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Course in Numerical Linear Algebra
Organization

@ Course homepage
http://www.math.chalmers.se/Math/Grundutb/CTH/tma265/1920

@ Course coordinator: Larisa Beilina
larisa@chalmers.se, room 2089

@ Registration for the course: contact studieadministrator
Jeanette Montell, jw@chalmers.se

o Course literature: L. Beilina, E. Karchevskii, M.
Karchevskii, Numerical Linear Algebra: Theory and
Applications, Springer, 2017. Book is available at Cremona.
Matlab and C++ programs for examples in this book are
available for download from the course homepage: go to the
link of the book and click to “GitHub Page with MATLAB
Source Codes” on the bottom of this page.
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Course in Numerical Linear Algebra
Schedule

Day Time Place

Mon 13:15-15:00 | Euler Lecture

Thu 10:00-11:45 | Pascal Lecture

Wed 13:15-15:00 | MVF24,MVF25 | Computer Labs
Fr 13:15-15:00 | MVF24,MVF25 | Computer Labs
October | 14.00-18.00 | SB Exam

January | 14.00-18.00 | SB Exam
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Course in Numerical Linear Algebra
Organization

@ To pass this course you should pass the written exam and any
2 from 4 computer assignments, see description of comp.
assignments at the course homepage.

@ Any 2 from 4 compulsory home assignments should be handed
in before the final exam.

@ Programs can be written in Matlab or C++/PETSc.
Comp.ex.4 should be done in PETSc. See PETSc programs for
solution of Laplace equation at “GitHub Page with MATLAB
Source Codes”.

@ The final exam is compulsory, written.

@ The theory questions will be choosen from the list which is
possible download from the course homepage.
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Course in Numerical Linear Algebra

Organization: computer labs

@ To pass this course you should do any 2 computer assignments.
@ You can work in groups by 2 persons.

@ Sent final report for every computer assignment with description of
your work together with Matlab or C++/PETSc programs to my
e-mail before the date for deadline. Report should have description
of used techniques, tables and figures confirming your
investigations. Analysis of obtained results is necessary to present in
section “Numerical examples’ and summarize results in the section
“Conclusion”. You can download latex-template for report from the
course homepage.

@ Matlab and C++ programs for examples in the course book are
available for download from the course homepage: go to the link of
the course book and click to “GitHub Page with MATLAB Source
Codes” on the bottom of this page.
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Deadlines for homeworks and comp. labs

Deadlines for homeworks and comp.ex.:

Homework 1 and comp. ex. 1: 13 September
Homework 2: 20 September

°

°

@ Homework 3 and comp.ex. 2: 4 October
@ Homework 4 and comp.ex. 3: 11 October
°

Comp.ex. 4: 18 October

Comp.ex. can be done in groups by 2 students. Reports for
homeworks and comp.labs (together with programs) should be sent
to my e-mail before the deadline. Hand-written homeworks can be
returned directly to me or putted into the red box which is located
behind my office.
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Bonuspoints will be added to the points obtained at written exam.
Final grades will be the following:

Grades Chalmers | Points
<15
15-20
21-27
> 27
rades GU Points
< 15
15-27
G > 27

< OCoo > w!
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Comp.labs in PETSc

@ Comp.ex.4 should be done in PETSc. PETSc libraries which
are a suite of data structures and routines for the scalable
(parallel) solution of scientific applications.

@ Link to the PETSc documentation:
http://www.mcs.anl.gov/petsc/documentation/

@ Template for solution of system of equations Ax = b using
PETSc is available for download from the course homepage.
Study Example 12.5 of the course book where is presented
solution of the Dirichlet problem for the Poisson’s equation
using PETSc. PETSc programs for solution of this problem
are available download from the course homepage: go to the
link of the course book and click to “GitHub Page with
MATLAB Source Codes”’ on the bottom of this page.
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PETSc: example of Makefile for running at Chalmers

PETSC_ARCH=/chalmers/sw/sup64/petsc-3.10.4c
include ${PETSC_ARCH}/lib/petsc/conf/variables
include ${PETSC_ARCH}/lib/petsc/conf/rules
MPI_INCLUDE = ${PETSC_ARCH}/include/mpiuni
CXX = g++

CXXFLAGS = -Wall -Wextra -g -00 -c -Iinclude
-I${PETSC_ARCH}/include -I${MPI_INCLUDE}

LD = g++

LFLAGS =

OBJECTS = cplxmaxwell.o

RUNMAXWELL = runmaxwell

all: $(RUNMAXWELL)

%h.o: %h.cpp

$(CXX) $(CXXFLAGS) -o $Q $<

$ (RUNMAXWELL) : $(0OBJECTS)

$(LD) $(LFLAGS) $(OBJECTS) $(PETSC_LIB) -o $@
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Course in Numerical Linear Algebra

Organization: Master's works

@ Check the course homepage for news.
@ Some available Master's works in applied mathematics:

@ 1) Efficient implementation of Helmholtz equation with
applications in medical imaging (connection with Comp.Lab.4).

@ 2) Parameter identification for a mathematical model
describing tumour-macrophages interactions

@ 3) Determination of parameters in kinetic modelling in
positron emission tomography (PET).
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Efficient implementation of Helmholtz equation with

applications in medical imaging
Master's works

In this project we will consider the finite element method (FEM) for the
solution of Helmholtz equation

AE 4+ w?pe, E = iwp,J,
lim E (x,w) = 0. 1)

|x|—00

in two and three dimensions.

Solution should be implemented and tested on different real-life models
in C++/PETSc in the existing software package WavES (waves24.com).
The main goal of the project is efficient implementation of Helmholtz
equation (1) using finite element method, and testing of the obtained
solver in the already existed software package WavES. Visualization of
the obtaind results will be done in Paraview/GID. It is expected that
application of the obtained software will be for fast detection of
small-size tumors using microwave imaging.

Comp.ex.4 can be used in this Master's work.
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Parameter identification for a mathematical model

describing tumour-macrophages interactions
Master's works

The goal of this Master project is development of the optimization
method for the solution of a parameter identification problem (PIP) for
system of ordinary differential equations (ODE) which describes dynamics
of the anti-tumour/pro-tumour immune responses generated by M1 and
M2 macrophages. Their dynamics is described by the following
equations:

dXT

dt
dxm

dt

dxpz XMLt Xm2 + XM2
dr a2 XTXM?2

X
= rXT( - Bl) — dm1 X1 XT + dm2Xp2XT, (2a)

_ Xm + XMm2 )

= A XTXM1 — O Xm1 — kiaxpixT (2b)

— OmaXm2 + kioxmixT (2¢)
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@ Equation (2a) describes the dynamics of tumour cells under the
assumption of a logistic growth at rate r up to a carrying capacity
Bt (to account for the slow-down in tumour proliferation at large
sizes). Tumour cells can be eliminated by the M1 macrophages at a
rate d,1. Moreover, the M2 cells can promote melanoma growth by
enhancing the proliferation of tumour cells, at a rate d».

@ Equation(2b) describes the dynamics of M1 macrophages that are
activated and recruited to tumour site at an average rage a;;. The
carrying capacity for the macrophages population is ;. These cells
have a half-life of 1/6,,1. The M1 macrophages re-polarise, at a
rate kyo, towards an M2 phenotype during tumour progression.

@ Equation (2c) describes the dynamics of M2 macrophages that are
activated and proliferate in tumour tissue at an average rate a;».
These macrophages have the same carrying capacity as the M2
cells, and a half-life of 1/§,5.
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Parameter identification for a mathematical model

describing tumour-macrophages interactions
Master's works

To determine the vector function
a(t) = (dm, (1), dm, (), 3t (1), 3, (1), k12(t)) in PIP we introdice the
Tikhonov functional

3 T T
= [ (a(t) — &)z (t) dt+ 71 0 )3dt
z e

i=1

l\)\n—-

0

;
1 1
437 [ (dnn(0) = % Vi + 570 / (2u(0) - 25 Vet
0
.

:
1 1
43 (e = )t + 3 [ (hualt) - ko
0 0

(3)
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Determination of parameters in kinetic modelling in positron

emission tomography (PET)

Master's works

The goal of this Master project is development of the optimization
method for the solution of a parameter identification problem arising in
PET for system of ODE which presents the kinetic model for
measurement of glucose transport and phosphorylation rate. We will use
such-called three-compartment model

ag;t) = K1 Go(t) — (ko + k3) Co(t) + ks Ga(2),
8%1?) = ks Gu(t) — ka Co(t),

C1(0) = C107 CQ(O) = CQQ.

This mathematical model is taken from link below. The goal of the
Master's project is to develop new algorithms for determination of
different coefficients ks, k3 using measurements of Cy(t), Co(t).
Reconstruction algorithms should be formulated and numerically tested.
http://www.turkupetcentre.net/petanalysis/model _compartmental.html
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Course in Numerical Linear Algebra
Purpose of the course

@ Solve Linear systems of equations using Gaussian elimination
with different pivoting strategies and blocking algorithms
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Course in Numerical Linear Algebra
Purpose of the course

@ Solve Linear systems of equations using Gaussian elimination
with different pivoting strategies and blocking algorithms

@ Study and use QR decomposition and SVD decomposition
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Course in Numerical Linear Algebra
Purpose of the course
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@ Solve eigenvalue problems based on transformation techniques
for symmetric and non-symmetric matrices
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Course in Numerical Linear Algebra
Purpose of the course

@ Solve Linear systems of equations using Gaussian elimination
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@ Solve eigenvalue problems based on transformation techniques
for symmetric and non-symmetric matrices

@ Use computer algorithms, programs and software packages
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Course in Numerical Linear Algebra
Purpose of the course

@ Solve Linear systems of equations using Gaussian elimination
with different pivoting strategies and blocking algorithms

@ Study and use QR decomposition and SVD decomposition

@ Solve eigenvalue problems based on transformation techniques
for symmetric and non-symmetric matrices

@ Use computer algorithms, programs and software packages
(MATLAB, C++/PETSc)

@ Solve real physical problems by modelling these problems via
NLA
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Course in Numerical Linear Algebra

Lecture 1: main notions from linear algebra

@ A linear system is a mathematical model of a system which uses
definition of a linear operator. Linear systems have important
applications in automatic control theory, signal processing, and
telecommunications. For example, the propagation medium for
wireless communication systems can often be modeled by linear
systems.

@ A general deterministic system can be described by operator, H,
that maps an input, x(t), as a function of t to an output, y(t), a
type of black box description. Linear systems satisfy the properties
of superposition and scaling or homogeneity. Given two valid inputs
x1(t), x2(t) as well as their respective outputs

yi(t) = H{xu(t)}; y2(t) = H {x2(1)}
a linear system must satisfy to the equation

ay1(t) + Bya(t) = H {axi(t) + Bxe(t)}
for any scalar values of « and 3.
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Example of application of linear systems: image compression

using SVD

Definition SVD Let A be an arbitrary m-by-n matrix with m > n. Then
we can write A= ULV, where U is m-by-n and satisfies UTU = I, V
is n-by-n and satisfies VTV = I, and ¥ = diag(o1,...,0,), where

01> -->0,>0. The columns uy,...,u, of U are called left singular
vectors. The columns vy, ..., v, of V are called right singular vectors.
The o; are called singular values. (If m < n, the SVD is defined by
considering AT .)

Theorem

Write V = [u1,v2,...,v,] and U = [u, ua, ..., up), so

A=UZVT =37  ojuv] (a sum of rank-1 matrices). Then a matrix
of rank k < n closest to A (measured with || - ||2 is Ax = Z,’f:l oiuv]

and ||A — Axlla = k1. We may also write Ay = UL, VT where
Zk :diag(al,...,ak,O,...,O).
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Example of application of linear systems: image compression
using SVD

a) Original image b) Rank k=20 approximation
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Example of application of linear systems: image compression

using SVD in Matlab

See path for other pictures:
/matlab-2012b/toolbox/matlab/demos
load clown.mat;

Size(X) = m x n = 320 x 200 pixels.
[U,S,V] = svd(X);

colormap(map);

k=20;
image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)");
Now: size(U)= m x k, size(V)= n x k.
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Example of application of linear systems: image compression
using SVD in Matlab

a) Original image b) Rank k=10 approximation
’ M e

c) Rank k=20 approximation d) Rank k=50 approximation
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Example of application of linear systems: image compression

using SVD for arbitrary image

To get image on the previous slide, | took picture in jpg-format and
loaded it in matlab like that:

A = imread('autumn jpg’);

You can not simply apply SVD to A: svd(A) Undefined function
'svd’ for input arguments of type 'uint8’.

Apply type "double” to A: DA = double(A), and then perform
[U,S,V] = svd(DA);

colormap('gray’);

k=20;

image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)");

Now: size(U)= m x k, size(V)= n x k.
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Example of application of linear systems: image deblurring

Original Image Blurred Image

Figure: left: exact matrix X, right: approximated matrix B
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The blurring model

Consider a grayscale image

@ X: m X n matrix representing the exact image

@ B: m x n matrix representing the blurred image
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The blurring model

Consider a grayscale image

@ X: m X n matrix representing the exact image

@ B: m x n matrix representing the blurred image

Assume linear blurring.

X1 bl
x=vec(X)=| : | eRN, b=vec(B)=| : | eRN

Xn, b,
A N x N matrix, with N =m-n

Ax=Db

Knowing X and A it is straightforward to compute the blurred
image.
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Motion blur

Motion Blurred Image PSF
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Qut-of-focus blur

Blurred Image PSF
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Gaussian blur

Gaussian Blurred Image PSF

2 4 6 8 10 12
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Image deblurring: solution of an inverse problem

Let H be the Hilbert space H! and let Q C R™, m = 2,3, be a convex
bounded domain. Our goal is to solve a Fredholm integral equation of
the first kind for x € Q

| Kx =z = ut). @
where u(y) € L>(Q), z(x) € H, K(x — y) € C*(Q) , k > 0 be the kernel

of the integral equation.
Let us rewrite (4) in an operator form as

Alz)=u (5)

with an operator A : H — L(2) defined as

/Q K(x x)dx. (6)
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lll-posed problem.

Let the function z(x) € H! of the equation (4) be unknown in the
domain €. Determine the function z(x) for x € Q assuming the functions
K(x—y) e C*(Q),k>0and u(x) € L2(R) in (4) are known.

Let 6 > 0 be the error in the right-hand side of the equation (4):

A(Z) =0, lu= ) <6 (7)

where u* is the exact right-hand side corresponding to the exact solution
z".

To find the approximate solution of the equation (4) we minimize the
functional

2
M. (z) = ||Az - UHLZ(Q)+aIIZHi,1(Q), (8)
M, : H' - R,

where a = « (§) > 0 is the small regularization parameter.
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We consider now more general form of the Tikhonov functional (8). Let
Wi, Wa, Q be three Hilbert spaces, @ C W; as a set, the norm in Q is
stronger than the norm in Wy and Q@ = W, where the closure is
understood in the norm of W;. We denote scalar products and norms in
these spaces as

('7 ) ) ”H for Wi,

()25 [l for W2
and [-,-],[] for Q.

Let A: Wy — W5 be a bounded linear operator. Our goal is to find the
function z(x) € Q which minimizes the Tikhonov functional

E.(2): Q- R, 9)
1 2« 2
Ea(z)ZEHAz—uHZ—i—E[z—zo] ,ueWs z o€ Q, (10)

where a € (0,1) is the regularization parameter. To do that we search
for a stationary point of the above functional with respect to z satisfying
Vbe Q

E!(z)(b) = 0. (11)
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The following lemma is well known for the case W = W, = L.
Lemma 1. Let A: L, — L, be a bounded linear operator. Then the
Fréchet derivative of the functional (8) is

El (z)(b) = (A"Az — A*u,b) + o[z — 29, b] ,Vb € Q. (12)

In particular, for the integral operator (4) we have

E;(2) ()= [ b(s) [ [z ( / K(x—y)K(x—s)dx) dy
(13)

Q Q

Q
f/K(st)u(x) dx|ds
Q

+az — z,b],Vb € Q.
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Lemma 2 is also well known, since A: W) — W5 is a bounded linear
operator. We formulate this lemma only for our specific case.

Lemma 2. Let the operator A : Wy — W, satisfies conditions of Lemma
1. Then the functional E,, (z) is strongly convex on the space Q with the
convexity parameter k such that

(E! (x) — EL(2),x — z) > K[x — z]},Vx,z € Q. (14)
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Similarly, the functional M, (z) is also strongly convex on the
Sobolev space Hs:

(M; (x)— M. (z),x — Z)H1 > kl|x — ZH%_Il,VX,Z € Hi, (15)

Find z via any gradient-like method. For example, perform usual
gradient update

2 = k4 BE! <zk) (b). (16)

k+1 _

until ||z z¥|| converges.
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a)

Figure: a) Image of the defect in the planar chip. b) result of
reconstruction with bounded total variation functions. Source: [1].

[1] Koshev N.A., Orlikovsky N.A., Rau E.l., Yagola A.G. Solution of the inverse problem of restoring the
signals from an electronic microscope in the backscattered electron mode on the class of bounded

variation functions, Numerical Methods and Programming, 2011, V.11, pp. 362-367 (in Russian).
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Image deblurring: an adaptive refinement, example

a) 7938 elements b) z;, 11270 elements ) z, 15916 elements

d) z3, 24262 elements e) z4, 40358 elements f) zs5, 72292 elements
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Image deblurring: an adaptive refinement, example

g) 7938 elements h) 11270 elements i) 15916 elements

j) 24262 elements k) 40358 elements ) 72292 elements

FIgU €. Reconstruction from the experimental backscattering data obtained by the microtomograph
[KB].
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Course in Numerical Linear Algebra

Lecture 1: main notions from linear algebra

Notions from linear algebra

@ Matrices (ldentity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )
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Course in Numerical Linear Algebra

Lecture 1: main notions from linear algebra

Notions from linear algebra

@ Matrices (ldentity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )

@ Matrix operations, inverse, transposition, scalar (inner)
product, outer product
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Course in Numerical Linear Algebra

Lecture 1: main notions from linear algebra

Notions from linear algebra

@ Matrices (ldentity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )

@ Matrix operations, inverse, transposition, scalar (inner)
product, outer product

@ Gaussian elimination
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Course in Numerical Linear Algebra

Lecture 1: main notions from linear algebra

Notions from linear algebra

@ Matrices (ldentity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )

@ Matrix operations, inverse, transposition, scalar (inner)
product, outer product

@ Gaussian elimination

o Eigenvalues
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Course in Numerical Linear Algebra

Lecture 1: main notions from linear algebra

Notions from linear algebra

@ Matrices (ldentity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )

@ Matrix operations, inverse, transposition, scalar (inner)
product, outer product

@ Gaussian elimination
o Eigenvalues

@ Norms
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Course in Numerical Linear Algebra

Lecture 1: main notions from linear algebra

Notions from linear algebra

@ Matrices (ldentity matrix, triangular, singular, symmetric,
positive definite, conjugate transpose, rank, norm )

@ Matrix operations, inverse, transposition, scalar (inner)
product, outer product

Gaussian elimination
Eigenvalues

Norms

LU-factorization, pivoting, row echelon form
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|dentity matrix

The identity matrix or unit matrix of size n is the n x n square
matrix with ones on the main diagonal and zeros elsewhere. It is
denoted by /,, or simply by /.

10 ---0
1 0 01 .---0
o0 --- 1
When A has size m x n, it is a property of matrix multiplication that

InA=Al,=A.

Using the notation that is sometimes used to concisely describe
diagonal matrices, we can write:

I, = diag(1,1,...,1).

It can also be written using the Kronecker delta notation:

(In)ij = 6ij-
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Triangular matrix

@ A square matrix is called lower triangular if all the entries above the
main diagonal are zero.

11’1 0
hi hpo

L=1hk1 ko
In,l In,2 oo /n,nfl In,n

@ A square matrix is called upper triangular if all the entries below the
main diagonal are zero.

uii1 U2 U3 ... uy.n
uz 2 usz ... uz n
U=
Up—1,n
0 Up n

s
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Triangular matrix

@ A triangular matrix is one that is either lower triangular or upper
triangular.

@ A matrix that is both upper and lower triangular is a diagonal

matrix.
di1 0 0
0 do 0
Dn - .
O 0 dn n
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Singular matrix

A square matrix that does not have a matrix inverse. A matrix is singular
if its determinant is 0. For example, there are 10 2 x 2 singular
(0, 1)-matrices:
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Symmetric and positive definite matrix

@ A symmetric matrix is a square matrix that is equal to its transpose.
Let A be a symmetric matrix. Then:

A=AT.

If the entries of matrix A are written as A = (a;;), then the
symmetric matrix A is such that a; = aj;.

@ An n x n real matrix M is positive definite if z7 Mz > 0 for all
non-zero vectors z with real entries (z € R"), where z' denotes the
transpose of z.

@ An n x n Hermitian matrix M is positive definite if z* Mz is real and
positive for all non-zero complex vectors z, where z* denotes the
conjugate transpose of z.
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@ The following matrix is symmetric:

1 7 3
7 4 =5
3 -5 6

@ Every diagonal matrix is symmetric, since all off-diagonal entries are
zero.
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@ The nonnegative matrix

is positive definite.

For a vector with entries

the quadratic form is

10
[zo zl] {O 1} t(l)] = [20-1—1-21 -0 zo-O—i-zl-l] [Z)] 2202+212;

when the entries z0, z1 are real and at least one of them nonzero,
this is positive.
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A matrix in which some elements are negative may still be
positive-definite. An example is given by

It is positive definite since for any non-zero vector
X1

X3

we have
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2 -1 0 X1
xTMyx = [Xl X X3] -1 2 -1| [x
0 -1 2 X3

X1

= [(2X1 — X2) (—X1 + 2x0 — X3) (—X2 + 2X3)} X

X3

= 2X12 — 2x1X0 + 2X22 — 2x0x3 + 2X32

= x>+ (x1 — X2)2 + (x2 — X3)2 + x3°

which is a sum of squares and therefore nonnegative; in fact, each
squared summa can be zero only when x; = xo = x3 =0, so My is
indeed positive-definite.
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Conjugate transpose matrix

The conjugate transpose, Hermitian transpose, Hermitian conjugate, or

adjoint matrix of an m-by-n matrix A with complex entries is the n-by-m
matrix A* obtained from A by taking the transpose and then taking the
complex conjugate of each entry (i.e., negating their imaginary parts but
not their real parts). The conjugate transpose is formally defined by

(A); = B

where the subscripts denote the i, j-th entry, and the overbar denotes a
scalar complex conjugate. (The complex conjugate of a + bi, where a
and b are reals, is a — bi.)

This definition can also be written as

A* = (A)T = AT

where AT denotes the transpose and A, denotes the matrix with complex
conjugated entries.
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The conjugate transpose of a matrix A can be denoted by any of these

symbols:
A* or Al
commonly used in linear algebra.
Example
If
_|3+i 5 —2i
A= 2—-2i | —7-13j
then
3—i 242
A= 5 —i
2i —7+13i
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Basic remarks

@ A square matrix A with entries aj; is called Hermitian or self-adjoint
if A= A* e, a; =73j.

normal if A*A = AA*.

(]

unitary if A* = A~ a unitary matrix is a (square) n x n complex
matrix A satisfying the condition A*A = AA* = I,, where I, is the
identity matrix in n dimensions.

@ Even if A is not square, the two matrices A*A and AA* are both
Hermitian and in fact positive semi-definite matrices.

Finding the conjugate transpose of a matrix A with real entries
reduces to finding the transpose of A, as the conjugate of a real
number is the number itself.
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Row echelon form

In linear algebra a matrix is in row echelon form if

@ All nonzero rows (rows with at least one nonzero element) are
above any rows of all zeroes [All zero rows, if any, belong at the
bottom of the matrix]

® The leading coefficient (the first nonzero number from the left, also
called the pivot) of a nonzero row is always strictly to the right of
the leading coefficient of the row above it.

@ All entries in a column below a leading entry are zeroes (implied by
the first two criteria).

This is an example of 3 x 4 matrix in row echelon form:

1 a1 an as
0 2 da ds
0 0 —-1]ae
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Row echelon form

A matrix is in reduced row echelon form (also called row canonical form)
if it satisfies the additional condition: Every leading coefficient is 1 and is
the only nonzero entry in its column, like in this example:

by
2
3

(on

1 00
010
0 01

o

Note that this does not always mean that the left of the matrix will be an
identity matrix. For example, the following matrix is also in reduced
row-echelon form:

10 1/2 0]k
0 1 —1/3 0| b
00 0 1|bs
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@ Column rank of a matrix A is the maximum number of linearly
independent column vectors of A. The row rank of a matrix A is the
maximum number of linearly independent row vectors of A.
Equivalently, the column rank of A is the dimension of the column
space of A, while the row rank of A is the dimension of the row
space of A.

@ A result of fundamental importance in linear algebra is that the
column rank and the row rank are always equal. It is commonly
denoted by either rk(A) or rank A. Since the column vectors of A
are the row vectors of the transpose of A (denoted here by AT),
column rank of A equals row rank of A is equivalent to saying that
the rank of a matrix is equal to the rank of its transpose, i.e.
rk(A) = rk(AT).

@ The rank of an m X n matrix cannot be greater than m nor n. A
matrix that has a rank as large as possible is said to have full rank;
otherwise, the matrix is rank deficient.
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In linear algebra, the cofactor (sometimes called adjunct, see below)
describes a particular construction that is useful for calculating both the
determinant and inverse of square matrices. Specifically the cofactor of
the (i, /) entry of a matrix, also known as the (/,) cofactor of that
matrix, is the signed minor of that entry.

Informal approach to minors and cofactors

Finding the minors of a matrix A is a multi-step process:

@ Choose an entry a;; from the matrix.

@ Cross out the entries that lie in the corresponding row i and column
J.
@ Rewrite the matrix without the marked entries.

@ Obtain the determinant Mj; of this new matrix.

If i+ j is an even number, the cofactor Cj; of aj; coincides with its minor:
Cj = M;.
Otherwise, it is equal to the additive inverse of its minor: Cj = —M;.
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Formal definition of cofactor

If Ais a square matrix, then the minor of its entry aj;, also known
as the (7, ) minor of A, is denoted by Mj; and is defined to be the
determinant of the submatrix obtained by removing from A its i-th
row and j-th column.

It follows:C; = (—1)""/Mj; and Cj is called the cofactor of aj;.
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Given the matrix

bi1 bi> b1z
B = |bx by b
b31 b3z b33

suppose we wish to find the cofactor Co3. The minor M3 is the
determinant of the above matrix with row 2 and column 3 removed.

bi1 b O bi« b
My =0 0O 0O yields My = 1 m12) bi1b32 — b31b12
b1 b3
bs1 b3 O

Using the given definition it follows that

Coz = (—1)*"3(Ma3)
Coz = (—1)°(b11b32 — b31b12)
(o3 = bz1 b1 — bi1b3y.
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Application of cofactors: computation of matrix inversion

Writing the transpose of the matrix of cofactors, known as an adjugate
matrix, can also be an efficient way to calculate the inverse of small
matrices, but this recursive method is inefficient for large matrices. To
determine the inverse, we calculate a matrix of cofactors:

Cu Cn - Cu

_ 1 1 1 C Cxn -+ Cp
YRR Y

Cln C2n e Cnn

where |A| is the determinant of A, Cj; is the matrix of cofactors, and C"
represents the matrix transpose.
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Example: inversion of 2 x 2 matrices

The cofactor equation listed above yields the following result for
2 x 2 matrices. Inversion of these matrices can be done easily as
follows:

A_l_ab_l_ 1 d —b] 1 d —b
“le d| " det(A) |-c¢ a| ad—bc|-c a]’
This is possible because 1/(ad — bc) is the reciprocal of the

determinant of the matrix in question, and the same strategy could
be used for other matrix sizes.
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Example: inversion of 3 X 3 matrices

A computationally efficient 3 x 3 matrix inversion is given by

-1 T

a b c 1 A B C 1 A D G
Al=|d e f = D E F| = B E H
g h k det(A) |6 5 k| A ¢ F Kk

where the determinant of A can be computed by applying the rule
of Sarrus as follows:

det(A) = a(ek — fh) — b(kd — fg) + c(dh — eg).

If the determinant is non-zero, the matrix is invertible, with the
elements of the above matrix on the right side given by

A= (ek—fh) D= (ch—bk) G = (bf—ce)
B=(fg—dk) E=(ak—cg) H=(cd— af)
C=(dh—eg) F=(gb—ah) K = (ae— bd).
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