Numerical Linear Algebra Lecture 2

NLA notions

- IEEE system and floating-point numbers
- Stability of polynomial evaluation
- Comp. ex.1

IEEE floating-point representation

IEEE 754 (Institute of Electrical and Electronics Engineers, Inc.) defines single and double precision standards (as well as other standards).

- During 60 and 70-ies every computer factory produced their own floating point system - not convenient, a lot of trubles.
- The floating-point standard was developed during 80-ties and was used by big IT-factories like Intel and Motorola.
- IEEE standard has 3 important requirements: consistent floating point representation, correct round-off arithmetics, consistent management of exception situations.

Floating-point representation

• IEEE single precision: sign ("+" 0, "-" 1) 1 bit, exponent 8 bits, mantissa 23 bits = all together = 32 bits:

$$\underbrace{\pm}_{1} \underbrace{e_{1} e_{2} ... e_{8}}_{exponent8} \underbrace{d_{0} d_{1} ... d_{22}}_{mantissa23}$$

• IEEE dubbel precision: sign ("+" 0, "-" 1) 1 bit, exponent 11 bits, mantissa 52 bits = all together = 64 bits:

$$\underbrace{\pm}_{1} \underbrace{e_{1}e_{2}...e_{11}}_{exponent11} \underbrace{d_{0}d_{1}...d_{51}}_{mantissa52}$$

The positive number is normalized if $d_0 \neq 0$.

If $\beta=2$ then always $d_0=1$ and because of that d_0 is not stored. There exists speciall bitformat for different exceptional situations for example:

$$[0, -0]$$

Floating-point numbers: normalized numbers

In base b a normalized number has the form

$$\pm d_0.d_1d_2d_3....\times b^n$$

Here, $d_0 \neq 0$, $d_0, d_1, ...$ are integers between 0 and b-1.

Example

210.432 in normalized form is:

$$2.10432 \times 10^{2}$$

-0.00532101 in normalized form is:

$$-5.32101 \times 10^{-3}$$

Any non-zero real number can be normalized.

Floating-point numbers

We can represent a floating-point number as:

$$x = \pm \left(d_0 + \frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \dots + \frac{d_{p-1}}{\beta^{p-1}} \right) \beta^e,$$

where

$$0 \le d_k \le \beta - 1, L \le e \le U,$$

Here we have:

- \bullet β is base
- e exponent
- p precision
- [L, U] is exponent range
- $d_k, k = 0, ..., p 1$ mantissa (integer)

Most of computers now use binary ($\beta = 2$) arithmetics.

base	р	L	U	
2	24	-126	127	32 bit
2	53	-1022	1023	64 bit

bas	р	L	U	
2	24	-126	127	32 bits
2	53	-1022	1023	64 bits

- The smallest representive normalised number is $2^L \approx 1.17 \cdot 10^{-38}$ in single (see table, L=-126) and $\approx 2.2 \cdot 10^{-308}$ in double precision (see table, L=-1022).
- The largest representative number has largest exponent and ones in the whole mantissa. In single precision $\approx 3.4 \cdot 10^{38}$, in double precision $\approx 1.8 \cdot 10^{308}$.
- The number which is largest than the largest representative number gives overflow and smallest than smallest positive representative normalised number gives underflow.
- Underflow Level: $UFL = \beta^L$, Overflow Level: $OFL = \beta^{U+1}(1-\beta^{-t})$. In single precision OFL computes as: $OFL = (2^{128}) \cdot (1-(2^{-24})) \approx 3.4 \cdot 10^{38}$, in double OFL computes as: $OFL = (2^{1024}) \cdot (1-(2^{-53})) \approx 1.8 \cdot 10^{308}$.
- Example: Matlab program floatgui.m. Floating-point system: $\beta = 2, p = 3, L = -1, U = 1$. Number of floating point numbers: $2(\beta 1)\beta^{t-1}(U L + 1) + 1 = 25$.

bas	р	L	U	
2	24	-126	127	32 bits
2	53	-1022	1023	64 bits

Quantity of different numbers counts as:

$$2(\beta-1)\beta^{p-1}(U-L+1)+1$$

and is

- 4.2614 · 10⁹ for single precision: $\beta = 2, L = -126, U = 127, p = 24$ in $2(\beta 1)\beta^{p-1}(U L + 1) + 1$.
- 1.8429 · 10^{19} for double precision : $\beta=2, L=-1022, U=1023, p=53$ in $2(\beta-1)\beta^{p-1}(U-L+1)+1$.

Matlab's program

shows structure of floating point numbers. In this program, the set of positive model floating point numbers is determined by three parameters:

It is the set of rational numbers of the form

$$x = (1+f)*2^e$$

where

$$f = (integer)/2^t$$
, $0 \le f \le 1$, $e = integer$, $emin \le e \le emax$.

In Matlab:

- $1e 200^2 = 10^{-200^2}$ gives underflow, answer 0.
- 1e200² gives overflow, answer infinity.
- log(0), answer -infinity
- sin(1/0), answer NaN (not a number)
- \bullet exp(log(10000)) log(exp(10000))?

Answer: $\exp(\log(10000)) = 10000$, $\exp(10000) = Inf$ and $\log(\exp(10000)) = Inf$ and $\exp(\log(10000)) - \log(\exp(10000)) = -Inf$

• $\exp(\log(10)) - \log(\exp(10))$? Answer : $\exp(\log(10)) = 10$, $\log(\exp(10)) = 10$ and $\exp(\log(10000)) - \log(\exp(10000)) = 0$.

Presentation of number in floating-point arithmetics in computer

We have following IEEE-format for numbers:

$$x = \pm \left(d_0 + \frac{d_1}{\beta} + \frac{d_2}{\beta^2} + ... + \frac{d_{p-1}}{\beta^{t-1}} \right) \beta^e,$$

Example

$$-3.25: -[1.625] \cdot 2^{1} = -\underbrace{[1+0.625]}_{martissa} \cdot 2^{1}$$

Exponent e=1 represents as : $1+1023=1024=2^{10}$. Mantissa: 1 is not presented.

$$0.625 = \frac{1}{2}x_1 + \frac{1}{4}x_2 + \frac{1}{8}x_3 + \frac{1}{16}x_4 + \dots = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 0 + \frac{1}{8} \cdot 1 + \dots$$

$$\frac{1}{2} = 0.5 < 0.625; \quad \frac{1}{4} = 0.25 : 0.625 - 0.5 = 0.125; 0.25 > 0.125, \text{ because } \frac{1}{4} \cdot 0, \ \frac{1}{8} = 0.125 = 0.125$$
 and because $\frac{1}{8} \cdot 1$ and stop (the rest of mantissa will be 0).

-3.25 in binary format:

1	10000000000	1010 0
sign	exponent 11 bits	mantissa 52 bits

-3.25 in hexadecimal (bas 16) form :

c00a0000000000000

Bas 16:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
										а	b	С	d	е	f

We divide in 4 bits the binary representation to get:

and make coding for first 4 bits:
$$\boxed{1100} = c$$

$$1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 12 = c$$

$$1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 10 = a$$

$$-9.28 := -[1.16] \cdot 2^{3} = -[1+0.16] \cdot 2^{3}$$

$$0.16 = \frac{1}{2}x_{1} + \frac{1}{4}x_{2} + \frac{1}{8}x_{3} + \frac{1}{16}x_{4} + \frac{1}{32}x_{5} + \dots =$$

$$= \frac{1}{2} \cdot 0 + \frac{1}{4} \cdot 0 + \frac{1}{8} \cdot 1 + \frac{1}{16} \cdot 0 + \dots$$

Exponenten 3 writes as: $3 + 1023 = 1026 = 1024 + 2 = 1 \cdot 2^{10} + 1 \cdot 2^{1} + 0 \cdot 2^{0}$

1	1000000010	00101		
sign	exponent 11 bits	mantissa 52 bits		
1	1 1	1		

 $\begin{array}{l} \frac{1}{2} = 0.5 > 0.16 \text{, and thus } \frac{1}{2} \cdot 0, \ \frac{1}{4} = 0.25 : 0.25 > 0.16 \text{, and thus } \frac{1}{4} \cdot 0, \ \frac{1}{8} = 0.125 < 0.16 \text{ and thus } \frac{1}{4} \cdot 0, \ \frac{1}{8} = 0.125 < 0.16 \text{ and thus } \frac{1}{16} \cdot 1, \ \frac{1}{16} = 0.0625 : 0.16 - 0.125 = 0.035, 0.0625 > 0.035, \text{ and thus } \frac{1}{16} \cdot 0, \ \frac{1}{32} = 0.0312 : 0.0312 < 0.035, \text{ and thus } \frac{1}{32} \cdot 1, \text{ and so on } \dots \end{array}$

```
-9.28 := -[1.16] \cdot 2^3 = -[1 + 0.16] \cdot 2^3
In Matlab:
```

q = quantizer('double');

y = num2bin(q,-9.28)

y =

or to see all numbers:

y =

$$6.28 = +[1.57] \cdot 2^2 = +[1+0.57] \cdot 2^2$$

$$0.57 = \frac{1}{2} + 0.07 =$$

$$= 1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{4} + 0 \cdot \frac{1}{8} + 1 \cdot \frac{1}{16} + 0 \cdot \frac{1}{32} + \dots + \frac{1}{256} + \dots$$

Exponent 2 represents as: $2 + 1023 = 1025 = 1024 + 1 = 1 \cdot 2^{10} + 1 \cdot 2^{0}$

0	10000000001	1001010		
sign	exponent 11 bits	mantissa 52 bits		

In Matlab:

$$y = num2bin(q,6.28)$$

To see all numbers: y =

$$1 := [1] \cdot 2^0 = [1 + 0.0] \cdot 2^0$$

Mantissa: 0.

Exponent 0 represents as: $0+1023=1024-1=1\cdot 2^{10}-1\cdot 2^0=$

$$\underline{10000000000} - \underline{00000000001} = \underline{0111111111}.$$

11	DILS 11 DILS	11 Dits		
0	0111111111	0000		
sign	exponent 11 bits	mantissa 52 bits		

$$0.5 := [1] \cdot 2^{-1} = [1 + 0.0] \cdot 2^{-1}$$

Mantissa: 0.

Exponent
$$-1$$
 represents as: $-1 + 1023 = 1024 - 2 =$

 11 bits
 11 bits

 0
 01111111110
 0000

 sign
 exponent 11 bits
 mantissa 52 bits

4日 → 4周 → 4 重 → 4 重 → 9 9 ○

11 bits

$$0.1 := [1.6] \cdot 2^{-4} = [1 + 0.6] \cdot 2^{-4}$$

Mantissa 0.6:

$$0.6 = \frac{1}{2}x_1 + \frac{1}{4}x_2 + \frac{1}{8}x_3 + \frac{1}{16}x_4 + \frac{1}{32}x_5 + \dots =$$

= $\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 0 + \frac{1}{8} \cdot 0 + \frac{1}{16} \cdot 1 + \dots$

Mantissa 0.6:

$$\frac{1}{2} = 0.5 < 0.6 \quad and \quad thus, x_1 = 1.; \text{ Next}, 0.6 - 0.5 = 0.1; \quad \frac{1}{4} = 0.25 : 0.25 > 0.1 \quad and \quad thus \quad x_2 = 0; 1/8 = 0.125 > 0.1 \quad and \quad thus \quad x_3 = 0; 1/16 = 0.0625 < 0.1 \quad and \quad thus \quad x_4 = 1; \dots$$
 Exponent -4 lagras som:

$$-4 + 1023 = 1019 = 1024 - 5 = 1 \cdot 2^{10} - (1 \cdot 2^2 + 1 \cdot 2^0) = \underbrace{1000000000}_{11 \text{ bits}} - \underbrace{00000000101}_{11 \text{ bits}} = \underbrace{01111111011}_{11 \text{ bits}}.$$

0	01111111011	100
sign	exponent 11 bits	mantissa 52 bits

In Matlab:

q = quantizer('double');

y = num2bin(q,0.1)

Floating-point arithmetics

If x is real number we define round-off of this number as floating-point number fl(x) (floating).

Example

Assume that we perform computations with 4 numbers.

$$fl(\pi) = fl(3.141592653589...) = 3.142,$$

 $fl(31415926.53589...) = 3.142 \cdot 10^7$ (1)

in normalized form.

Usually the relative absolute error in round-off procedure (rounding to nearest) is defined as $0.5 \cdot \beta^{1-p}$ (see next slide). This error is called the relative Machine epsilon.

Machine epsilon ε_{mach}

 ε_{mach} depends on the method which we use in round-off. There are different definitions for ε_{mach} for precision p:

In rounding by choping:

$$\varepsilon_{mach} = \beta^{1-p} = \beta^{-t}$$

In rounding to nearest:

$$\varepsilon_{\mathit{mach}} = \frac{1}{2}\beta^{1-p} = \frac{1}{2}\beta^{-t}$$

In dubbel precision (when p=53 for 64 bits computer) we have $\varepsilon_{mach}=2^{-p}\approx 1.11\cdot 10^{-16}$ and in the single precision (when p=24 for 32 bits computer) we have $\varepsilon_{mach}=2^{-p}\approx 6\cdot 10^{-8}$.

	chop rounding to 2 digits	to nearest to 2 digits
1.849	1.8	1.8
1.850	1.8	1.9
1.851	1.8	1.9
1.899	1.8	1.9

Stability of polynomial evaluation

We will discuss stability of polynomial evaluation by Horner's rule. Let the polynomial is given by

$$p(x) = \sum_{i=0}^{d} c_i x^i = c_0 + c_1 x^1 + \dots + c_d x^d,$$

where c_i are coefficients of the polynomial, d is its degree. To compute roots of this polynomial we can use Horner's rule, see alg.below. This rule can be programmed as the following iterative algorithm for every mesh point $x_j \in [x_{left}, x_{right}], j \in 1, 2, ...N$, where N is the total number of the discretization points:

Algorithm 1

- Step 0. Set counter i = d 1 and initialize $p_d = c_d$.
- Step 1. Compute $p_i = x_j \cdot p_{i+1} + c_i$
- Step 2. Set i := i 1 and go to step 1. Stop if i = 0.

Horner's method: example

Let the polynomial is given by

$$p(x) = \sum_{i=0}^{3} c_i x^i = c_0 + c_1 x^1 + c_2 x^2 + c_3 x^3,$$

then Alghorithm 1 (Horner's method) gives:

$$c_0 + c_1 x^1 + c_2 x^2 + c_3 x^3 = c_0 + x(c_1 + x(c_2 + xc_3)),$$

where iterations of Algorithm 1 are done as follows:

$$p = c_3$$

$$p = c_2 + xp$$

$$p = c_1 + xp$$

$$p = c_0 + xp$$

In our comp.ex. 1 we need evaluate of roots of polynomial together with upper and lower bounds for this solution.

Let us take
$$p(x) = (x-9)^9 = x^9 - 81x^8 + 2916x^7 - 61236x^6 + 826686x^5 - 7440174x^4 + 44641044x^3 - 172186884x^2 + 387420489x^1 - 387420489$$
. To compute bounds of the solution we insert term with error $1 + (\sigma_{1,2)_i}$ for every floating point iteration in Algorithm 1 to get following algorithm:

Algorithm 2

- Step 0. Set counter i = d 1 and initialize $p_d = c_d$.
- Step 1. Compute $p_i = (x_j \cdot p_{i+1}(1 + (\sigma_1)_i) + c_i)(1 + (\sigma_2)_i), \quad |(\sigma_1)_i|, |(\sigma_2)_i| \le \varepsilon$
- Step 2. Set i := i 1 and go to step 1. Stop if i = 0.

In the algorithm above ε is the machine epsilon and we define it as the maximum relative representation error $0.5 \cdot \beta^{1-p}$ which is measured in a floating point arithmetic with the base β and with precision p>0. Now the following values of machine epsilon apply to standard floating point formats:

Table 1. Values of machine epsilon in standard floating point formats. Notation * means that one bit is implicit in precision p. Machine epsilon ε_1 is computed accordingly to Demmel.

EEE 754 - 2008	description	Base,	Precision,	Machine eps.1
		Ь	р	$\varepsilon_1 = 0.5 \cdot b^{-(p-1)}$
binary16	half precision	2	11*	$2^{-11} = 4.88e - 04$
binary32	single precision	2	24*	$2^{-24} = 5.96e - 08$
binary64	double precision	2	53*	$2^{-53} = 1.11e - 16$
binary80	extended precision	2	64	$2^{-64} = 5.42e - 20$
binary128	quad. precision	2	113*	$2^{-113} = 9.63e - 35$
decimal32	single prec. decimal	10	7	$5 imes 10^{-7}$
decimal64	double prec. decimal	10	16	$5 imes 10^{-16}$
decimal128	quad. prec. decimal	10	34	5×10^{-34}

Expanding expression for p_i in the algorithm 2 we can get the final value p_0 as

$$p_{0} = \sum_{i=0}^{d-1} \left((1 + (\sigma_{2})_{i}) \prod_{k=0}^{i-1} (1 + (\sigma_{1})_{k}) (1 + (\sigma_{2})_{k}) \right) c_{i} x^{i}$$

$$+ \left(\prod_{k=0}^{d-1} (1 + (\sigma_{1})_{k}) (1 + (\sigma_{2})_{k}) \right) c_{d} x^{d}$$
(2)

Next, we will write upper and lower bounds for products of $\sigma := \sigma_{1,2}$ provided that $k\varepsilon < 1$:

$$(1+\sigma_1) \cdot \dots \cdot (1+\sigma_k) \le (1+\varepsilon)^k \le 1 + k\varepsilon + O(\varepsilon^2),$$

$$1 - k\varepsilon \le (1-\varepsilon)^k \le (1+\sigma_1) \cdot \dots \cdot (1+\sigma_k)$$
(3)

Applying estimate above we can get the following approximation

$$1 - k\varepsilon \le (1 + \sigma_1) \cdot \dots \cdot (1 + \sigma_k) \le 1 + k\varepsilon. \tag{4}$$

Using the estimate above we can rewrite (2) assuming $|\tilde{\sigma}_i| \leq 2d\varepsilon$ as

$$p_0 \approx \sum_{i=0}^{d} (1 + \tilde{\sigma}_i) c_i x^i = \sum_{i=0}^{d} \tilde{c}_i x^i \tag{5}$$

We also can write formula for the computing error in the polynomial:

$$|p_0 - p(x)| = \left| \sum_{i=0}^d (1 + \tilde{\sigma}_i) c_i x^i - \sum_{i=0}^d c_i x^i \right| = \left| \sum_{i=0}^d \tilde{\sigma}_i c_i x^i \right| \le 2d\varepsilon \sum_{i=0}^d |c_i x^i|$$
(6)

If we will choose $\tilde{\sigma_i} = \varepsilon \cdot \mathrm{sign}(c_i x^i)$ then the error bound above can be attained within the factor 2d. In this case we can take $\frac{\sum_{i=0}^d |c_i x^i|}{|\sum_{i=0}^d c_i x^i|}$ as the relative condition number for the case of polynomial evaluation. The following algorithm computes the lower and upper bound bp in the polynomial evaluation at every point x_j on the interval [p-bp,p+bp].

Algorithm 3

- Step 0. Set counter i = d 1 and initialize $p = c_d$, $bp = |c_d|$.
- Step 1. Compute $p = x_j \cdot p + c_i$, $bp = |x_j| \cdot bp + |c_i|$.
- Step 2. Set i := i 1 and go to step 1. Stop if i = 0.
- Step 3. Set $bp = 2 \cdot d \cdot \varepsilon \cdot bp$ as error bound at the point $|x_j|$.

Computation of roots of the polynomial

We want to compute roots of $(x-1)^5 = 0$ in Matlab. To do this we need to rewrite it as:

$$(x-1)^5 = x^5 - 5x^4 + 10x^3 - 10x^2 + 5x - 1$$

We already see that all roots should be x=1. But in Matlab we have:

```
r = roots([1 - 5 10 - 10 5 - 1])
```

and computed roots are:

$$r = 1.0008 + 0.0006i$$

$$1.0008 - 0.0006i$$

$$0.9997 + 0.0009i$$

$$0.9997 - 0.0009i$$

0.9990

Error:

$$disp(abs(r-1)')$$

1.1322e-03 1.1322e-03 1.1326e-03 1.1326e-03 1.1328e-03

Computation of roots of the polynomial

Why? Let us analyze the problem

$$(x-1)^5=\varepsilon,$$

Then we can find that

$$x = 1 + \varepsilon^{1/5}$$

If $\varepsilon=10^{-15}$ then we will have $\varepsilon^{1/5}=10^{-15/5}=10^{-3}$. We observe that zeros of polynomial $(x-1)^5$ are very sensitive to the changes in the coefficients. Is it always like that?

For coefficients

$$c = [1 -15 85 -225 274 -120];$$
 exact roots are: 1,2,3,4,5:

$$r = roots(c);$$

$$fel = sort(r) - (1:5)$$

And the error is very small now

$$fel = -4.9960e-15 6.6613e-14 -1.5010e-13 9.6811e-14 -8.8818e-16$$

Condition number

We can see the roots r of the polynomial as functions f(c) depending on the coefficients c.

$$r = f(c)$$
.

When we perturbate coefficients $c + \delta c$, we also perturbate roots $r + \delta r$.

If small changes in data $|\delta c|/|c|$ gives small changes in the output data, or result $|\delta r|/|r|$, then the problem is called well-posed. Otherwise, the problem is ill-posed. Condition number is defined as

$$k = \frac{|\delta r|/|r|}{|\delta c|/|c|} \tag{7}$$

It is not always possible compute this number, but often is possible compute estimate for k from (7):

$$|\delta r|/|r| \le k|\delta c|/|c|.$$

Stability of the computation of roots of the polynomial: example

Example

How sensitive are perturbations in the roots of the eqution $x^2 + ax + b = 0$, for changes in a and b?

Let's define roots of the equation

$$x^2 + ax + b = 0 \tag{8}$$

by r_1 and r_2 , these roots are functions depending on a and b: $r_1(a,b), r_2(a,b)$. Let $r=(r_1,r_2)$ denotes any of root and $r+\delta r$ denotes the perturbated root when we change a with δa and b with δb . Then substituting these perturbations in (8) we get:

$$x^{2} + ax + b = (r + \delta r)^{2} + (a + \delta a)(r + \delta r) + (b + \delta b) = 0.$$

We can rewrite it as:

$$(r^2 + ar + b) + (\delta r(2r + a) + \delta ar + \delta b) + ((\delta r)^2 + \delta a\delta r) = I_1 + I_2 + I_3 = 0,$$

where

$$I_{1} = (r^{2} + ar + b) = 0,$$

$$I_{2} = (\delta r(2r + a) + \delta ar + \delta b) \approx 0,$$

$$I_{3} = ((\delta r)^{2} + \delta a \delta r) \approx 0.$$
(9)

From the second equation of system (9) we get

$$\delta r \approx -\frac{\left(\delta a \ r + \delta b\right)}{2r + a}$$

which can be rewritten as

$$|\delta r| \le \frac{(|\delta a \ r| + |\delta b|)}{|2r + a|} \tag{10}$$

Since r_1 and r_2 are roots of (8) we can write

$$(x-r_1)(x-r_2) = x^2 \underbrace{-(r_1+r_2)}_{a} x + \underbrace{r_1 r_2}_{b} = x^2 + ax + b$$

since

$$-(r_1+r_2)=a, b=r_1r_2.$$

Adding $2r_1$ to the first of the above equations we can rewrite it as $r_1 - r_2 = 2r_1 + a$, and define the gap as $g := |r_1 - r_2|$.

We rewrite the equation (10) as

$$|\delta r| \le \frac{|\delta a \ r| + |\delta b|}{|g|} \tag{11}$$

If g i small or if $r_1 \approx r_2$, then $|\delta r|$ is big. Dividing (11) with |r| and compencating with |a| and |b| we get

$$\frac{|\delta r|}{|r|} \le \frac{1}{|r|} \left(\frac{\frac{|a|}{|a|} |\delta a| r| + \frac{|b|}{|b|} |\delta b|}{|g|} \right) \le k \max \left(\frac{|\delta a|}{|a|}, \frac{|\delta b|}{|b|} \right), \tag{12}$$

and condition number is

$$k \approx \frac{|a| + |b/r|}{g}. (13)$$

This is only estimate for the condition number since if we don't know exact roots - we can't use this formula to compute the condition number.

Let us consider the polynomial

$$p(x) = (x-1)(x-1.0001) = x^2 - 2.0001x + 1.0001.$$
 (14)

We know from the estimate (13) that $k \approx \frac{|a|+|b/r|}{g}$, where gap is defined as $g := |r_1 - r_2|$. In our case the gap is $|1.0001 - 1| = 10^{-4}$ and the condition number is big:

$$k \approx \frac{|-2.0001| + |1.0001/r|}{|1.0001 - 1|} \approx 3 \cdot 10^4.$$

Suppose that our numerical method gives bad numerical approximations to the roots 1.11 and 0.895. The relative error is around 11%. The perturbated polynom with roots 1.11 och 0.895 is:

$$(x-1.11)(x-0.895) = x^2 - 2.005x + 0.99345$$

and compare it with (14) - we have solved almost right problem. However, our roots are not so good approximations to the exact roots in (14). We have bad approximations since our problem is ill-conditioned.

Computer exercise 1 (1 p.)

Apply Bisection Algorithm (you can find this algorithm in the course book, see question 8.3, Algorithm 8.11) **Bisection**, to find the roots of the polynomial

$$p(x) = (x-1)^3(x-5)^2(x-7)^3 = 0$$

for different input intervals $x = [x_{left}, x_{right}]$. Use these algorithms to determine also the roots **of some of your own polynomial**. Note that in the Bisection Algorithm p(x) should be evaluated using Horner's rule. Write your own matlab program. Confirm that changing the input interval for $x = [x_{left}, x_{right}]$ slightly changes the computed root drastically. Modify the algorithm to use the relative condition number for polynomial evaluation given by (8.26) of the course book:

$$cond(p) := \frac{\sum_{i=0}^{d} |c_i x^i|}{\left|\sum_{i=0}^{d} c_i x^i\right|}$$

to stop bisecting when the round-off error in the computed value of p(x) gets so large that its sign cannot be determined. Present your results similarly with results of Figure 1.3 of the Demmel's book or Fig. 8.2, 8.3 of the course book. Compare your results with results of Figure 1.3 of the Demmel's book or results of Fig. 8.2, 8.3 of the course book.

Notes

- Study Example 8.3, page 262, of the course book.
- Note, that in Horner's rule a_i denote coefficients of the polynomial

$$p(x) = \sum_{i=0}^d a_i x^i,$$

where d is the degree of the polynomial. Thus, you need first compute coefficients of the polynomial p(x). For example, exact coefficients of polynomial $p(x) = (x-9)^9$ are:

$$a = [-387420489; 387420489; -172186884; 44641044; -7440174; 826686; -61236; 2916; -81; 1].$$
(15)

Use the Matlab function **coeffs** to compute the coefficients of a polynomial p(x).

Notes

• Compute error bound $bp = \triangle$ as in the algorithm 8.6 of the course book for every point $x \in [x_{left}, x_{right}]$. Below is example of Matlab's function which can be used to compute this error bound:

```
P = a(d); bp = abs(a(d));
for i = d - 1:(-1):1
P = x*P + a(i); bp = abs(x)*bp + abs(a(i));
end
bp = 2*(d - 1)*eps*bp;
end
```

Here, eps is the machine epsilon. Machine eps in matlab: eps = 2.2204460492503131e - 16;