
Numerical Linear Algebra
Lecture 2

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

NLA notions

IEEE system and floating-point numbers

Stability of polynomial evaluation

Comp. ex.1

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

IEEE floating-point representation

IEEE 754 (Institute of Electrical and Electronics Engineers, Inc.)
defines single and double precision standards (as well as other
standards).

During 60 and 70-ies every computer factory produced their
own floating point system - not convenient, a lot of trubles.

The floating-point standard was developed during 80-ties and
was used by big IT-factories like Intel and Motorola.

IEEE standard has 3 important requirements: consistent
floating point representation, correct round-off arithmetics,
consistent managment of exception situations.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Floating-point representation

IEEE single precision: sign (“+” 0, “-” 1) 1 bit, exponent 8
bits, mantissa 23 bits = all together = 32 bits:

±
︸︷︷︸

1

e1e2...e8
︸ ︷︷ ︸

exponent8

d0d1...d22
︸ ︷︷ ︸

mantissa23

IEEE dubbel precision: sign (“+” 0, “-” 1) 1 bit, exponent 11
bits, mantissa 52 bits = all together = 64 bits:

±
︸︷︷︸

1

e1e2...e11
︸ ︷︷ ︸

exponent11

d0d1...d51
︸ ︷︷ ︸

mantissa52

The positive number is normalized if d0 6= 0.
If β = 2 then always d0 = 1 and because of that d0 is not stored.
There exists speciell bitformat for different exceptional situations
for example:
[0, -0]
ans = 0000000000000000 8000000000000000

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Floating-point numbers: normalized numbers

In base b a normalized number has the form

±d0.d1d2d3....× bn

Here, d0 6= 0, d0, d1, ... are integers between 0 and b − 1.

Example

210.432 in normalized form is:

2.10432 × 102

−0.00532101 in normalized form is:

−5.32101 × 10−3

Any non-zero real number can be normalized.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Floating-point numbers

We can represent a floating-point number as:

x = ±

(

d0 +
d1

β
+

d2

β2
+ ...+

dp−1

βp−1

)

βe ,

where
0 ≤ dk ≤ β − 1, L ≤ e ≤ U,

Here we have:

β is base

e exponent

p precision

[L,U] is exponent range

dk , k = 0, ..., p − 1 mantissa (integer)

Most of computers now use binary (β = 2) arithmetics.
base p L U
2 24 -126 127 32 bit
2 53 -1022 1023 64 bit

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

bas p L U
2 24 -126 127 32 bits
2 53 -1022 1023 64 bits

The smallest representive normalised number is 2L ≈ 1.17 · 10−38 in
single (see table, L = −126) and ≈ 2.2 · 10−308 in double precision
(see table, L = −1022).

The largest representative number has largest exponent and ones in
the whole mantissa. In single precision ≈ 3.4 · 1038, in double
precision ≈ 1.8 · 10308.

The number which is largest than the largest representative number
gives overflow and smallest than smallest positive representative
normalised number gives underflow.

Underflow Level: UFL = βL, Overflow Level:
OFL = βU+1(1 − β−t). In single precision OFL computes as:
OFL = (2128) · (1 − (2−24)) ≈ 3.4 · 1038, in double OFL computes
as: OFL = (21024) · (1 − (2−53)) ≈ 1.8 · 10308.

Example: Matlab program floatgui.m. Floating-point system:
β = 2, p = 3, L = −1,U = 1. Number of floating point numbers:
2(β − 1)βt−1(U − L+ 1) + 1 = 25.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

bas p L U
2 24 -126 127 32 bits
2 53 -1022 1023 64 bits

Quantity of different numbers counts as:

2(β − 1)βp−1(U − L+ 1) + 1

and is

4.2614 · 109 for single precision: β = 2, L = −126,U = 127, p = 24
in 2(β − 1)βp−1(U − L+ 1) + 1.

1.8429 · 1019 for double precision :
β = 2, L = −1022,U = 1023, p = 53 in
2(β − 1)βp−1(U − L+ 1) + 1.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Matlab’s program

floatgui.m

shows structure of floating point numbers. In this program, the set
of positive model floating point numbers is determined by three
parameters:

t, emin, emax

It is the set of rational numbers of the form

x = (1+f)*2^e

where

f = (integer)/2^t, 0 <= f < 1, e = integer,

emin <= e <= emax.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Example

In Matlab:

1e − 2002 = 10−200
2

gives underflow, answer 0.

1e2002 gives overflow, answer infinity.

log(0), answer -infinity

sin(1/0), answer NaN (not a number)

exp(log(10000))− log(exp(10000))?

Answer: exp(log(10000)) = 10000, exp(10000) = Inf and
log(exp(10000)) = Inf and exp(log(10000))− log(exp(10000)) = −Inf

exp(log(10))− log(exp(10)) ?

Answer : exp(log(10)) = 10, log(exp(10)) = 10 and
exp(log(10000))− log(exp(10000)) = 0.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Presentation of number in floating-point arithmetics in

computer

We have following IEEE-format for numbers:

x = ±

(

d0 +
d1

β
+

d2

β2
+ ...+

dp−1

βt−1

)

βe ,

Example

−3.25 : −[1.625] · 21 = − [1 + 0.625]
︸ ︷︷ ︸

mantissa

·21

Exponent e = 1 represents as : 1 + 1023 = 1024 = 210. Mantissa: 1 is
not presented,

0.625 =
1

2
x1 +

1

4
x2 +

1

8
x3 +

1

16
x4 + . . . =

1

2
· 1 +

1

4
· 0 +

1

8
· 1 + . . .

1

2
= 0.5 < 0.625;

1

4
= 0.25 : 0.625 − 0.5 = 0.125; 0.25 > 0.125, because

1

4
· 0,

1

8
= 0.125 = 0.125

and because
1

8
· 1 and stop (the rest of mantissa will be 0).

We obtain for −3.25 :
1 10000000000 1010 0
sign exponent 11 bits mantissa 52 bits

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Example

-3.25 in binary format:
1 10000000000 1010 0

sign exponent 11 bits mantissa 52 bits
-3.25 in hexadecimal (bas 16) form :
c00a000000000000
Bas 16:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a b c d e f
We divide in 4 bits the binary representation to get:
1100 0000 0000 1010 0000 0000

and make coding for first 4 bits: 1100 = c

1 · 23 + 1 · 22 + 0 · 21 + 0 · 20 = 12 = c

0000 have code 0, and
1010 = a

1 · 23 + 0 · 22 + 1 · 21 + 0 · 20 = 10 = a

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Example

−9.28 := −[1.16] · 23 = −[1 + 0.16] · 23

0.16 =
1

2
x1 +

1

4
x2 +

1

8
x3 +

1

16
x4 +

1

32
x5 + . . . =

=
1

2
· 0 +

1

4
· 0 +

1

8
· 1 +

1

16
· 0 + . . .

Exponenten 3 writes as: 3 + 1023 = 1026 = 1024 + 2 =
1·210 + 1 · 21 + 0 · 20

1 10000000010 00101

sign exponent 11 bits mantissa 52 bits
1

2
= 0.5 > 0.16, and thus

1

2
· 0,

1

4
= 0.25 : 0.25 > 0.16, and thus

1

4
· 0,

1

8
= 0.125 < 0.16 and thus

1

8
· 1,

1

16
= 0.0625 : 0.16 − 0.125 = 0.035, 0.0625 > 0.035, and thus

1

16
· 0,

1

32
= 0.0312 : 0.0312 < 0.035, and thus

1

32
· 1, and so on ...

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Example

−9.28 := −[1.16] · 23 = −[1 + 0.16] · 23

In Matlab:

q = quantizer(’double’);
y = num2bin(q,-9.28)
y =
1100000000100010100011110101110000101000111101011100001010001111

or to see all numbers:
y =
1100000000100010100011110101110000101000111101011100001010001111

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Example

6.28 = +[1.57] · 22 = +[1 + 0.57] · 22

0.57 =
1

2
+ 0.07 =

= 1 ·
1

2
+ 0 ·

1

4
+ 0 ·

1

8
+ 1 ·

1

16
+ 0 ·

1

32
+ . . .+

1

256
+ . . .

Exponent 2 represents as: 2 + 1023 = 1025 = 1024 + 1 =
1·210 + 1 · 20

0 10000000001 1001010...

sign exponent 11 bits mantissa 52 bits
In Matlab:
y = num2bin(q,6.28)
y =
0100000000011001000111101011100001010001111010111000010100011111
To see all numbers: y =
0100000000011001000111101011100001010001111010111000010100011111

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Example

1 := [1] · 20 = [1 + 0.0] · 20

Mantissa: 0.
Exponent 0 represents as: 0 + 1023 = 1024 − 1 = 1 · 210 − 1 · 20 =
10000000000
︸ ︷︷ ︸

11 bits

− 00000000001
︸ ︷︷ ︸

11 bits

= 01111111111
︸ ︷︷ ︸

11 bits

.

0 01111111111 0000

sign exponent 11 bits mantissa 52 bits

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Example

0.5 := [1] · 2−1 = [1 + 0.0] · 2−1

Mantissa: 0.
Exponent −1 represents as: −1 + 1023 = 1024 − 2 =
1 · 210 − 1 · 21 = 10000000000

︸ ︷︷ ︸

11 bits

− 00000000010
︸ ︷︷ ︸

11 bits

= 01111111110
︸ ︷︷ ︸

11 bits

.

0 01111111110 0000

sign exponent 11 bits mantissa 52 bits

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Example

0.1 := [1.6] · 2−4 = [1 + 0.6] · 2−4

Mantissa 0.6:

0.6 =
1

2
x1 +

1

4
x2 +

1

8
x3 +

1

16
x4 +

1

32
x5 + . . . =

=
1

2
· 1 +

1

4
· 0 +

1

8
· 0 +

1

16
· 1 + . . .

Mantissa 0.6:
1

2
= 0.5 < 0.6 and thus, x1 = 1.;Next, 0.6 − 0.5 = 0.1;

1

4
= 0.25 : 0.25 > 0.1 and thus x2 =

0; 1/8 = 0.125 > 0.1 and thus x3 = 0; 1/16 = 0.0625 < 0.1 and thus x4 = 1; . . .
Exponent −4 lagras som:
−4+1023 = 1019 = 1024−5 = 1 ·210

− (1 ·22+1 ·20) = 10000000000
︸ ︷︷ ︸

11 bits

− 00000000101
︸ ︷︷ ︸

11 bits

= 01111111011
︸ ︷︷ ︸

11 bits

.

0 01111111011 100...
sign exponent 11 bits mantissa 52 bits

In Matlab:

q = quantizer(’double’);
y = num2bin(q,0.1)

y =
0011111110111001100110011001100110011001100110011001100110011010

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Floating-point arithmetics

If x is real number we define round-off of this number as floating-point
number fl(x) (floating).

Example

Assume that we perform computations with 4 numbers.

fl(π) = fl(3.141592653589...) = 3.142,

fl(31415926.53589...) = 3.142 · 107
(1)

in normalized form.

Usually the relative absolute error in round-off procedure (rounding to
nearest) is defined as 0.5 · β1−p (see next slide). This error is called the
relative Machine epsilon.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Machine epsilon εmach

εmach depends on the method which we use in round-off.
There are different definitions for εmach for precision p:

In rounding by choping:

εmach = β1−p = β−t

In rounding to nearest:

εmach =
1

2
β1−p =

1

2
β−t

In dubbel precision (when p = 53 for 64 bits computer) we have
εmach = 2−p ≈ 1.11 · 10−16 and in the single precision (when p = 24 for
32 bits computer) we have εmach = 2−p ≈ 6 · 10−8.

chop rounding to 2 digits to nearest to 2 digits
1.849 1.8 1.8
1.850 1.8 1.9
1.851 1.8 1.9
1.899 1.8 1.9

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Stability of polynomial evaluation

We will discuss stability of polynomial evaluation by Horner’s rule. Let
the polynomial is given by

p(x) =
d∑

i=0

cix
i = c0 + c1x

1 + ...+ cdx
d ,

where ci are coefficients of the polynomial, d is its degree.
To compute roots of this polynomial we can use Horner’s rule, see
alg.below. This rule can be programmed as the following iterative
algorithm for every mesh point xj ∈ [xleft , xright], j ∈ 1, 2, ...N, where N is
the total number of the discretization points:
Algorithm 1

Step 0. Set counter i = d − 1 and initialize pd = cd .

Step 1. Compute pi = xj · pi+1 + ci

Step 2. Set i := i − 1 and go to step 1. Stop if i = 0.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Horner’s method: example

Let the polynomial is given by

p(x) =

3∑

i=0

cix
i = c0 + c1x

1 + c2x
2 + c3x

3,

then Alghorithm 1 (Horner’s method) gives:

c0 + c1x
1 + c2x

2 + c3x
3 = c0 + x(c1 + x(c2 + xc3)),

where iterations of Algorithm 1 are done as follows:

p = c3

p = c2 + xp

p = c1 + xp

p = c0 + xp

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

In our comp.ex. 1 we need evaluate of roots of polynomial together
with upper and lower bounds for this solution.
Let us take p(x) = (x − 9)9 =
x9 − 81x8 + 2916x7 − 61236x6 + 826686x5 − 7440174x4 +
44641044x3 − 172186884x2 + 387420489x1 − 387420489. To
compute bounds of the solution we insert term with error
1 + (σ1,2)i for every floating point iteration in Algorithm 1 to get
following algorithm:
Algorithm 2

Step 0. Set counter i = d − 1 and initialize pd = cd .

Step 1. Compute
pi = (xj · pi+1(1 + (σ1)i) + ci)(1 + (σ2)i), |(σ1)i |, |(σ2)i | ≤ ε

Step 2. Set i := i − 1 and go to step 1. Stop if i = 0.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

In the algorithm above ε is the machine epsilon and we define it as
the maximum relative representation error 0.5 · β1−p which is
measured in a floating point arithmetic with the base β and with
precision p > 0. Now the following values of machine epsilon apply
to standard floating point formats:

Table 1. Values of machine epsilon in standard floating point formats.

Notation ∗ means that one bit is implicit in precision p. Machine epsilon ε1 is

computed accordingly to Demmel.

EEE 754 - 2008 description Base, Precision, Machine eps.1
b p ε1 = 0.5 · b−(p−1)

binary16 half precision 2 11∗ 2−11 = 4.88e − 04
binary32 single precision 2 24∗ 2−24 = 5.96e − 08
binary64 double precision 2 53∗ 2−53 = 1.11e − 16
binary80 extended precision 2 64 2−64 = 5.42e − 20
binary128 quad. precision 2 113∗ 2−113 = 9.63e − 35
decimal32 single prec. decimal 10 7 5 × 10−7

decimal64 double prec. decimal 10 16 5 × 10−16

decimal128 quad. prec. decimal 10 34 5 × 10−34

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Expanding expression for pi in the algorithm 2 we can get the final value
p0 as

p0 =

d−1∑

i=0

(

(1 + (σ2)i)

i−1∏

k=0

(1 + (σ1)k)(1 + (σ2)k)

)

cix
i

+

(
d−1∏

k=0

(1 + (σ1)k)(1 + (σ2)k)

)

cdx
d

(2)

Next, we will write upper and lower bounds for products of σ := σ1,2

provided that kε < 1:

(1 + σ1) · ... · (1 + σk) ≤ (1 + ε)k ≤ 1 + kε+ O(ε2),

1 − kε ≤ (1 − ε)k ≤(1 + σ1) · ... · (1 + σk)

(3)

Applying estimate above we can get the following approximation

1 − kε ≤ (1 + σ1) · ... · (1 + σk) ≤ 1 + kε. (4)

Using the estimate above we can rewrite (2) assuming |σ̃i | ≤ 2dε as

p0 ≈
d∑

i=0

(1 + σ̃i)cix
i =

d∑

i=0

c̃ix
i (5)

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

We also can write formula for the computing error in the polynomial:

|p0 − p(x)| =

∣
∣
∣
∣
∣

d∑

i=0

(1 + σ̃i)cix
i −

d∑

i=0

cix
i

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

d∑

i=0

σ̃icix
i

∣
∣
∣
∣
∣
≤ 2dε

d∑

i=0

|cix
i |

(6)
If we will choose σ̃i = ε · sign(cix

i) then the error bound above can be

attained within the factor 2d . In this case we can take
∑d

i=0
|cix

i |

|
∑

d
i=0

cix i |
as the

relative condition number for the case of polynomial evaluation. The
following algorithm computes the lower and upper bound bp in the
polynomial evaluation at every point xj on the interval [p − bp, p + bp].
Algorithm 3

Step 0. Set counter i = d − 1 and initialize p = cd , bp = |cd |.

Step 1. Compute p = xj · p + ci , bp = |xj | · bp + |ci |.

Step 2. Set i := i − 1 and go to step 1. Stop if i = 0.

Step 3. Set bp = 2 · d · ε · bp as error bound at the point |xj |.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Computation of roots of the polynomial

We want to compute roots of (x − 1)5 = 0 in Matlab. To do this we
need to rewrite it as:

(x − 1)5 = x5 − 5x4 + 10x3 − 10x2 + 5x − 1

We already see that all roots should be x = 1. But in Matlab we have:
r = roots([1 − 5 10 − 10 5 − 1])
and computed roots are:
r = 1.0008 + 0.0006i
1.0008 − 0.0006i
0.9997 + 0.0009i
0.9997 − 0.0009i
0.9990
Error:
disp(abs(r − 1)′)
1.1322e-03 1.1322e-03 1.1326e-03 1.1326e-03 1.1328e-03

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Computation of roots of the polynomial

Why ? Let us analyze the problem

(x − 1)5 = ε,

Then we can find that
x = 1 + ε1/5

If ε = 10−15 then we will have ε1/5 = 10−15/5 = 10−3. We observe
that zeros of polynomial (x − 1)5 are very sensitive to the changes
in the coefficients. Is it always like that?
For coefficients
c = [1 -15 85 -225 274 -120];
exact roots are: 1,2,3,4,5:
r = roots(c);
fel = sort(r) - (1:5)’
And the error is very small now
fel = -4.9960e-15 6.6613e-14 -1.5010e-13 9.6811e-14 -8.8818e-16

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Condition number

We can see the roots r of the polynomial as functions f (c)
depending on the coefficients c .

r = f (c).

When we perturbate coefficients c + δc , we also perturbate roots
r + δr .
If small changes in data |δc |/|c | gives small changes in the output
data, or result |δr |/|r |, then the problem is called well-posed.
Otherwise, the problem is ill-posed. Condition number is defined as

k =
|δr |/|r |

|δc |/|c |
(7)

It is not always possible compute this number, but often is possible
compute estimate for k from (7):

|δr |/|r | ≤ k |δc |/|c |.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Stability of the computation of roots of the polynomial:

example

Example

How sensitive are perturbations in the roots of the eqution
x2 + ax + b = 0, for changes in a and b?

Let’s define roots of the equation

x2 + ax + b = 0 (8)

by r1 and r2, these roots are functions depending on a and b:
r1(a, b), r2(a, b). Let r = (r1, r2) denotes any of root and r + δr denotes
the perturbated root when we change a with δa and b with δb. Then
substituting these perturbations in (8) we get:

x2 + ax + b = (r + δr)2 + (a+ δa)(r + δr) + (b + δb) = 0.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Example

We can rewrite it as:

(r2 + ar +b)+ (δr(2r + a)+ δar + δb)+ ((δr)2 + δaδr) = I1 + I2 + I3 = 0,

where

I1 = (r2 + ar + b) = 0,

I2 = (δr(2r + a) + δar + δb) ≈ 0,

I3 = ((δr)2 + δaδr) ≈ 0.

(9)

From the second equation of system (9) we get

δr ≈ −
(δa r + δb)

2r + a

which can be rewritten as

|δr | ≤
(|δa r |+ |δb|)

|2r + a|
(10)

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Example

Since r1 and r2 are roots of (8) we can write

(x − r1)(x − r2) = x2 −(r1 + r2)
︸ ︷︷ ︸

a

x + r1r2
︸︷︷︸

b

= x2 + ax + b

since
−(r1 + r2) = a, b = r1r2.

Adding 2r1 to the first of the above equations we can rewrite it as
r1 − r2 = 2r1 + a, and define the gap as g := |r1 − r2|.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Example

We rewrite the equation (10) as

|δr | ≤
|δa r |+ |δb|

|g |
(11)

If g i small or if r1 ≈ r2, then |δr | is big. Dividing (11) with |r | and
compencating with |a| and |b| we get

|δr |

|r |
≤

1

|r |





|a|
|a| |δa r |+ |b|

|b| |δb|

|g |



 ≤ k max

(
|δa|

|a|
,
|δb|

|b|

)

, (12)

and condition number is

k ≈
|a|+ |b/r |

g
. (13)

This is only estimate for the condition number since if we don’t know
exact roots - we can’t use this formula to compute the condition number.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Example

Let us consider the polynomial

p(x) = (x − 1)(x − 1.0001) = x2 − 2.0001x + 1.0001. (14)

We know from the estimate (13) that k ≈ |a|+|b/r |
g

, where gap is defined

as g := |r1 − r2|. In our case the gap is |1.0001 − 1| = 10−4 and the
condition number is big:

k ≈
| − 2.0001|+ |1.0001/r |

|1.0001 − 1|
≈ 3 · 104.

Suppose that our numerical method gives bad numerical approximations
to the roots 1.11 and 0.895. The relative error is around 11%. The
perturbated polynom with roots 1.11 och 0.895 is:

(x − 1.11)(x − 0.895) = x2 − 2.005x + 0.99345

and compare it with (14) - we have solved almost right problem.
However, our roots are not so good approximations to the exact roots in
(14). We have bad approximations since our problem is ill-conditioned.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Computer exercise 1 (1 p.)

Apply Bisection Algorithm (you can find this algorithm in the course
book, see question 8.3, Algorithm 8.11) Bisection, to find the roots of
the polynomial

p(x) = (x − 1)3(x − 5)2(x − 7)3 = 0

for different input intervals x = [xleft , xright]. Use these algorithms to
determine also the roots of some of your own polynomial. Note that
in the Bisection Algorithm p(x) should be evaluated using Horner’s rule.
Write your own matlab program. Confirm that changing the input
interval for x = [xleft , xright] slightly changes the computed root
drastically. Modify the algorithm to use the relative condition number for
polynomial evaluation given by (8.26) of the course book:

cond(p) :=

∑d

i=0
|cix

i |
∣
∣
∣
∑d

i=0
cix i

∣
∣
∣

to stop bisecting when the round-off error in the computed value of p(x)
gets so large that its sign cannot be determined. Present your results similarly with

results of Figure 1.3 of the Demmel’s book or Fig. 8.2, 8.3 of the course book. Compare your results

with results of Figure 1.3 of the Demmel’s book or results of Fig. 8.2, 8.3 of the course book.

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Notes

:

Study Example 8.3, page 262, of the course book.

Note, that in Horner’s rule ai denote coefficients of the polynomial

p(x) =

d∑

i=0

aix
i ,

where d is the degree of the polynomial. Thus, you need first
compute coefficients of the polynomial p(x). For example, exact
coefficients of polynomial p(x) = (x − 9)9 are:

a = [−387420489; 387420489;−172186884; 44641044;

− 7440174; 826686;−61236; 2916;−81; 1].
(15)

Use the Matlab function coeffs to compute the coefficients of a
polynomial p(x).

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

Notes

Compute error bound bp = △ as in the algorithm 8.6 of the course
book for every point x ∈ [xleft , xright]. Below is example of Matlab’s
function which can be used to compute this error bound:

P = a(d); bp = abs(a(d));

for i = d - 1:(-1):1

P = x*P + a(i); bp = abs(x)*bp + abs(a(i));

end

bp = 2*(d - 1)*eps*bp;

end

Here, eps is the machine epsilon. Machine eps in matlab:
eps = 2.2204460492503131e − 16;

Larisa Beilina, http://www.math.chalmers.se/ larisa/ Lecture 2

