
Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Applied Numerical Linear Algebra. Lecture 4

1 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Pivot element

The pivot or pivot element is the element of a matrix, an array, or
some other kind of finite set, which is selected first by an algorithm
(e.g. Gaussian elimination, Quicksort, Simplex algorithm, etc.), to
do certain calculations. In the case of matrix algorithms, a pivot
entry is usually required to be at least distinct from zero, and often
distant from it; in this case finding this element is called pivoting.

Pivoting may be followed by an interchange of rows or columns to
bring the pivot to a fixed position and allow the algorithm to
proceed successfully, and possibly to reduce round-off error.

2 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Examples of systems that require pivoting

In the case of Gaussian elimination, the algorithm requires that pivot
elements not be zero. Interchanging rows or columns in the case of a
zero pivot element is necessary. The system below requires the
interchange of rows 2 and 3 to perform elimination.

1 −1 2 8
0 0 −1 −11
0 2 −1 −3

The system that results from pivoting is as follows and will allow the
elimination algorithm and backwards substitution to output the solution
to the system.

1 −1 2 8
0 2 −1 −3
0 0 −1 −11

3 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Examples of systems that require pivoting

Furthermore, in Gaussian elimination it is generally desirable to
choose a pivot element with large absolute value. This improves
the numerical stability. The following system is dramatically
affected by round-off error when Gaussian elimination and
backwards substitution are performed.

[
0.00300 59.14 59.17
5.291 −6.130 46.78

]

This system has the exact solution of x1 = 10.00 and x2 = 1.000,
but when the elimination algorithm and backwards substitution are
performed using four-digit arithmetic, the small value of a11 causes
small round-off errors to be propagated. The algorithm without
pivoting yields the approximation of x1 ≈ 9873.3 and x2 ≈ 4.

4 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Examples of systems that require pivoting

In this case it is desirable that we interchange the two rows so that
a21 is in the pivot position

[
5.291 −6.130 46.78
0.00300 59.14 59.17

]
.

Considering this system, the elimination algorithm and backwards
substitution using four-digit arithmetic yield the correct values
x1 = 10.00 and x2 = 1.000.

5 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Partial and complete pivoting

In partial pivoting, the algorithm selects the entry with largest absolute
value from the column of the matrix that is currently being considered as
the pivot element. Partial pivoting is generally sufficient to adequately
reduce round-off error. However for certain systems and algorithms,
complete pivoting (or maximal pivoting) may be required for acceptable
accuracy. Complete pivoting considers all entries in the whole matrix,
interchanging rows and columns to achieve the highest accuracy.
Complete pivoting is usually not necessary to ensure numerical stability
and, due to the additional computations it introduces, it may not always
be the most appropriate pivoting strategy.

6 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Gaussian elimination

In linear algebra, Gaussian elimination is an algorithm for solving
systems of linear equations. It can also be used to find the rank of a
matrix, to calculate the determinant of a matrix, and to calculate
the inverse of an invertible square matrix. The method is named
after Carl Friedrich Gauss, but it was not invented by him.

Elementary row operations are used to reduce a matrix to what is
called triangular form (in numerical analysis) or row echelon form
(in abstract algebra). Gauss-Jordan elimination, an extension of this
algorithm, reduces the matrix further to diagonal form, which is also
known as reduced row echelon form.

7 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Gaussian elimination. History

The method of Gaussian elimination appears in the important
Chinese mathematical text Chapter Eight Rectangular Arrays of The
Nine Chapters on the Mathematical Art. Its use is illustrated in
eighteen problems, with two to five equations. The first reference to
the book by this title is dated to 179 CE, but parts of it were
written as early as approximately 150 BCE. It was commented on by
Liu Hui in the 3rd century.

The method in Europe stems from the notes of Isaac Newton. In
1670, he wrote that all the algebra books known to him lacked a
lesson for solving simultaneous equations, which Newton then
supplied. Cambridge University eventually published the notes as
Arithmetica Universalis in 1707 long after Newton left academic life.

Carl Friedrich Gauss in 1810 devised a notation for symmetric
elimination that was adopted in the 19th century by professional
hand computers to solve the normal equations of least-squares
problems. The algorithm that is taught in high school was named
for Gauss only in the 1950s as a result of confusion over the history
of the subject.

8 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Gaussian elimination. Algorithm overview

The process of Gaussian elimination has two parts. The first part
(Forward Elimination) reduces a given system to either triangular or
echelon form, or results in a degenerate equation, indicating the
system has no unique solution but may have multiple solutions
(rank¡order). This is accomplished through the use of elementary
row operations. The second step uses back substitution to find the
solution of the system above.

Stated equivalently for matrices, the first part reduces a matrix to
row echelon form using elementary row operations while the second
reduces it to reduced row echelon form, or row canonical form.

The three elementary row operations used in the Gaussian
elimination (multiplying rows, switching rows, and adding multiples
of rows to other rows) amount to multiplying the original matrix
with invertible matrices from the left. The first part of the algorithm
computes an LU decomposition, while the second part writes the
original matrix as the product of a uniquely determined invertible
matrix and a uniquely determined reduced row-echelon matrix. 9 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Gaussian elimination. Example

Suppose the goal is to find and describe the solution(s), if any, of the
following system of linear equations:

2x + y − z = 8 (L1)

−3x − y + 2z = −11 (L2)

−2x + y + 2z = −3 (L3)

The algorithm is as follows: eliminate x from all equations below L1, and
then eliminate y from all equations below L2. This will put the system
into triangular form. Then, using back-substitution, each unknown can
be solved.
In the example, x is eliminated from L2 by adding 3

2L1 to L2. x is then
eliminated from L3 by adding L1 to L3. Formally:

L2 +
3

2
L1 → L2; L3 + L1 → L3

The result is:
2x + y − z = 8

1

2
y +

1

2
z = 1 10 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Gaussian elimination. Example

Now y is eliminated from L3 by adding −4L2 to L3:

L3 +−4L2 → L3

The result is:
2x + y − z = 8

1

2
y +

1

2
z = 1

−z = 1

This result is a system of linear equations in triangular form, and so the
first part of the algorithm is complete.
The last part, back-substitution, consists of solving for the knowns in
reverse order. It can thus be seen that

z = −1 (L3)

Then, z can be substituted into L2, which can then be solved to obtain

y = 3 (L2)

Next, z and y can be substituted into L1, which can be solved to obtain

x = 2 (L)
11 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Gaussian elimination

The basic algorithm for solving Ax = b.

1 Permutation matrices.

2 The algorithm - overview.

3 The algorithm - factorization with pivoting.

4 The algorithm - optimizations and complexity analysis.

12 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Permutation matrices

Definition

Permutation matrix := identity matrix with permuted rows.

Example

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

13 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Permutation matrices

Definition

Permutation matrix := identity matrix with permuted rows.

Example

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

→

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

→

14 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Permutation matrices

Definition

Permutation matrix := identity matrix with permuted rows.

Example

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

→

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

→

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

15 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Permutation matrices
Properties

Properties of permutation matrices (P , P1, P2):

P · X = same matrix X with rows permuted

P1 · P2 is also a permutation

P−1 = PT (reverse permutation)

det(P) = ±1 (+1 for even permutations, -1 for odd)

16 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Gaussian Elimination
The Algorithm — Overview

Solving Ax = b using Gaussian elimination.

1 Factorize A into A = PLU
Permutation Unit lower triangular Non-singular upper triangular

17 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Gaussian Elimination
The Algorithm — Overview

Solving Ax = b using Gaussian elimination.

1 Factorize A into A = PLU
Permutation Unit lower triangular Non-singular upper triangular

2 Solve PLUx = b (for LUx) :

LUx = P−1b

18 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Gaussian Elimination
The Algorithm — Overview

Solving Ax = b using Gaussian elimination.

1 Factorize A into A = PLU
Permutation Unit lower triangular Non-singular upper triangular

2 Solve PLUx = b (for LUx) :

LUx = P−1b

3 Solve LUx = P−1b (for Ux) by forward substitution:

Ux = L−1(P−1b).

19 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Gaussian Elimination
The Algorithm — Overview

Solving Ax = b using Gaussian elimination.

1 Factorize A into A = PLU
Permutation Unit lower triangular Non-singular upper triangular

2 Solve PLUx = b (for LUx) :

LUx = P−1b

3 Solve LUx = P−1b (for Ux) by forward substitution:

Ux = L−1(P−1b).

4 Solve Ux = L−1(P−1b) by backward substitution:

x = U−1(L−1P−1b).

20 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

The Algorithm — uniqueness of factorization

Definition

The leading j-by-j principal submatrix of A is A(1 : j , 1 : j).

Theorem

The following two statements are equivalent:
1. There exists a unique unit lower triangular L and non-singular upper
triangular U such that A = LU.
2. All leading principal submatrices of A are non-singular.

21 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

The Algorithm — uniqueness of factorization

Proof.

We first show that (1) implies (2). A = LU may also be written

[
A11 A12

A21 A22

]
=

[
L11 0
L21 L22

]
×

[
U11 U12

0 U22

]
=

[
L11U11 L11U12

L21U11 L21U12 + L22U22

]

where A11 is a j-by-j leading principal submatrix, as well as L11 and
U11. Therefore
detA11 = det(L11U11) = detL11detU11 = 1 · detU11 6= 0, since L is
unit triangular and U is non-singular.

22 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

The Algorithm — uniqueness of factorization

Proof.

(2) implies (1) is proved by induction on n. It is easy for 1-by-1 matrices:
a = 1 · a. To prove it for n-by-n matrices Ã, we need to find unique
(n-1)-by-(n-1) triangular matrices L and U, unique (n-1)-by-1 vectors l
and u, and unique nonzero scalar η such that

Ã =

[
A b
cT δ

]
=

[
L 0
lT 1

]
×

[
U u
0 η

]
=

[
LU Lu
lTU lTu + η

]

By induction unique L and U exist such that A = LU. Now let u = L−1b,
lT = cTU−1, and η = δ − lTu, all of which are unique. The diagonal
entries of U are nonzero by induction, and η 6= 0 since

detÃ = det

[
L 0
lT 1

]
× det

[
U u
0 η

]

0 6= detÃ = detL̃ · detŨ = det(L) · det(U) · η = det(U) · η.
23 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

The Algorithm — factorization with pivoting

Theorem

If A is non-singular, then there exist permutations P1 and P2, a unit
lower triangular matrix L, and a non-singular upper triangular matrix U
such that P1AP2 = LU. Only one of P1 and P2 is necessary.

Proof.

As with many matrix factorizations, it suffices to understand block 2-by-2
matrices. More formally, we use induction on dimension n. It is easy for
1-by-1 matrices: P1 = P2 = L = 1 and U = A. Assume that it is true for
dimension n-1. If A is non-singular, then it has a nonzero entry since
non-singularity implies that each row and each column of A has a
nonzero entry.
Let us choose permutations P ′

1 and P ′
2 such that the entry (1, 1) of the

matrix P ′
1AP

′
2 is nonzero. We define it by a11.

24 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

The Algorithm — factorization with pivoting

Proof.

Now we write the desired factorization and solve for the unknown
components:

P ′

1AP
′

2 =

[
a11 A12

A21 A22

]
=

[
1 0
L21 I

]
·

[
u11 U12

0 Ã22

]
=

[
u11 U12

L21u11 L21U12 + Ã22

]
,

where A22 and Ã22 are (n-1)-by-(n-1) and L21 and UT
12 are

(n-1)-by-1.
Solving for the components of this 2-by-2 block factorization we
get u11 = a11 6= 0, U12 = A12, and L21u11 = A21. Since
u11 = a11 6= 0, we can solve for L21 =

A21
a11

. Finally,

L21U12 + Ã22 = A22 implies Ã22 = A22 − L21U12 what means that
we can compute elements of Ã22.

25 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

The Algorithm — factorization with pivoting

Proof.

We are going to apply induction to Ã22, but to do so we need to
check that detÃ22 6= 0: Since detP ′

1AP
′

2 = ±detA 6= 0 and also
u11 6= 0 we have

0 6= detP ′

1AP
′

2 = det

[
1 0
L21 I

]
· det

[
u11 U12

0 Ã22

]
= 1 · (u11 · detÃ22),

then detÃ22 must be nonzero.
Therefore by induction there exist permutations P̃1, P̃2 so that
P̃1Ã22P̃2 = L̃Ũ with L̃ unit lower triangular and Ũ upper triangular
and non-singular.

26 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

The Algorithm — factorization with pivoting

Proof.

Substituting this in the above 2-by-2 block factorization yields

P ′

1AP
′

2 =

[
1 0
L21 I

] [
u11 U12

0 P̃T
1 L̃ŨP̃T

2

]

=

[
1 0
L21 I

] [
1 0

0 P̃T
1 L̃

] [
u11 U12

0 ŨP̃T
2

]

=

[
1 0

L21 P̃T
1 L̃

] [
u11 U12P̃2

0 Ũ

] [
1 0

0 P̃T
2

]

=

[
1 0

0 P̃T
1

] [
1 0

P̃1L21 L̃

] [
u11 U12P̃2

0 Ũ

] [
1 0

0 P̃T
2

]

27 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Proof.

Recall that we have obtained:

P ′
1AP

′
2 =

[
1 0

0 P̃T
1

] [
1 0

P̃1L21 L̃

] [
u11 U12P̃2

0 Ũ

] [
1 0

0 P̃T
2

]

Now multiplying both sides of the above equation by

[
1 0

0 P̃1

]
,

[
1 0

0 P̃2

]

from the left and right hand side, respectively, we get:

P1AP2 =

([
1 0

0 P̃1

]
P ′
1

)

︸ ︷︷ ︸
P1

A

(
P ′
2

[
1 0

0 P̃2

])

︸ ︷︷ ︸
P2

=

[
1 0

P̃1L21 L̃

]

︸ ︷︷ ︸
L

[
u11 U12P̃2

0 Ũ

]

︸ ︷︷ ︸
U 28 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Corollary about factorization with pivoting

We can choose P ′

2 = I and P ′

1 such that a11 is the largest entry in
absolute value in its column. This is: L21 =

A21
a11

has entries
bounded by 1 in absolute value. More generally, at step i of
Gaussian elimination, where we are computing the i-th column of
L, we reorder rows i through n so that the largest entry in the
column is on the diagonal. This is called “Gaussian elimination
with partial pivoting,” or GEPP for short. GEPP guarantees that
all entries of L are bounded by one in absolute value.

29 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Corollary about factorization with pivoting

We can choose P ′

1 and P ′

2 so that a11 is the largest entry in
absolute value in the whole matrix. More generally, at step i of
Gaussian elimination, where we are computing the ith column of L,
we reorder rows and columns i through n so that the largest entry
in this submatrix is on the diagonal. This is called “Gaussian
elimination with complete pivoting,” or GECP for short.

30 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

LU factorization

Algorithm A

LU factorization with pivoting:
for i = 1 to n

apply permutations so aii 6= 0(permute L, U)
/* for example for GEPP, swap rows j and i of A and of L
where |aji | is the largest entry in |A(i : n, i |;
for GECP, swap rows j and i of A and of L, and columns k
and i of A and U, where |ajk | is the largest entry in
|A(i : n, i : n)|*/

/* compute column i of L */
for j=i+1 to n

lji =
aji
aii

end for
/* compute row i of U */
for j=i to n

uij = aij end for

31 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

The Algorithm

Algorithm A

/* update A22 */
for j=i+1 to n

for k=i+1 to n
ajk = ajk − lji ∗ uik

end for
end for

end for

32 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Discussion on Algorithm A

Note that once column i of A is used to compute column i of L, it
is never used again. Similarly, row i of A is never used again after
computing row i of U. This lets us overwrite L and U on top of A
as they are computed, so we need no extra space to store them; L
occupies the (strict) lower triangle of A (the ones on the diagonal
of L are not stored explicitly), and U occupies the upper triangle of
A. This simplifies the algorithm A to the following algorithm B.

33 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

LU factorization

Algorithm B

LU factorization with pivoting, overwriting L and U on A:
for i=1 to n

apply permutations (see Algorithm A)
for j=i+1 to n

aji =
aji
aii

end for
for j=i+1 to n

for k=i+1 to n
ajk = ajk − aji ∗ aik

end for
end for

end for

34 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

PLU factorization with pivoting

PLU factorization with pivoting: calculating the permutation matrix P ,
the unit lower triangular matrix L, and the nonsingular upper triangular
matrix U such that LU = PA for a given nonsingular A.

let P=I, L=I, U=A

for i = 1 to n-1

find m such that |U(m,i)| is the largest entry in

|U(i:n,i)|

if m ~= i

swap rows m and i in P

swap rows m and i in U

if i >= 2 swap elements L(m,1:i-1) and L(i,1:i-1)

end if

L(i+1:n,i)=U(i+1:n,i)/U(i,i)

U(i+1:n,i+1:n)=U(i+1:n,i+1:n)-L(i+1:n,i) U(i,i+1:n)

U(i+1:n,i)=0

end for

35 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Forward substitution

The next algorithm is forward substitution. We use it to easily solve a
given system Lx = b with a unit lower triangular matrix L.
Algorithm: forward substitution: solving Lx = b with a unit lower
triangular matrix L.

x(1)=b(1)

for i=2 to n

x(i)=b(i)-L(i,1:(i-1)) x(1:(i-1))

end for

36 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Backward substitution

Using Backward substitution, we easily solve a given system
Ux = b with an upper triangular matrix U.
Backward substitution: solving Ux = b with a nonsingular upper
triangular matrix U.

x(n)=b(n)/U(n,n)

for i=n-1 to 1

x(i)=(b(i)-U(i,(i+1):n)\ x((i+1):n))/U(i,i)

end for

37 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

LU factorization

Example

A =

[
2 6
4 15

]
; L−? U−? A = LU

A =

[
a11 a12
a21 a22

]
=

[
ℓ11 0
ℓ21 ℓ22

]
·

[
u11 u12
0 u22

]

=

[
u11ℓ11 ℓ11u12
ℓ21u11 ℓ21 · u12 + ℓ22 · u22

]

ℓ11 · u11 = a11 ⇒ L =

[
1 0

ℓ21 1

]

38 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Example

⇒ u11 =
a11
ℓ11

= a11

ℓ11 · u12 = a12 ⇒ u12 = a12

ℓ21 · u11 = a21 ⇒ ℓ21 =
a21
u11

=
a21
a11

=
4

2
= 2

ℓ21 · u12 + ℓ22 · u22 = a22 ⇒ 2 · a12 + 1 · u22 = a22 ⇒

u22 = a22 − 2 · a12 = 15− 2 · 6 = 3
[
2 6
4 15

]

︸ ︷︷ ︸
A

=

[
1 0
2 1

]

︸ ︷︷ ︸
L

·

[
2 6
0 3

]

︸ ︷︷ ︸
U

39 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

The need of pivoting. Example.

Let us consider LU factorization without pivoting for

A =

[
10−4 1
1 1

]

in three-decimal-digit floating point.
First, A is well-conditioned since k(A) = ||A||∞ · ||A−1||∞ ≈ 4. Thus, we
can expect to solve Ax = b accurately. We apply LU factorization
without pivoting to get:

L =

[
1 0
104 1

]
,U =

[
10−4 1
0 −104

]

Then LU is not the same as A:

LU =

[
10−4 1
1 0

]

40 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Warning: loss of accuracy

Compare the condition number of A to the condition numbers of L
and U.

k(A) = ||A||∞ · ||A−1||∞ ≈ 4

k(L) = ||L||∞ · ||L−1||∞ ≈ 108

k(U) = ||U||∞ · ||U−1||∞ ≈ 108

Since k(A) << k(L) · k(U) - warning:loss of accuracy.

41 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

The need of pivoting. Example.

Let us consider LU factorization with pivoting for matrix A with reversed
order of equations:

A =

[
1 1

10−4 1

]

Now we apply LU factorization to the above matrix A and get:

L =

[
1 0

10−4 1

]
,U =

[
1 1
0 1

]

Then LU approximates matrix A accurately:

A ≈ LU =

[
1 0

10−4 1

]
·

[
1 1
0 1

]

Both L and U are well-conditioned here and the computed solution is
also quite accurate.

42 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Error analysis

Recall our two-step paradigm for obtaining error bounds for the
solution of Ax = b:

1 Analyze round-off errors to show that the result of solving
Ax = b is the exact solution x̂ of the perturbed system
(A+ δA)x̂ = b + δb, where δA and δb are small. This is an
example of backward error analysis, and δA and δb are called
the backward errors.

43 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Error analysis

Recall our two-step paradigm for obtaining error bounds for the
solution of Ax = b:

1 Analyze round-off errors to show that the result of solving
Ax = b is the exact solution x̂ of the perturbed system
(A+ δA)x̂ = b + δb, where δA and δb are small. This is an
example of backward error analysis, and δA and δb are called
the backward errors.

2 Apply the perturbation theory to bound the error.

44 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Error analysis

Now suppose that matrix A has already been pivoted, so the
notation is simpler. We simplify Algorithm A. to two equations -
one for ajk , j ≤ k and one for j > k .
What is Algorithm A. doing toAjk when j ≤ k?
This element is repeatedly updated by subtracting ljiuik for i=1 to
j-1 and is assigned to ujk so that:

ujk = ajk −

j−1∑

i=1

ljiuik

When j > k , ajk again has ljiuik subtracted for i=1 to k-1 and the
resulting sum is divided by ukk and assigned to ljk :

ljk =
ajk −

∑k−1
i=1 ljiuik

ukk

45 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Error analysis

To do roundoff error analysis of these two formulas, we use the
following:

fl

(
d∑

i=1

xiyi

)
=

d∑

i=1

xiyi (1 + δi), |δi | ≤ dǫ

We apply this to the formula for ujk :

ujk =

(
ajk −

j−1∑

i=1

ljiuik(1 + δi)

)
(1 + δ′)

with |δi | ≤ (j − 1)ǫ and |δ′| ≤ ǫ.

46 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Error analysis

Solving for ajk we get:

ajk =
1

1 + δ′
ujk · ljj +

j−1∑

i=1

ljiuik(1 + δi)

≤

j∑

i=1

ljiuik +

j∑

i=1

ljiuikδi ≡

j∑

i=1

ljiuik + Ejk

where we have used

|δi | ≤ (j − 1)ε, 1 + δj ≡
1

1 + δ′

then

≡

j∑

i=1

ljiuik + Ejk .

47 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

In the expression above we can bound Ejk by

|Ejk | = |

j∑

i=1

ljiuikδi | ≤

j∑

i=1

|lji | · |uik | · nǫ = nǫ(|L| · |U|)jk

Here ε is the relative representation error. The maximum of the
relative representation error in a floating point arithmetic with p
digits and base β is 0.5× β1−p. IEEE arithmetics includes two
kinds of floating point numbers: single precision (32 bits long) and
double precision (64 bits long).

48 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Error analysis

Doing the same analysis for the formula for ljk gives us:

ljk = (1 + δ′′)

(
(1 + δ′)(ajk −

∑k−1
i=1 ljiuik(1 + δi))

ukk

)

with |δi | ≤ (k − 1)ǫ, |δ′| ≤ ǫ and |δ′′| ≤ ǫ. Solving for ajk we get

ajk =
1

(1 + δ′)(1 + δ′′)
ukk ljk +

k−1∑

i=1

ljiuik(1 + δi)

≤
k∑

i=1

ljiuik +
k∑

i=1

ljiuikδi ≡
k∑

i=1

ljiuik + Ejk

with |δi | ≤ nǫ, 1 + δk = 1
(1+δ′)(1+δ′′) , and so |Ejk | ≤ nǫ(|L| · |U|)jk

as before.
49 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Error analysis

We can summarize this error analysis with the simple formula:

A = LU + E

where
|E | ≤ nǫ|L| · |U|

and taking norms we get

‖|E |‖ ≤ nǫ‖ |L| ‖ · ‖ |U| ‖

If the norm does not depends on the sign of the entries of matrix
(this is valid for Frobenius, infinity, one-norms but not for
two-norms) we can simplify expression above as

‖E‖ ≤ nǫ‖L‖ · ‖U‖

50 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Error in Gaussian elimination

Recall that we solve L Ux︸︷︷︸
y

= b via Ly = b and Ux = y .

Solving Ly = b gives as a computed solution ŷ such that
(L+ δL)ŷ = b where |δL| ≤ nε|L|.

The same is true for (U + δU)x̂ = ŷ with |δU| ≤ nε|U|.

Combining both estimates into one we get

b = (L+ δL)ŷ = (L+ δL)(U + δU)x̂

= (LU + LδU + δLU + δLδU)x̂

= (A− E + LδU + δLU + δLδU)x̂

= (A+ δA)x̂ ,

where
δA = −E + LδU + δLU + δLδU.

51 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Now we combine all bounds for E , δU, δL and use triangle inequality to
get

|δA| ≤ | − E + LδU + δLU + δLδU|

≤ |E |+ |L| · |δU|+ |δL| · |U|+ |δL| · |δU|

≤ nε|L| · |U|+ nε|L| · |U|+ nε|L| · |U|+ n2ε2|L| · |U|

≈ 3nε|L| · |U|.

Assuming that ‖ |X | ‖ = ‖X‖ is true (as before for Frobenius, infinity,
one-norms but not for two-norms) we obtain ||δA|| ≤ 3nε||L|| · ||U||.
Thus, the Gaussian elimination is backward stable when
3nε||L|| · ||U|| = O(ε)||A|| since then

‖δA‖

‖A‖
= O(ε).

In this analysis we have used δb = 0.

52 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Estimating Condition Number

To compute a practical error bound based on a bound

‖δx‖ = ‖A−1r‖ ≤ ‖A−1‖‖r‖

we need to estimate ||A−1||. This is also enough to estimate the
condition number k(A) = ||A−1|| · ||A||, since ||A|| is easy to compute.
One approach is to compute A−1 explicitly and compute its norm.
However, this would cost 2n3, more than the original 2

3n
3 for Gaussian

elimination. It is a fact that most users will not bother to compute error
bounds if they are expensive.
So instead of computing A−1 we will devise a much cheaper algorithm to
estimate ||A−1||.

53 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Estimating Condition Numbers

Such an algorithm is called a condition estimator and should have
the following properties:

1. Given the L and U factors of A, it should cost O(n2), which for
large enough n is negligible compared to the 2

3n
3 cost of GEPP.

2. It should provide an estimate which is almost always within a
factor of 10 of ||A−1||. This is all one needs for an error bound
which tells you about how many decimal digits of accuracy that
you have.

54 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Estimating Condition Numbers

There are a variety of such estimators available. We choose one to
solve Ax = b.

This estimator is guaranteed to produce only a lower bound on
||A−1||, not an upper bound.

It is almost always within a factor of 10, and usually 2 to 3, of
||A−1||.

The algorithm estimates the one-norm ||B ||1 of a matrix B ,
provided that we can compute Bx and BT y for arbitrary x and y .
We will apply the algorithm to B = A−1, so we need to compute
A−1x and A−T y , i.e., solve linear systems. This costs just O(n2)
given the LU factorization of A.

55 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

The algorithm was developed in:
W. W. Hager. Condition estimators. SIAM J. Sci. Statist. Comput.,
5:311-316, 1984.
N. J. Higham. A survey of condition number estimation for triangular
matrices. SIAM Rev., 29:575-596, 1987.
N. J. Higham. Experience with a matrix norm estimator. SIAM J. Sci.
Statist. Comput., 11:804-809, 1990.
with the latest version in [N. J. Higham. FORTRAN codes for estimating
the one-norm of a real or complex matrix, with applications to condition
estimation. ACM Trans. Math. Software].

56 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Recall that ||B ||1 is defined by

||B ||1 = max
x 6=0

||Bx ||1

||x ||1
= max

j

n∑

i=1

|bij |.

It is easy to show that the maximum over x 6= 0 is attained at
x = ej0 [0, . . . , 0, 1, 0, . . . , 0]

T . (The single nonzero entry is component j0,
where maxj

∑
i |bij | occurs at j = j0.)

Searching over all ej , j = 1, . . . , n, means computing all columns of
B = A−1; this is too expensive. Instead, since
||Bx ||1 = max||x||1≤1 ||Bx ||1, we can use hill climbing or gradient ascent
on f (x) ≡ ||Bx ||1 inside the set ||x ||1 ≤ 1. ||x ||1 ≤ 1 is clearly a convex
set of vectors, and f (x) is a convex function, since 0 ≤ α ≤ 1 implies
f (αx + (1− α)y) = ||αBx + (1− α)By ||1 ≤ α||Bx ||1 + (1− α)||By ||1 =
αf (x) + (1− α)f (y).

57 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Doing gradient ascent to maximize f (x) means moving x in the
direction of the gradient ∇f (x) (if it exists) as long as f (x)
increases. The convexity of f (x) means
f (y) ≥ f (x) +∇f (x) · (y − x) (if ∇f (x) exists). To compute
∇f (x) we assume all

∑
j bijxj 6= 0 in f (x) =

∑
i |
∑

j |bijxj | (this is
almost always true). Let ζi = sign(

∑
j bijxj), so ζi = ±1 and

f (x) =
∑

i

∑
j ζibijxj . Then

∂f

∂xk
=
∑

i ζibik and

∇f = ζTB = (BT ζ)T .
In summary, to compute ∇f (x) takes three steps: ω = Bx ,
ζ = sign(ω) and ∇f (x) = ζTB .

58 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

ALGORITHM Hager’s condition estimator returns a lower bound
||ω||1 on ||B ||1:
choose any x such that ||x ||1 = 1 /∗ e.g . xi =

1
n
∗/

repeat
ω = Bx, ζ = sign(ω), z = BT ζ, /∗ zT = ∇f ∗/
if ||z ||∞ ≤ zT x then

return ||ω||1
else

x = ej where |zj | = ||z ||∞
end if
end repeat

59 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

THEOREM 1. When ||ω||1 is returned, ||ω||1 = ||Bx ||1 is a local
maximum of ||Bx ||1.
2. Otherwise, ||Bej || (at end of loop) > ||Bx || (at start), so the algorithm
has made progress in maximizing f (x).
Proof.
1. In this case, ||z ||∞ ≤ zT x (*). Near x , f (x) = ||Bx ||1 =

∑
i

∑
j ζibijxj

is linear in x so f (y) = f (x) +∇f (x) · (y − x) = f (x) + zT (y − x),
where zT = ∇f (x). To show x is a local maximum we want
zT (y − x) ≤ 0 when ||y ||1 = 1. We compute

zT (y − x) = zT y − zT x =
∑

i zi · yi − zT x ≤
∑

i |zi | · |yi | − zT x

≤ ||z ||∞ · ||y ||1 − zT x = ||z ||∞ − zT x︸ ︷︷ ︸
see(∗)

≤ 0.

2. In this case ||z ||∞ > zT x . Choose x̃ = ej · sign(zj), where j is chosen
so that |zj | = ||z ||∞. Then

f (x̃) = f (x) +∇f · (x̃ − x) = f (x) + zT (x̃ − x)
= f (x) + zT x̃ − zT x = f (x) + |zj | − zT x > f (x),

where the last inequality is true by construction. �
60 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Remarks on Theorem

Higham [FORTRAN codes for estimating the one-norm of a real or
complex matrix, with applications to condition estimation;
Experience with a matrix norm estimator] tested a slightly improved
version of this algorithm by trying many random matrices of sizes
10,25,50 and condition numbers k = 10, 103, 106, 109; in the worst
case the computed k underestimated the true k by a factor 0.44.

A different condition estimator is available in Matlab as rcond.

The Matlab routine cond computes the exact condition number
||A−1||2||A||2, it is much more expensive than rcond.

61 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Estimating the Relative Condition Number

We can apply the Hager’s algorithm to estimate the relative condition
number kCR(A) = || |A−1| · |A| ||∞ or to evaluate the bound
|| |A−1| · |r | ||∞. We can reduce both to the same problem, that of
estimating || |A−1| · g ||∞, where g is a vector of nonnegative entries. To
see why, let e be the vector of all ones. From definition of norm, we see
that ||X ||∞ = ||Xe||∞ if the matrix X has nonnegative entries. Then

|| |A−1| · |A| ||∞ = || |A−1| · |A|e ||∞ = || |A−1| · g ||∞,

where g = |A|e.

62 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Here is how we estimate || |A−1| · g ||∞. Let G = diag(g1, . . . , gn); then
g = Ge. Thus

|| |A−1| · g ||∞ = || |A−1| · Ge ||∞ = || |A−1| · G ||∞ =

= || |A−1G | ||∞ = ||A−1G ||∞.
(2.12)

The last equality is true because ||Y ||∞ = || |Y | ||∞ for any matrix Y .
Thus, it suffices to estimate the infinity norm of the matrix A−1G . We
can do this by applying Hager’s algorithm to the matrix
(A−1G)T = GA−T , to estimate ||(A−1G)T ||1 = ||A−1G ||∞ (see
definition of norm). This requires us to multiply by the matrix GA−T and
its transpose A−1G . Multiplying by G is easy since it is diagonal, and we
multiply by A−1 and A−T using the LU factorization of A.

63 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Practical Error Bounds

We present two practical error bounds for our approximate solution x̃ of
Ax = b. For the first bound we use inequality
||x̃ − x ||∞ ≤ ||A−1||∞ · ||r ||∞ to get

error =
||x̃ − x ||∞

||x̃ ||∞
≤ ||A−1||∞ ·

||r ||∞

||x̃ ||∞
, (2.13)

where r = Ax̃ − b is the residual. We estimate ||A−1||∞ by applying
Algorithm to B = A−T , estimating ||B ||1 = ||A−T ||1 = ||A−1||∞ (see
definition of norm).
Our second error bound comes from the inequality:

error =
||x̃ − x ||∞

||x̃ ||∞
≤

|||A−1| · |r |||∞

||x̃ ||∞
. (2.14)

We estimate |||A−1| · |r |||∞ using the algorithm based on equation (2.12).

64 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

What Can Go Wrong

Error bounds (2.13) and (2.14) are not guaranteed to provide
bounds in all cases in practice.

First, the estimate of ||A−1|| from Algorithm (or similar algorithms)
provides only a lower bound, although the probability is very low
that it is more than 10 times too small.

Second, there is a small but non-negligible probability that roundoff
in the evaluation of r = Ax̂ − b might make ||r || artificially small, in
fact zero, and so also make our computed error bound too small.
To take this possibility into account, one can add a small quantity
to |r | to account for it: the roundoff in evaluating r is bounded by

|(Ax̂ − b)− fl(Ax̂ − b)| ≤ (n + 1)ε(|A| · |x̂ |+ |b|), (2.15)

so we can replace |r | with |r |+ (n + 1)ε(|A| · |x̂ |+ |b|) in bound
(2.14) or ||r || with ||r ||+(n+1)ε(||A|| · ||x̂ ||+ ||b||) in bound (2.13).

Third, roundoff in performing Gaussian elimination on very
ill-conditioned matrices can yield such inaccurate L and U that
bound (2.14) is much too low. 65 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Invertible matrix

In linear algebra an n-by-n (square) matrix A is called invertible
(some authors use nonsingular or nondegenerate) if there exists an
n-by-n matrix B such that AB = BA = In, where In denotes the
n-by-n identity matrix and the multiplication used is ordinary matrix
multiplication. If this is the case, then the matrix B is uniquely
determined by A and is called the inverse of A, denoted by A−1. It
follows from the theory of matrices that if AB = I for finite square
matrices A and B , then also BA = I.

Non-square matrices (m-by-n matrices which do not have an
inverse). However, in some cases such a matrix may have a left
inverse or right inverse. If A is m-by-n and the rank of A is equal to
n, then A has a left inverse: an n-by-m matrix B such that BA = I .
If A has rank m, then it has a right inverse: an n-by-m matrix B
such that AB = I .

A square matrix that is not invertible is called singular or degenerate.
A square matrix is singular if and only if its determinant is 0.

66 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Methods of matrix inversion

Gaussian elimination

Gauss-Jordan elimination is an algorithm that can be used to
determine whether a given matrix is invertible and to find the
inverse.

An alternative is the LU decomposition which generates upper and
lower triangular matrices which are easier to invert. For special
purposes, it may be convenient to invert matrices by treating
mn-by-mn matrices as m-by-m matrices of n-by-n matrices, and
applying one or another formula recursively (other sized matrices
can be padded out with dummy rows and columns).

For other purposes, a variant of Newton’s method may be
convenient. Newton’s method is particularly useful when dealing
with families of related matrices: sometimes a good starting point
for refining an approximation for the new inverse can be the already
obtained inverse of a previous matrix that nearly matches the
current matrix.

67 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Eigendecomposition

Let A be a square n × n matrix. Let q1...qk be an eigenvector basis, i.e.
an indexed set of k linearly independent eigenvectors, where k is the
dimension of the space spanned by the eigenvectors of A. If k = n, then
A can be written

A = QUQ−1

where Q is the square n × n matrix whose i-th column is the basis
eigenvector qi of A, and U is the diagonal matrix whose diagonal
elements are the corresponding eigenvalues, i.e. Uii = λi .

68 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Properties

Let A be an n × n matrix with eigenvalues λi , i = 1, 2, . . . , n. Then

Trace of A

tr(A) =

n∑

i=1

λi = λ1 + λ2 + · · ·+ λn.

Determinant of A

det(A) =

n∏

i=1

λi = λ1λ2 · · ·λn.

Eigenvalues of Ak are λk
1 , . . . , λ

k
n .

These first three results follow by putting the matrix in
upper-triangular form, in which case the eigenvalues are on the
diagonal and the trace and determinant are respectively the sum
and product of the diagonal.

If A = AH , i.e., A is Hermitian (A = AT), every eigenvalue is real.

Every eigenvalue of unitary matrix U (U∗U = UU∗ = I) has
absolute value |λ| = 1. 69 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Example

We take a 2× 2 matrix

A =

[
1 0
1 3

]

and want it to be decomposed into a diagonal matrix. First, we
multiply to a non-singular matrix

B =

[
a b
c d

]
, [a, b, c , d] ∈ R.

Then[
a b
c d

]
−1

[
1 0
1 3

] [
a b
c d

]
=

[
x 0
0 y

]
,

for some real diagonal matrix[
x 0
0 y

]
.

Shifting B to the right hand side:[
1 0
1 3

] [
a b
c d

]
=

[
a b
c d

] [
x 0
0 y

]

70 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

The above equation can be decomposed into 2 simultaneous
equations:

[
1 0

1 3

][
a

c

]
=

[
ax

cx

]

[
1 0

1 3

][
b

d

]
=

[
by

dy

]

Factoring out the eigenvalues x and y :

[
1 0

1 3

][
a

c

]
= x

[
a

c

]

[
1 0

1 3

][
b

d

]
= y

[
b

d

]

Letting

−→a =

[
a
c

]
,
−→
b =

[
b
d

]
,

this gives us two vector equations:{
A−→a = x−→a

A
−→
b = y

−→
b

71 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

And can be represented by a single vector equation involving 2
solutions as eigenvalues:
Au = λu
where λ represents the two eigenvalues x and y, u represents the

vectors −→a and
−→
b .

Shifting λu to the left hand side and factorizing u out
(A− λI)u = 0
Since B is non-singular, it is essential that u is non-zero. Therefore,
(A− λI) = 0

Considering the determinant of (A− λI),[
1− λ 0
1 3− λ

]
=0

Thus
(1− λ)(3− λ) = 0

72 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Giving us the solutions of the eigenvalues for the matrix A as
λ = 1 or λ = 3, and the resulting diagonal matrix from the
eigendecomposition of A is thus[
1 0
0 3

]
.

Putting the solutions back into the above simultaneous equations

[
1 0

1 3

][
a

c

]
= 1

[
a

c

]

[
1 0

1 3

][
b

d

]
= 3

[
b

d

]

Solving the equations, we have a = −2c , a ∈ R and b = 0, d ∈ R

Thus the matrix B required for the eigendecomposition of A is[
−2c 0
c d

]
, [c, d]∈ R.i .e. :

[
−2c 0
c d

]
−1

[
1 0
1 3

] [
−2c 0
c d

]
=

[
1 0
0 3

]
, [c , d] ∈ R

73 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Methods of matrix inversion

Eigendecomposition

If matrix A can be eigendecomposed and if none of its eigenvalues
are zero, then A is nonsingular and its inverse is given by
A−1 = QΛ−1Q−1.

Furthermore, because U is a diagonal matrix, its inverse is easy to
calculate:

[
Λ−1

]
ii
= 1

λi
.

Cholesky decomposition

If matrix A is positive definite, then its inverse can be obtained as
A−1 = (L∗)−1L−1 , where L is the lower triangular Cholesky
decomposition of A.

74 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Methods of matrix inversion

Analytic solution

Writing the transpose of the matrix of cofactors, known as an
adjugate matrix, can also be an efficient way to calculate the inverse
of small matrices, but this recursive method is inefficient for large
matrices. To determine the inverse, we calculate a matrix of
cofactors:

A−1 =
1∣∣A
∣∣
(
CT
)
ij
=

1∣∣A
∣∣ (Cji) =

1∣∣A
∣∣

C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

. . .
...

C1n C2n · · · Cnn

where |A| is the determinant of A,Cij is the matrix of cofactors, and
CT represents the matrix transpose.

75 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Inversion of 2× 2 matrices

The cofactor equation listed above yields the following result for
2× 2 matrices. Inversion of these matrices can be done easily as
follows:

A−1 =

[
a b
c d

]−1

=
1

det(A)

[
d −b

−c a

]
=

1

ad − bc

[
d −b

−c a

]
.

This is possible because 1/(ad − bc) is the reciprocal of the
determinant of the matrix in question, and the same strategy could
be used for other matrix sizes.

76 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Inversion of 3× 3 matrices

A computationally efficient 3× 3 matrix inversion is given by

A−1 =

a b c
d e f
g h k

−1

=
1

det(A)

A B C
D E F
G H K

T

=
1

det(A)

A D G
B E H
C F K

where the determinant of A can be computed by applying the rule
of Sarrus as follows:
det(A) = a(ek − fh)− b(kd − fg) + c(dh − eg).
If the determinant is non-zero, the matrix is invertible, with the
elements of the above matrix on the right side given by

A = (ek − fh) D = (ch − bk) G = (bf − ce)
B = (fg − dk) E = (ak − cg) H = (cd − af)
C = (dh − eg) F = (gb − ah) K = (ae − bd).

77 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Eigenvalues and eigenvectors

The vector x is an eigenvector of the matrix A with eigenvalue λ
(lambda) if the following equation holds: Ax = λx.

If the eigenvalue λ > 1, x is stretched by this factor. If λ = 1, the
vector x is not affected at all by multiplication by A. If 0 < λ < 1,
x is shrunk (or compressed). The case λ = 0 means that x shrinks
to a point (represented by the origin), meaning that x is in the
kernel of the linear map given by A. If λ < 0 then x flips and points
in the opposite direction as well as being scaled by a factor equal to
the absolute value of λ.

As a special case, the identity matrix I is the matrix that leaves all
vectors unchanged: Ix = 1x = x.,

Every non-zero vector x is an eigenvector of the identity matrix with
eigenvalue λ = 1.

78 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Eigenvalues and eigenvectors

The eigenvalues of A are precisely the solutions λ to the equation
det(A− λI) = 0.

Here det is the determinant of the matrix formed by A− λI . This
equation is called the characteristic equation of A. For example, if A
is the following matrix (a so-called diagonal matrix):

A =

a1,1 0 · · · 0
0 a2,2 · · · 0
...

...
. . . 0

0 0 0 an,n

 ,

then the characteristic equation reads

79 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

80 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

det(A− λI) = det

a1,1 0 · · · 0
0 a2,2 · · · 0
...

...
. . . 0

0 0 0 an,n

− λ

1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 0 1

= det

a1,1 − λ 0 · · · 0
0 a2,2 − λ · · · 0
...

...
. . . 0

0 0 0 an,n − λ

= (a1,1 − λ)(a2,2 − λ) · · · (an,n − λ) = 0.

The solutions to this equation are the eigenvalues λi = ai , i(i = 1, ..., n).
The eigenvalue equation for a matrix A can be expressed as
Ax− λIx = 0,
which can be rearranged to (A− λI)x = 0.

A criterion from linear algebra states that a matrix (here: A− λI) is
non-invertible if and only if its determinant is zero, thus leading to the
characteristic equation. 81 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Example

A =

[
2 1
1 2

]
.

The characteristic equation of this matrix reads

det(A− λI) = det

[
2− λ 1
1 2− λ

]
= 0.

Calculating the determinant, this yields the quadratic equation
λ2 − 4λ+3 = 0, whose solutions (also called roots) are λ = 1 and λ = 3.
The eigenvectors for the eigenvalue λ = 3 are determined by using the
eigenvalue equation, which in this case reads

[
2 1
1 2

] [
x
y

]
= 3

[
x
y

]
.

This equation reduces to a system of the following two linear equations:

2x + y = 3x ,

x + 2y = 3y .

82 / 83

Solving Ax = b using Gaussian elimination
LU factorization

Estimates for Condition Number

Example

Both equations reduce to the single linear equation x = y . Or any vector
of the form (x , y) with y = x is an eigenvector to the eigenvalue λ = 3.
However, the vector (0, 0) is excluded. A similar calculation shows that
the eigenvectors corresponding to the eigenvalue λ = 1 are given by
non-zero vectors (x , y) such that y = −x . For example, an eigenvector
corresponding to λ = 1 is [

−1
1

]

whereas an eigenvector corresponding to λ = 3 is

[
1
1

]
.

83 / 83

	Solving Ax=b using Gaussian elimination
	LU factorization
	Estimates for Condition Number

