 2i B

−T
i BT

i
︸ ︷︷ ︸

I

= B−T
i (BT

i Bi + τ 2i
︸ ︷︷ ︸

Ti

)BT
i = B−T

i TiB
T
i .

(9)

In fact, when the shift τ 2i = 0, we can show that two steps of LR
iteration produce the same T2 as one step of QR iteration. We show that
on the next slide numerically.

24 / 67

LR iteration versus QR iteration

1 1.5 2 2.5 3 3.5 4

Real part of eigenvalues

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Im
a

g
.

p
a

rt
 o

f
e

ig
e

n
v
a

lu
e

s

Nr.it. in LR it.:52

Exact eigenvalues

Computed eigenvalues

1 1.5 2 2.5 3 3.5 4

Real part of eigenvalues

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Im
a

g
.

p
a

rt
 o

f
e

ig
e

n
v
a

lu
e

s

Nr.it. in QR it.:28

Exact eigenvalues

Computed eigenvalues

0 5 10 15 20 25

Real part of eigenvalues

0

1

2

3

4

5

6

7

8

Im
a

g
.

p
a

rt
 o

f
e

ig
e

n
v
a

lu
e

s

Nr.it. in LR it.:527

Exact eigenvalues

Computed eigenvalues

0 5 10 15 20 25

Real part of eigenvalues

0

1

2

3

4

5

6

7

8

Im
a

g
.

p
a

rt
 o

f
e

ig
e

n
v
a

lu
e

s

Nr.it. in QR it.:268

Exact eigenvalues

Computed eigenvalues

25 / 67

Jacobi’s Method for the SVD

ALGORITHM. Compute and apply a one-sided Jacobi rotation to G in
coordinates j , k:
proc One-Sided-Jacobi-Rotation (G , j , k)

Compute ajj = (GTG)jj , ajk = (GTG)jk , and akk = (GTG)kk
if |ajk | is not too small
τ = (ajj − akk)/(2 · ajk)
t = sign(τ)/(|τ |+

√
1 + τ 2)

c = 1/
√
1 + t2

s = c · t
G = G · R(j , k , θ) ... where c = cos θ and s = sin θ
if right singular vectors are desired
J = J · R(j , k , θ)

end if
end if

Note that the jj , jk , and kk entries of A = GTG are computed by
procedure One-Sided-Jacobi-Rotation, after which it computes the Jacobi
rotation R(j , k , θ) in the same way as procedure Jacobi-Rotation.

26 / 67

ALGORITHM. One-sided Jacobi: Assume that G is n-by-n. The outputs
are the singular values σi , the left singular vector matrix U, and the right
singular vector matrix V so that G = UΣV T , where Σ = diag(σi).

repeat
for j = 1 to n − 1

for k = j + 1 to n
call One-Sided-Jacobi-Rotation (G , j , k)

end for
end for

until GTG is diagonal enough
Let σi = ||G (:, i)||2 (the 2-norm of column i of G)
Let U = [u1, . . . , un], where ui = G (:, i)/σi

let V = J, the accumulated product of Jacobi rotations

27 / 67

The following theorem shows that one-sided Jacobi can compute the
SVD to high relative accuracy, despite roundoff, provided that we can
write G = DX , where D is diagonal and X is well-conditioned.
THEOREM. Let G = DX be an n-by-n matrix, where D is diagonal and
nonsingular, and X is nonsingular. Let Ĝ be the matrix after calling
One-Sided-Jacobi-Rotation (G , j , k) m times in floating point arithmetic.
Let σ1 ≥ . . . ≥ σn be the singular values of G , and let σ̂1 ≥ . . . ≥ σ̂n be
the singular values of Ĝ . Then

|σi − σ̂i |
σi

≤ O(mε)κ(X),

where κ(X) = ||X || · ||X−1|| is the condition number of X . In other
words, the relative error in the singular values is small if the condition
number of X is small.

28 / 67

Numerical Solution of Poisson’s Equation (see Lecture 5)

The model problem is the following Dirichlet problem for Poisson’s
equation:

−△u(x) = f (x) in Ω,

u = 0 on ∂Ω.
(10)

Here, f (x) is a given function, u(x) is the unknown function, and the
domain Ω is the unit square Ω = {(x1, x2) ∈ (0, 1)× (0, 1)}. To solve
numerically (10) we first discretize the domain Ω with x1i = ih1 and
x2j = jh2, where h1 = 1/(ni − 1) and h2 = 1/(nj − 1) are the mesh sizes
in the directions x1, x2, respectively, ni and nj are the numbers of
discretization points in the directions x1, x2, respectively. Usually, in
computations we have the same mesh size h = h1 = h2. In this example
we choose ni = nj = n with n = N + 2, where N is the number of inner
nodes in the directions x1, x2, respectively.
Indexes (i , j) are such that 0 < i , j ≤ n and are associated with every
global node nglob of the finite difference mesh. Global nodes numbers
nglob in two-dimensional case can be computed using the following
formula:

nglob = i + nj · (j − 1). (11)
29 / 67

We use the standard finite difference discretization of the Laplace
operator ∆u in two dimensions and obtain discrete laplacian ∆ui,j :

∆ui,j =
ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

h2
, (12)

where ui,j is the solution at the discrete point (i , j). Using (12), we
obtain the following scheme for solving problem (10):

−
(
ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

h2

)

= fi,j , (13)

where fi,j are the value of the function f at the discrete point (i , j).
Then (13) can be rewritten as

− (ui+1,j − 2ui,j + ui−1,j + ui,j+1 − 2ui,j + ui,j−1) = h2fi,j , (14)

or in the more convenient form as

− ui+1,j + 4ui,j − ui−1,j − ui,j+1 − ui,j−1 = h2fi,j . (15)

30 / 67

System (15) can be written in the form Au = b. The vector b has the
components bi,j = h2fi,j . The explicit elements of the matrix A are given
by the following block matrix

A =

AN −IN

−IN
. . .

. . .
. . .

. . . −IN
−IN AN

with blocks AN of order N given by

AN =

4 −1 0 0 · · · 0
−1 4 −1 0 · · · 0
0 −1 4 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 −1 4

,

which are located on the diagonal of the matrix A, and blocks with the
identity matrices −IN of order N on its off-diagonals. The matrix A is
symmetric and positive definite. Therefore, we can use the LU
factorization algorithm without pivoting.

31 / 67

Introduction to Iterative Methods for Solution of Linear
Systems

We will discuss following basic iterative methods:

1. Jacobi.

2. Gauss-Seidel.

3. Successive overrelaxation (SOR).

as well as Krylov subspace methods using conjugate gradient (CG)
algorithm and preconditioning.

32 / 67

Basic Iterative Methods

The basic iterative methods for the solution of system of linear equations
Ax = b
are:

1. Jacobi.

2. Gauss-Seidel.

3. Successive overrelaxation (SOR).

These methods produce a sequence of iterative solutions xm which
converge to the solution x = A−1b provided that there exist initial guess
x0. To use iterative methods we will introduce a splitting: A = M − K ,
where detM 6= 0. Applying this splitting to Ax = b we get:

Ax = Mx − Kx = b.

From the equation above we can get

Mx = b + Kx

and thus
x = M−1(b + Kx) = M−1b +M−1Kx .

33 / 67

Let us define
Rx = M−1Kx , c = M−1b.

The the iterative update for xm can be written as:

xm+1 = Rxm + c , (16)

where m is the number of iteration.

34 / 67

Lemma

Let ‖R‖ = maxx 6=0
‖Rx‖
‖x‖ . If ‖R‖ < 1 then iterations (16) will converge for

all initial guesses x0.

Theorem

Let ‖R‖ = maxx 6=0
‖Rx‖
‖x‖ . If ρ(R) < 1 then iterations (16) will converge

for all initial guesses x0.

Proof.

Subtracting equation for exact solution x = Rx + c from (16) we have:

‖xm+1 − x‖ = ‖R(xm − x)‖ ≤ ‖R‖ · ‖xm − x‖
≤ ‖Rm+1‖ · ‖x0 − x‖ = λm+1

max ‖x0 − x‖.
(17)

Since ρ(R) < 1 then using lemma above we choose a such operator norm
that ‖R‖(R,ε) < 1. Then by lemma 6 iterations (16) will converge for all
initial guesses x0.

35 / 67

In the iterative methods considered below we want to have efficient
splitting A = M − K as possible. Let us introduce following notations: If
A has no zeros on its diagonal we will write the splitting as

A = D − L̃− Ũ = D(I − L− U), (18)

where D is a diagonal matrix, −L̃ is the strictly lower triangular part of A
such that DL = L̃, and −Ũ is the strictly upper triangular part of A such
that DU = Ũ.

36 / 67

Jacobi Method

The splitting for Jacobi method is:

A = D − (L̃+ Ũ). (19)

Applying it to the solution of Ax = b we have:

Ax = Dx − (L̃x + Ũx) = b.

From the equation above we can get

Dx = b + L̃x + Ũx

and thus

x = D−1(b + L̃x + Ũx) = D−1b + D−1L̃x + D−1Ũx .

37 / 67

Let us define

RJ ≡ D−1(L̃+ Ũ) = L+ U,

cJ ≡ D−1b.
(20)

Then iterative update in the Jacobi method can be written as:

xm+1 = RJxm + cJ . (21)

After multiplication by D both sides of (21) and using (20) we get

Dxm+1 = D(RJxm+cJ) = D(D−1(L̃+ Ũ))xm+DD−1b = b+ L̃xm+ Ũxm.
(22)

Using the definition of D on the element level the formula (22) can be
written as

aj,jxm+1,j = bj −
∑

k 6=j

aj,kxm,k (23)

38 / 67

Algorithms: one step in the Jacobi method

for j = 1 to n

xm+1,j =
bj −

∑

k 6=j aj,kxm,k

aj,j

end
In the case of the model problem for the Poisson’s equation on a square
we will have the following Jacobi’s method:

for i = 1 to N
for j = 1 to N

um+1,i,j =
um,i−1,j + um,i+1,j + um,i,j−1 + um,i,j+1 + h2fi,j

4

end
end

39 / 67

Gauss-Seidel Method

To get the Gauss-Seidel method we use the same splitting (19) as for the
Jacobi method. Applying it to the solution of Ax = b we have:

Ax = Dx − (L̃x + Ũx) = b,

we rearrange terms in the right hand side now like that:

Dx − L̃x = b + Ũx (24)

and thus now the solution is computed as

x = (D − L̃)−1(b + Ũx) = (D − L̃)−1b + (D − L̃)−1Ũx .

40 / 67

We can rewrite the above equation using notations DL = L̃ and DU = Ũ
as:

x = (D − L̃)−1b + (D − L̃)−1Ũx

= (D − DL)−1b + (D − DL)−1Ũx

= (I − L)−1D−1b + (I − L)−1D−1Ũx

= (I − L)−1D−1b
︸ ︷︷ ︸

cGS

+(I − L)−1U
︸ ︷︷ ︸

RGS

x .

(25)

Let us define

RGS ≡ (I − L)−1U,

cGS ≡ (I − L)−1D−1b.
(26)

41 / 67

Then iterative update in the Gauss-Seidel method can be written as:

xm+1 = RGSxm + cGS . (27)

Formula (25) in iterative update after multiplication by (I − L)D can be
also written as

(I − L)Dxm+1 = b + DUxm (28)

or

Dxm+1 − LDxm+1 = b + DUxm, (29)

Dxm+1 = b + DUxm + LDxm+1 (30)

or using the definition of D, L,U on the element level as

aj,jxm+1,j = bj −
j−1
∑

k=1

aj,kxm+1,k −
n∑

k=j+1

aj,kxm,k . (31)

Here, terms
∑j−1

k=1 aj,kxm+1,k represent already updated terms with xm+1

which we can use in computations since we have computed them, and
terms

∑n
k=j+1 aj,kxm,k are with older xm which we have updated on the

iteration m.
42 / 67

Algorithm: one step in the Gauss-Seidel method

for j = 1 to n

xm+1,j =
bj −

∑j−1
k=1 aj ,kxm+1,k −

∑n
k=j+1 aj ,kxm,k

aj ,j

end

43 / 67

Gauss-Seidel method for the Poisson’s equation

If we want apply the Gauss-Seidel method for the solution of the model
problem for the Poisson’s equation we need organize ordering for the new
m + 1 variables and old already computed values m. We will use such
called red-black ordering based on the chessboard-like coloring. Let B
nodes correspond to the black squares on a chessboard, and R nodes
correspond to the weight squares. The the the Gauss-Seidel method for
the solution of the two-dimensional Poisson’s equation on a square
becomes the following.

for all R red nodes i , j

um+1,i,j =
um,i−1,j + um,i+1,j + um,i,j−1 + um,i,j+1 + h2fi,j

4

end
for all B black nodes i , j

um+1,i,j =
um+1,i−1,j + um+1,i+1,j + um+1,i,j−1 + um+1,i,j+1 + h2fi,j

4

end

44 / 67

Successive Overrelaxation SOR(ω) Method

The method of successive overrelaxation improves the Gauss-Seidel
method in the following way: it takes weighted average of values xm+1

and xm such that:

xm+1,j = (1− ω)xm,j + ωxm+1,j , (32)

where ω is a weight called also relaxation parameter. When ω = 1, then
we will get usual Gauss-Seidel method, when ω < 1 we get
underrelaxation method, and when ω > 1 - overrelaxation method.
To get SOR(ω) method in a matrix form, we again apply splitting (19)
and obtain equation similar to the equation (24) obtained in
Gauss-Seidel, but only in the iterative form:

(D − L̃)xm+1 = b + Ũxm. (33)

45 / 67

Applying now weighted average (32) to this equation we have:

(D − L̃)((1− ω)xm + ωxm+1) = b + Ũxm,

(D − L̃)(1− ω)xm + (D − L̃)ωxm+1 = b + Ũxm,

(D − L̃)ωxm+1 = b + Ũxm − (D − L̃)(1− ω)xm,

(D − L̃)ωxm+1 = b + Ũxm − D(1− ω)xm + L̃(1− ω)xm.

(34)

From (32) we see that (1− ω)xm = xm+1 − ωxm+1 = (1− ω)xm+1, and
thus the last expression we can write as

(D − L̃)ωxm+1 = b + Ũxm − D(1− ω)xm + L̃(1− ω)xm+1,

(D − L̃)ωxm+1 − L̃(1− ω)xm+1 = b + Ũxm − D(1− ω)xm,

(Dω − L̃)xm+1 = b + Ũxm − D(1− ω)xm
(35)

Denoting ω := 1
ω we get SOR-scheme:

(D − ωL̃)xm+1 = ωb + ((1− ω)D + ωŨ)xm. (36)

46 / 67

Using notations DL = L̃ and DU = Ũ the equation (36) can be rewritten
as

xm+1 = (D − ωL̃)−1ωb + (D − ωL̃)−1((1− ω)D + ωŨ)xm

= (I − ωL)−1D−1ωb + (I − ωL)−1((1− ω)I + ωU)xm.
(37)

Now defining

RSOR = (I − ωL)−1((1− ω)I + ωU),

cSOR = (I − ωL)−1D−1ωb
(38)

we can rewrite (37) in the form

xm+1 = RSORxm + cSOR . (39)

47 / 67

Algorithm: one step in the SOR(ω) method

To get SOR(ω) for implementation, we take xm+1,j in the right hand side
of (32) from the Gauss-Seidel algorithm and obtain the following
algorithm:
One step in the SOR(ω) method

for j = 1 to n

xm+1,j = (1− ω)xm,j + ω

[

bj −
∑j−1

k=1 aj,kxm+1,k −
∑n

k=j+1 aj,kxm,k

aj,j

]

end

48 / 67

Algorithm: SOR(ω) for the solution of the Poisson’s
equation

To apply the SOR(ω) method for the solution of the model problem for
the Poisson’s equation we will use the red-black ordering as in the
Gauss-Seidel method. The SOR(ω) method will be the following.
One step in the SOR(ω) method for two-dimensional Poisson’s equation

for all R red nodes i , j

um+1,i,j = (1−ω)um,i,j+
ω(um,i−1,j + um,i+1,j + um,i,j−1 + um,i,j+1 + h2fi,j)

4

end
for all B black nodes i , j

um+1,i,j = (1− ω)um,i,j

+
ω(um+1,i−1,j + um+1,i+1,j + um+1,i,j−1 + um+1,i,j+1 + h2fi,j)

4
(40)

end

49 / 67

Convergence of SOR(ω)

Theorem

If the matrix A is strictly row diagonally dominant (if |aii | >
∑

i 6=j |aij |),
then Jacobi and Gauss-Seidel methods converge such that

‖RGS‖∞ < ‖RJ‖∞ < 1, (41)

where RGS and RJ are defined in (26), (20), respectively.

Proof follows from following Lemma:

Lemma

Let ‖R‖ = maxx 6=0
‖Rx‖
‖x‖ . If ‖R‖ < 1 then iterations (16) will converge for

all initial guesses x0.

50 / 67

Theorem

Let the spectral radius of RSOR is such that ρ(RSOR) ≥ |ω − 1|. Then
0 < ω < 2 is required for convergence of SOR(ω).

Proof.
We write the characteristic polynomial for RSOR as

ϕ(λ) = det(λI − RSOR) = det(λI − (I − ωL)−1((1− ω)I + ωU))

= det((I − ωL)−1((I − ωL)λI − ((1− ω)I + ωU)))

= det((λ+ ω − 1)I − ωλL− ωU).

(42)

From the equation above we have (since ϕ(0) is an upper triangular
matrix)

ϕ(0) = ±
∏

λi (RSOR) = ± det((ω − 1)I) = ±(ω − 1)n,

and thus
max

i
|λi (RSOR)| ≥ |ω − 1|,

from what follows that ρ(RSOR) ≥ |ω − 1|.
51 / 67

For convergence from Lemma

Lemma

Let ‖R‖ = maxx 6=0
‖Rx‖
‖x‖ . If ‖R‖ < 1 then iterations (16) will converge for

all initial guesses x0.

we should have

ρ(RSOR) < 1

and thus
|ω − 1| < 1

or
−1 < ω − 1 < 1

and
0 < ω < 2.

52 / 67

Theorem

If A is s.p.d matrix then ρ(RSOR) < 1 for all 0 < ω < 2.

Example.
The matrix A in the model problem for the Poisson’s equation is s.p.d..
Thus, SOR(ω) for this problem will converge for all 0 < ω < 2.

53 / 67

Krylov Subspace Methods

Krylov subspace methods are used for the solution of large system of
linear equations Ax = b and for finding eigenvalues of A avoiding
matrix-matrix multiplication. Instead, these methods use multiplication
of matrix by the vector.

Definition

The Krylov subspace generated by matrix A of the size n × n and vector
b of the size n is the linear subspace spanned by powers of A and
multiplied by b:

Kr (A, b) = {b,Ab,A2b, ...,Ar−1b}. (43)

For the symmetric matrix A we can write the decomposition QTAQ = H,
where Q is the orthogonal transformation and H is the upper Hessenberg
matrix which also will be a lower Hessenberg, and thus, tridiagonal
matrix. Writing Q as Q = {q1, ..., qn} and using AQ = QH we have

Aqj =

j+1
∑

i=1

hi,jqi . (44)

54 / 67

We multiply both sides of the above expression by orthonormal vectors
qTm and use the fact that qi are orthonormal to obtain:

qTmAqj =

j+1
∑

i=1

hi,jq
T
mqi = hm,j , 1 ≤ m ≤ j . (45)

We can rewrite (44) as

hj+1,jqj+1 = Aqj −
j

∑

i=1

hi,jqi . (46)

The formula above as well as (45) are used in the Arnoldi algorithm for
the reduction of matrix A to upper Hessenberg form. Let r will be the
number of columns in the matrices Q and H which we need to compute.
We now formulate the Arnoldi algorithm which performs partial reduction
to Hessenberg form. The vectors qj computed in this algorithm are called
Arnoldi vectors.

55 / 67

Arnoldi algorithm

Initialization: q1 =
b

‖b‖2
for j = 1 to r
z = Aqj
for i = 1 to j
hi ,j = qTi z
z = z − hi ,jqi
end
hj+1,j = ‖z‖2
if hj+1,j = 0 quit
qi+1 =

z
hj+1,j

end

56 / 67

For the case of a symmetric matrix A the Arnoldi algorithm can be
simplified since the matrix H is symmetric and tridiagonal what means
that

H =

α1 β1
β1 α2
...
... ... αn−1 βn−1

... ... βn−1 αn

(47)

Rewriting (44) for the case of the symmetric and tridiagonal H given by
(47) we have

Aqj = βj−1qj−1 + αjqj + βjqj+1. (48)

We note that columns of Q are orthonormal and thus

qTj Aqj = qTj (βj−1qj−1 + αjqj + βjqj+1) = αj . (49)

Combining (49) and (48) we get Lanczos algorithm for partial reduction
to symmetric tridiagonal form.

57 / 67

Lanczos algorithm

Initialization: q1 =
b

‖b‖2
, β0 = 0, q0 = 0

for j = 1 to r
z = Aqj
αj = qTj z
z = z − αjqj − βj−1qj−1

βj = ‖z‖2
if βj = 0 quit
qi+1 =

z
βj

end

58 / 67

The vectors qj computed by the algorithm are called Lanczos vectors.
The vectors qr computed in the Lanczos or Arnoldi algorithm create
orthonormal basis of the Krylov subspace Kr defined in (43). The matrix
Hr = QT

r AQr in both algorithms is called the projection of A to the
Krylov subspace Kr .
Our goal now to use r steps in the Lanczos or Arnoldi algorithms to solve
linear system Ax = b. To do that we seek best approximation xr to the
exact solution x = A−1b given by

xr =

r∑

j=1

zjqj = Qrz , (50)

where z = (z1, ..., zr)
T .

59 / 67

Let us define the residual as Rr = b − Axr . For the case of s.p.d. matrix
A we can define the norm ‖R‖A−1 := (RTA−1R)1/2. We note that
‖R‖A−1 = ‖xr − x‖A. Thus, the the best computed solution xr will
minimize ‖R‖A−1 . The algorithm which can compute such vector xr is
called the conjugate gradient (CG) algorithm.

Theorem

Let A is a symmetric matrix, Hr = QT
r AQr and residuals are defined as

Rr = b − Axr∀xr ∈ Kr . When Hr is not singular we can define

xr = QrH
−1
r e1‖b‖2, (51)

where e1 = (1, 0, ..., 0)T . Then QT
r Rr = 0.

Let A is also positive definite matrix. Then Hr must be nonsingular and
xr defined as in (51) minimizes ‖Rr‖A−1 for all xr ∈ Kr , where
Rr = ±‖Rr‖2qr+1.

60 / 67

Conjugate gradient algorithm

Now we introduce conjugate gradients vectors pr . The pr are called
gradients because in a single step of the CG algorithm we compute the
approximated solution as xr = xr−1 + νpr and this solution minimizes the
residual norm ‖Rr‖A−1 = (RT

r A−1Rr)
1/2. The vectors pr are called

conjugate, or more precisely A-conjugate, because pTr Apj = 0 if j 6= r .

61 / 67

Conjugate gradient algorithm

Initialization: r = 0; x0 = 0; R0 = b; p1 = b;
repeat
r = r + 1
z = A · pr
νr = (RT

r−1Rr−1)/(p
T
r z)

xr = xr−1 + νrpr
Rr = Rr−1 − νrz
µr+1 = (RT

r Rr)/(R
T
r−1Rr−1)

pr+1 = Rr + µr+1pr
until ||Rr ||2 is small enough

62 / 67

Preconditioning for Linear Systems

Preconditioning technique is used for the reduction of the condition
number of the considered problem. For the solution of linear system of
equations Ax = b the preconditioner matrix P of a matrix A is a matrix
P−1A such that P−1A has a smaller condition number then the original
matrix A. This means that instead of the solution of a system Ax = b we
will consider solution of the system

P−1Ax = P−1b. (52)

The matrix P should have the following properties:

P is s.p.d. matrix;

P−1A is well conditioned;

The system Px = b should be easy solvable.

The preconditioned conjugate gradient method is derived as follows. First
we multiply both sides of (52) by P1/2 to get

(P−1/2AP−1/2)(P1/2x) = P−1/2b. (53)

63 / 67

We note that the system (53) is s.p.d. since we have chosen the matrix
P such that P = QQT which is the eigendecomposition of P . Then the
matrix P1/2 will be s.p.d. if it is defined as

P1/2 = Q1/2QT .

Defining
Ã := P−1/2AP−1/2, x̃ := P1/2x , b̃ = P−1/2b

we can rewrite (53) as the system Ãx̃ = b̃. Matrices Ã and P−1A are
similar since P−1A = P−1/2ÃP1/2. Thus, Ã and P−1A have the same
eigenvalues. Thus, instead of the solution of P−1Ax = P−1b we will
present preconditioned conjugate gradient (PCG) algorithm for the
solution of Ãx̃ = b̃.

64 / 67

Preconditioned conjugate gradient algorithm

Initialization: r = 0; x0 = 0; R0 = b; p1 = P−1b; y0 = P−1R0

repeat
r = r + 1
z = A · pr
νr = (yT

r−1Rr−1)/(p
T
r z)

xr = xr−1 + νrpr
Rr = Rr−1 − νrz
yr = P−1Rr

µr+1 = (yT
r Rr)/(y

T
r−1Rr−1)

pr+1 = yr + µr+1pr
until ||Rr ||2 is small enough

65 / 67

Common preconditioners

Common preconditioner matrices P are:

Jacobi preconditioner P = (a11, ..., ann). Such choice of the
preconditioner reduces the condition number of P−1A around factor
n of its minimal value.

block Jacobi preconditioner

P =

P1,1 ... 0
...
0 ... Pr ,r

 (54)

with Pi,i = Ai,i , i = 1, ..., r , for the block matrix A given by

A =

A1,1 ... A1,r

...
Ar ,1 ... Ar ,r

 (55)

with square blocks Ai,i , i = 1, ..., r . Such choice of preconditioner P
minimizes the condition number of P−1/2AP−1/2 within a factor of
r .

66 / 67

Method of SSOR can be used as a block preconditioner as well. If
the original matrix A can be split into diagonal, lower and upper
triangular as A = D + L+ LT then the SSOR preconditioner matrix
is defined as

P = (D + L)D−1(D + L)T

It can also be parametrised by ω as follows:

P(ω) =
ω

2− ω

(
1

ω
D + L

)

D−1

(
1

ω
D + L

)T

Incomplete Cholesky factorization with A = LLT is often used for
PCG algorithm. In this case a sparse lower triangular matrix L̃ is
chosen to be close to L. Then the preconditioner is defined as
P = L̃L̃T .

Incomplete LU preconditioner.

67 / 67

