
Linear Equation Solving

Applied Numerical Linear Algebra. Lecture 5

1 / 70

Linear Equation Solving

Estimating Condition Numbers

To compute a practical error bound based on a bound (see Lecture 3)

‖δx‖ = ‖A−1r‖ ≤ ‖A−1‖‖r‖

we need to estimate ||A−1||. This is also enough to estimate the
condition number k(A) = ||A−1|| · ||A||, since ||A|| is easy to compute.
One approach is to compute A−1 explicitly and compute its norm.
However, this would cost 2n3, more than the original 2

3n
3 for Gaussian

elimination. It is a fact that most users will not bother to compute error
bounds if they are expensive.
So instead of computing A−1 we will devise a much cheaper algorithm to
estimate ||A−1||.

2 / 70

Linear Equation Solving

Estimating Condition Numbers

Such an algorithm is called a condition estimator and should have
the following properties:

1. Given the L and U factors of A, it should cost O(n2), which for
large enough n is negligible compared to the 2

3n
3 cost of GEPP.

2. It should provide an estimate which is almost always within a
factor of 10 of ||A−1||. This is all one needs for an error bound
which tells you about how many decimal digits of accuracy that
you have.

3 / 70

Linear Equation Solving

Estimating Condition Numbers

There are a variety of such estimators available. We choose one to
solve Ax = b.

This estimator is guaranteed to produce only a lower bound on
||A−1||, not an upper bound.

It is almost always within a factor of 10, and usually 2 to 3, of
||A−1||.
The algorithm estimates the one-norm ||B ||1 of a matrix B ,
provided that we can compute Bx and BT y for arbitrary x and y .
We will apply the algorithm to B = A−1, so we need to compute
A−1x and A−T y , i.e., solve linear systems. This costs just O(n2)
given the LU factorization of A.

4 / 70

Linear Equation Solving

The algorithm was developed in:
W. W. Hager. Condition estimators. SIAM J. Sci. Statist. Comput.,
5:311-316, 1984.
N. J. Higham. A survey of condition number estimation for triangular
matrices. SIAM Rev., 29:575-596, 1987.
N. J. Higham. Experience with a matrix norm estimator. SIAM J. Sci.
Statist. Comput., 11:804-809, 1990.
with the latest version in [N. J. Higham. FORTRAN codes for estimating
the one-norm of a real or complex matrix, with applications to condition
estimation. ACM Trans. Math. Software].

5 / 70

Linear Equation Solving

Recall that ||B ||1 is defined by

||B ||1 = max
x 6=0

||Bx ||1
||x ||1

= max
j

n∑

i=1

|bij |.

It is easy to show that the maximum over x 6= 0 is attained at
x = ej0 [0, . . . , 0, 1, 0, . . . , 0]

T . (The single nonzero entry is component j0,
where maxj

∑
i |bij | occurs at j = j0.)

Searching over all ej , j = 1, . . . , n, means computing all columns of
B = A−1; this is too expensive. Instead, since
||Bx ||1 = max||x||1≤1 ||Bx ||1, we can use hill climbing or gradient ascent
on f (x) ≡ ||Bx ||1 inside the set ||x ||1 ≤ 1. ||x ||1 ≤ 1 is clearly a convex
set of vectors, and f (x) is a convex function, since 0 ≤ α ≤ 1 implies
f (αx + (1− α)y) = ||αBx + (1− α)By ||1 ≤ α||Bx ||1 + (1− α)||By ||1 =
αf (x) + (1− α)f (y).

6 / 70

Linear Equation Solving

Doing gradient ascent to maximize f (x) means moving x in the
direction of the gradient ∇f (x) (if it exists) as long as f (x)
increases. The convexity of f (x) means
f (y) ≥ f (x) +∇f (x) · (y − x) (if ∇f (x) exists). To compute
∇f (x) we assume all

∑
j bijxj 6= 0 in f (x) =

∑
i

∑
j |bijxj | (this is

almost always true). Let ζi = sign(
∑

j bijxj), so ζi = ±1 and

f (x) =
∑

i

∑
j ζibijxj . Then

∂f

∂xk
=

∑
i ζibik and

∇f = ζTB = (BT ζ)T .
In summary, to compute ∇f (x) takes three steps: ω = Bx ,
ζ = sign(ω) and ∇f (x) = ζTB .

7 / 70

Linear Equation Solving

ALGORITHM Hager’s condition estimator returns a lower bound
||ω||1 on ||B ||1:
choose any x such that ||x ||1 = 1 /∗ e.g . xi =

1
n
∗/

repeat
ω = Bx, ζ = sign(ω), z = BT ζ, /∗ zT = ∇f ∗/
if ||z ||∞ ≤ zT x then

return ||ω||1
else

x = ej with 1 at the place j where |zj | = ||z ||∞
end if
end repeat

8 / 70

Linear Equation Solving

Implementation in Matlab

x=(1/length(B))*ones(length(B),1);

iter=1;

while iter < 1000

w=B*x; xi=sign(w); z = B’*xi;

if max(abs(z)) <= z’*x

break

else

x= (max(abs(z))== abs(z));

end

iter = iter + 1;

end

LowerBound = norm(w,1);

end

9 / 70

Linear Equation Solving

THEOREM 1. When ||ω||1 is returned, ||ω||1 = ||Bx ||1 is a local
maximum of ||Bx ||1.
2. Otherwise, ||Bej || (at end of loop) > ||Bx || (at start), so the algorithm
has made progress in maximizing f (x).
Proof.
1. In this case, ||z ||∞ ≤ zT x (*). Near x , f (x) = ||Bx ||1 =

∑
i

∑
j ζibijxj

is linear in x so f (y) = f (x) +∇f (x) · (y − x) = f (x) + zT (y − x),
where zT = ∇f (x). To show x is a local maximum we want
zT (y − x) ≤ 0 when ||y ||1 = 1. We compute

zT (y − x) = zT y − zT x =
∑

i zi · yi − zT x ≤
∑

i |zi | · |yi | − zT x

≤ ||z ||∞ · ||y ||1 − zT x = ||z ||∞ − zT x︸ ︷︷ ︸
see(∗)

≤ 0.

2. In this case ||z ||∞ > zT x . Choose x̃ = ej · sign(zj), where j is chosen
so that |zj | = ||z ||∞. Then

f (x̃) = f (x) +∇f · (x̃ − x) = f (x) + zT (x̃ − x)
= f (x) + zT x̃ − zT x = f (x) + |zj | − zT x > f (x),

where the last inequality is true by construction. �
10 / 70

Linear Equation Solving

Remarks

Higham [FORTRAN codes for estimating the one-norm of a real or
complex matrix, with applications to condition estimation; Experience
with a matrix norm estimator] tested a slightly improved version of this
algorithm by trying many random matrices of sizes 10,25,50 and
condition numbers k = 10, 103, 106, 109; in the worst case the computed
k underestimated the true k by a factor .44. A different condition
estimator is available in Matlab as rcond. The Matlab routine cond
computes the exact condition number ||A−1||2||A||2, it is much more
expensive than rcond.

11 / 70

Linear Equation Solving

Estimating the Relative Condition Number

We can apply the Hager’s algorithm to estimate the relative condition
number kCR(A) = || |A−1| · |A| ||∞ or to evaluate the bound
|| |A−1| · |r | ||∞. We can reduce both to the same problem, that of
estimating || |A−1| · g ||∞, where g is a vector of nonnegative entries. To
see why, let e be the vector of all ones. From definition of norm, we see
that ||X ||∞ = ||Xe||∞ if the matrix X has nonnegative entries. Then

|| |A−1| · |A| ||∞ = || |A−1| · |A|e ||∞ = || |A−1| · g ||∞,

where g = |A|e.

12 / 70

Linear Equation Solving

Here is how we estimate || |A−1| · g ||∞. Let G = diag(g1, . . . , gn); then
g = Ge. Thus

|| |A−1| · g ||∞ = || |A−1| · Ge ||∞ = || |A−1| · G ||∞ =

= || |A−1G | ||∞ = ||A−1G ||∞.
(2.12)

The last equality is true because ||Y ||∞ = || |Y | ||∞ for any matrix Y .
Thus, it suffices to estimate the infinity norm of the matrix A−1G . We
can do this by applying Hager’s algorithm to the matrix
(A−1G)T = GA−T , to estimate ||(A−1G)T ||1 = ||A−1G ||∞ (see
definition of norm).

13 / 70

Linear Equation Solving

Practical Error Bounds

We present two practical error bounds for our approximate solution x̃ of
Ax = b. For the first bound we use inequality
||x̃ − x ||∞ ≤ ||A−1||∞ · ||r ||∞ to get

error =
||x̃ − x ||∞
||x̃ ||∞

≤ ||A−1||∞ · ||r ||∞||x̃ ||∞
, (2.13)

where r = Ax̃ − b is the residual. We estimate ||A−1||∞ by applying
Algorithm to B = A−T , estimating ||B ||1 = ||A−T ||1 = ||A−1||∞ (see
definition of norm).
Our second error bound comes from the inequality:

error =
||x̃ − x ||∞
||x̃ ||∞

≤
|||A−1| · |r |||∞

||x̃ ||∞
. (2.14)

We estimate |||A−1| · |r |||∞ using the algorithm based on equation (2.12).

14 / 70

Linear Equation Solving

What Can Go Wrong

Error bounds (2.13) and (2.14) are not guaranteed to provide
bounds in all cases in practice.

First, the estimate of ||A−1|| from Algorithm (or similar algorithms)
provides only a lower bound, although the probability is very low
that it is more than 10 times too small.

Second, there is a small but non-negligible probability that roundoff
in the evaluation of r = Ax̂ − b might make ||r || artificially small, in
fact zero, and so also make our computed error bound too small.
To take this possibility into account, one can add a small quantity
to |r | to account for it: the roundoff in evaluating r is bounded by

|(Ax̂ − b)− fl(Ax̂ − b)| ≤ (n + 1)ε(|A| · |x̂ |+ |b|), (2.15)

so we can replace |r | with |r |+ (n + 1)ε(|A| · |x̂ |+ |b|) in bound
(2.14) or ||r || with ||r ||+(n+1)ε(||A|| · ||x̂ ||+ ||b||) in bound (2.13).

Third, roundoff in performing Gaussian elimination on very
ill-conditioned matrices can yield such inaccurate L and U that
bound (2.14) is much too low.

15 / 70

Linear Equation Solving

Improving the Accuracy of a Solution

We have just seen that the error in solving Ax = b may be as large
as k(A)ε. If this error is too large, what can we do? One
possibility is to rerun the entire computation in higher precision,
but this may be quite expensive in time and space. Fortunately, as
long as k(A) is not too large, there are much cheaper methods
available for getting a more accurate solution.

16 / 70

Linear Equation Solving

Improving the Accuracy of a Solution

To solve any equation f (x) = 0, we can try to use Newton’s method to

improve an approximate solution xi to get xi+1 = xi − f (xi)
f ′(xi)

. Applying

this to f (x) = Ax − b yields one step of iterative refinement:

r = Axi − b
solveAd = r for d
xi+1 = xi − d

If we could compute r = Axi − b exactly and solve Ad = r exactly, we
would be done in one step, which is what we expect from Newton applied
to a linear problem. Roundoff error prevents this immediate convergence.
The algorithm is interesting and of use precisely when A is so
ill-conditioned that solving Ad = r (and Ax0 = b) is rather inaccurate.

17 / 70

Linear Equation Solving

Suppose that r is computed in double precision and
k(A) · ε < c ≡ 1

3n3g+1 < 1 where n is the dimension of A and g is the
pivot growth factor. Then repeated iterative refinement converges with

||xi − A−1b||∞
||A−1b||∞

= O(ε).

Note that the condition number does not appear in the final error bound.
This means that we compute the answer accurately independent of the
condition number, provided that k(A)ε is sufficiently less than 1.(In
practice, c is too conservative an upper bound, and the algorithm often
succeeds even when k(A)ε > c.)

For partial pivoting of n × n matrices g ≤ 2n−1. The classical definition
used by Wilkinson is (k is the number of permut.):

g(A) :=
maxi,j,k |aij |(k)
maxi,j |aij |

.

Another definition for LU decomposition of A is:

g(A) :=
‖|L| · |U|‖∞

‖A‖∞
.

18 / 70

Linear Equation Solving

Single Precision Iterative Refinement

THEOREM.
Suppose that r is computed in single precision and

||A−1||∞ · ||A||∞ · maxi (|A| · |x |)i
mini (|A| · |x |)i

· ε < 1.

Then one step of iterative refinement yields x1 such that
(A+ δA)x1 = b + δb with |δaij | = O(ε)|aij | and |δbi | = O(ε)|bi |. In
other words, the componentwise relative backward error is as small as
possible. For example, this means that if A and b are sparse, then δA and
δb have the same sparsity structures as A and b, respectively.

19 / 70

Linear Equation Solving

For a proof, see
N. J. Higham. Accuracy and Stability of Numerical Algorithms.
SIAM, Philadelphia, PA, 1996.
M. Arioli, J. Demmel, and I. S. Duff. Solving sparse linear systems
with sparse backward error. SIAM J. Matrix Anal. AppL,
10:165-190, 1989.
R. D. Skeel. Scaling for numerical stability in Gaussian elimination.
Journal of the ACM, 26:494-526, 1979.
R. D. Skeel. Iterative refinement implies numerical stability for
Gaussian elimination. Math. Comp., 35:817-832, 1980.
R. D. Skeel. Effect of equilibration on residual size for partial
pivoting. SIAM J. Numer. Anal, 18:449-454, 1981.
Single precision iterative refinement and the error bound (2.14) are
implemented in LAPACK routines like sgesvx.

20 / 70

Linear Equation Solving

Equilibration

There is one more common technique for improving the error in
solving a linear system: equilibration. This refers to choosing an
appropriate diagonal matrix D and solving DAx = Db instead of
Ax = b. D is chosen to try to make the condition number of DA
smaller than that of A.

For instance, choosing dii to be the reciprocal of the two-norm of
row i of A would make DA nearly equal to the identity matrix,
reducing its condition number from 1014 to 1.

It is possible to show that choosing D this way reduces the condition
number of DA to within a factor of

√
n of its smallest possible value

for any diagonal D [A. Van Der Sluis. Condition numbers and
equilibration of matrices. Numer. Math., 14:14-23, 1969].

In practice we may also choose two diagonal matrices Drow and Dcol

and solve (DrowADcol)x̄ = Drowb, x = Dcol x̄ and thus
DrowAx = Drowb.

21 / 70

Linear Equation Solving

Special Linear Systems

It is important to exploit any special structure of the matrix to increase
speed of solution and decrease storage. We will consider only real
matrices:

s.p.d. matrices,

symmetric indefinite matrices,

band matrices,

general sparse matrices,

dense matrices depending on fewer than n2 independent parameters.

22 / 70

Linear Equation Solving

Real Symmetric Positive Definite Matrices

Recall that a real matrix A is s.p.d. if and only if A = AT and xTAx > 0
for all x 6= 0. In this section we will show how to solve Ax = b in half the
time and half the space of Gaussian elimination when A is s.p.d.
PROPOSITION.
1. If X is nonsingular, then A is s.p.d. if and only if XTAX is s.p.d.
2. If A is s.p.d. and H is any principal submatrix of A(H = A(j : k , j : k)
for some j ≤ k), then H is s.p.d.
3. A is s.p.d. if and only if A = AT and all its eigenvalues are positive.
4. If A is s.p.d., then all aii > 0, and maxij |aij | = maxi aii > 0.
5. A is s.p.d. if and only if there is a unique lower triangular nonsingular
matrix L, with positive diagonal entries, such that A = LLT . A = LLT is
called the Cholesky factorization of A, and L is called the Cholesky factor
of A.

23 / 70

Linear Equation Solving

Proof.
1. If X is nonsingular, then A is s.p.d. if and only if XTAX is
s.p.d.
X nonsingular implies Xx 6= 0 for all x 6= 0, so xTXTAXx > 0 for
all x 6= 0. So A s.p.d. implies XTAX is s.p.d. Use X−1 to deduce
the other implication.

24 / 70

Linear Equation Solving

2. If A is s.p.d. and H is any principal submatrix of
A(H = A(j : k , j : k) for some j ≤ k), then H is s.p.d.
Suppose first that H = A(1 : m, 1 : m). Then given any m-vector
y , the n-vector x = [yT ,O]T satisfies yTHy = xTAx . So if
xTAx > 0 for all nonzero x , then yTHy > 0 for all nonzero y , and
so H is s.p.d. If H does not lie in the upper left corner of A, let P
be a permutation so that H does lie in the upper left corner of
PTAP and apply Part 1.

25 / 70

Linear Equation Solving

3. A is s.p.d. if and only if A = AT and all its eigenvalues are
positive.
Let X be the real, orthogonal eigenvector matrix of A so that
XTAX =

∧
is the diagonal matrix of real eigenvalues λi . Since

xT
∧
x =

∑
i λix

2
i ,

∧
is s.p.d. if and only if each λi > 0. Now

apply Part 1.

26 / 70

Linear Equation Solving

4. If A is s.p.d., then all aii > 0, and maxij |aij | = maxi aii > 0.
Let ei be the ith column of the identity matrix. Then
eTi Aei = aii > 0 for all i . If |akl | = maxij |aij | but k 6= l , choose
x = ek − sign(akl)el . Then xTAx = akk + all − 2|akl | ≤ 0,
contradicting positive-definiteness.

27 / 70

Linear Equation Solving

5. A is s.p.d. if and only if there is a unique lower triangular
nonsingular matrix L, with positive diagonal entries, such
that A = LLT . A = LLT is called the Cholesky factorization of
A, and L is called the Cholesky factor of A.
Suppose A = LLT with L nonsingular. Then
xTAx = (xTL)(LT x) = ||LT x ||22 > 0 for all x 6= 0, so A is s.p.d. If
A is s.p.d., we show that L exists by induction on the dimension n.
If we choose each lii > 0, our construction will determine L
uniquely. If n = 1, choose l11 =

√
a11, which exists since a11 > 0.

As with Gaussian elimination, it suffices to understand the block
2-by-2 case.

28 / 70

Linear Equation Solving

Write

A =

[
a11 A12

AT
12 A22

]

=

[√
a11 0
AT
12√
a11

I

] [
1 0

0 Ã22

] [√
a11

A12√
a11

0 I

]

=

[
a11 A12

AT
12 Ã22 +

AT
12A12

a11

]
,

so the (n − 1)-by-(n − 1) matrix Ã22 +
AT
12A12

a11
is symmetric.

29 / 70

Linear Equation Solving

We note to the previous slide (here we write how we can obtain
elements in the last matrix on the previous slide) that

A =

[
a11 A12

AT
12 A22

]
= LLT =

=

[√
a11 0

y L̃22

] [√
a11 yT

0 L̃T22

]

=

[
a11

√
a11y

T

√
a11y yyT + L̃22L̃

T
22

]
,

and thus A12 =
√
a11y such that we can find y = A12√

a11
and

A22 = yyT + L̃22L̃
T
22 = Ã22 +

AT
12A12

a11
with Ã22 = L̃22L̃

T
22.

30 / 70

Linear Equation Solving

By Part 1 above,

[
1 0

0 Ã22

]
is s.p.d, so by Part 2 Ã22 is s.p.d.

Thus by induction there exists an L̃ such that Ã22 = L̃L̃T and

A =

[√
a11 0
AT
12√
a11

I

] [
1 0

0 L̃L̃T

] [√
a11

A12√
a11

0 I

]

=

[√
a11 0
AT
12√
a11

L̃

][√
a11

A12√
a11

0 L̃T

]
≡ LLT . �

31 / 70

Linear Equation Solving

We may rewrite this induction as the following algorithm.

ALGORITHM Cholesky algorithm:
for j = 1 to n
ljj = (ajj −

∑j−1
k=1 l

2
jk)

1/2

for i = j + 1 to n
lij = (aij −

∑j−1
k=1 lik ljk)/ljj

end for
end for

If A is not positive definite, then (in exact arithmetic) this
algorithm will fail by attempting to compute the square root of a
negative number or by dividing by zero; this is the cheapest way to
test if a symmetric matrix is positive definite.

32 / 70

Linear Equation Solving

The number of flops in Cholesky algorithm

In Cholesky algorithm L can overwrite the lower half of A. Only the lower
half of A is referred to by the algorithm, so in fact only n(n + l)/2
storage is needed instead of n2. The number of flops is

Number of operations in Cholesky algorithm

=
n∑

j=1


2j +

n∑

i=j+1

2j


 =

1

3
n3 + O(n2).

(1)

The number of operations for LU decomposition is 2
3n

3 + O(n2).
Pivoting is not necessary for Cholesky to be numerically stable. We show
this as follows. The same analysis as for Gaussian elimination reveals that
we will have similar formula for error E in Cholesky decomposition as in
the LU decomposition:

A = LLT + E ,

where error in Cholesky decomposition will be bounded as

|E | ≤ nǫ|L| · |LT |.

33 / 70

Linear Equation Solving

Example: solution of Poisson’s equation

The model problem is the following Dirichlet problem for Poisson’s
equation:

−△u(x) = f (x) in Ω,

u = 0 on ∂Ω.
(2)

Here f (x) is a given function, u(x) is the unknown function, and the
domain Ω is the unit square Ω = {(x1, x2) ∈ (0, 1)× (0, 1)}. To solve
numerically (2) we first discretize the domain Ω with x1i = ih1 and
x2j = jh2, where h1 = 1/(ni − 1) and h2 = 1/(nj − 1) are the mesh sizes
in the directions x1, x2, respectively, ni and nj are the numbers of
discretization points in the directions x1, x2, respectively. In this example
we choose ni = nj = n with n = N + 2, where N is the number of inner
nodes in the directions x1, x2, respectively.
Indices (i , j) are such that 0 < i , j < n + 1 and are associated with every
global node nglob of the finite difference mesh. Global nodes numbers
nglob in two-dimensional case can be computed as:

nglob = j + ni (i − 1). (3)

34 / 70

Linear Equation Solving

We use the standard finite difference discretization of the Laplace
operator ∆u in two dimensions and obtain discrete laplacian ∆ui,j :

∆ui,j =
ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

h2
, (4)

where ui,j is the solution at the discrete point (i , j). Using (4), we obtain
the following scheme for solving problem (2):

−
(
ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

h2

)
= fi,j , (5)

where fi,j are the value of the function f at the discrete point (i , j).
Then (5) can be rewritten as

− (ui+1,j − 2ui,j + ui−1,j + ui,j+1 − 2ui,j + ui,j−1) = h2fi,j , (6)

or in the more convenient form as

− ui+1,j + 4ui,j − ui−1,j − ui,j+1 − ui,j−1 = h2fi,j . (7)

35 / 70

Linear Equation Solving

System (7) can be written in the form Au = b. The vector b has the
components bi,j = h2fi,j . The explicit elements of the matrix A are given
by the following block matrix

A =




AN −IN

−IN
. . .

. . .
. . .

. . . −IN
−IN AN




with blocks AN of order N given by

AN =




4 −1 0 0 · · · 0
−1 4 −1 0 · · · 0
0 −1 4 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 −1 4




,

which are located on the diagonal of the matrix A, and blocks with the
identity matrices −IN of order N on its off-diagonals. The matrix A is
symmetric and positive definite and we can use the LU factorization
algorithm without pivoting.

36 / 70

Linear Equation Solving

Suppose, that we have discretized the two-dimensional domain Ω as
described above with N = ni = nj = 3. We present the schematic
discretization via the global nodes numbering for all 1 ≤ i , j < n + 1

nglob = j + ni (i − 1).

in the following scheme:



a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


 =⇒




n1 n2 n3
n4 n5 n6
n7 n8 n9


 =⇒




1 2 3
4 5 6
7 8 9


 .

(8)
Then the explicit form of the block matrix A will be:

A =




4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4




.

37 / 70

Linear Equation Solving

Example 8.2: Gaussian elimination for solution of Poisson’s
equation

We illustrate the numerical solution of problem (2). We define the right
hand side f (x) of (2) as

f (x1, x2) = Af exp

(
− (x1 − c1)

2

2s21
− (x2 − c2)

2

2s22

)
1

a(x1, x2)
, (9)

The coefficient a(x1, x2) in (9) is given by the following Gaussian function:

a(x1, x2) = 1 + A exp

(
− (x1 − c1)

2

2s21
− (x2 − c2)

2

2s22

)
, (10)

Here A, Af are the amplitudes of these functions, c1, c2 are constants
which show the location of the center of the Gaussian functions, and
s1, s2 are constants which show spreading of the functions in x1 and x2
directions.
We produce the mesh with the points (x1i , x2j) such that
x1i = ih, x2j = jh with h = 1/(N +1), where N is the number of the inner
points in x1 and x2 directions. The linear system of equations Au = f is
solved then via the LU factorization of the matrix A without pivoting.

38 / 70

Linear Equation Solving

Example 8.2: solution of Poisson’s equation using LU
factorization

0 0.2 0.4 0.6 0.8 1

x
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x

2

u(x
1

,x
2

) with A = 12, N = 60

0

1

2

3

4

5

10 -3

0

1

1

2

1

3

u
(x

1
,x

2
)

10 -3

4

u(x
1

,x
2

) with A = 12, N = 60

x
2

0.5

5

x
1

6

0.5

0 0
0

1

2

3

4

5

10 -3

10

1

10.5

11

1

11.5

a
(x

1
,x

2
)

12

0.8

a(x
1

,x
2

) with A = 12

x
2

0.5

12.5

0.6

x
1

13

0.4
0.2

0 0

0.75

1

0.8

0.85

1

f(
x

1
,x

2
) 0.9

0.8

f(x
1

,x
2

) with A
f
 = 1

x
2

0.95

0.5 0.6

x
1

1

0.4
0.2

0 0

Figure: Solution of Poisson’s equation (2) with f (x1, x2) as in (9) and
a(x1, x2) as in (10).

39 / 70

Linear Equation Solving

Example 8.4.4: solution of Poisson’s equation using
Cholesky factorization

f (x1, x2) = 1+10e

(

−
(x1−0.25)2

0.02 −
(x2−0.25)2

0.02

)

+10e

(

−
(x1−0.75)2

0.02 −
(x2−0.75)2

0.02

)

(11)

0 0.2 0.4 0.6 0.8 1

x
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

u(x
1

,x
2

) with N = 30

0

0.02

0.04

0.06

0.08

0.1

0.12

0

1

0.05

1

u
(x

1
,x

2
)

0.1

u(x
1

,x
2

) with N = 30

x
2

0.5

x
1

0.15

0.5

0 0
0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

x
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

u(x
1

,x
2

) with N = 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0

1

0.05

1

u
(x

1
,x

2
)

0.1

u(x
1

,x
2

) with N = 60

x
2

0.5

x
1

0.15

0.5

0 0
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure: Solution of Poisson’s equation (2) with f (x1, x2) as in (11).
40 / 70

Linear Equation Solving

Computer exercise 4 (3 p.)

This exercise can be viewed as a training example for Master’s project
“Efficient implementation of Helmholtz equation with applications in
medical imaging”, see Master’s projects homepage and Lecture 1. Solve
the Helmholtz equation

∆u(x , ω) + ω2ε′(x)u(x , ω) = iωJ,

lim
|x|→∞

u (x , ω) = 0. (12)

in two dimensions using PETSC. Here, ε′(x) is the spatially distributed
complex dielectric function which can be expressed as

ε′(x) = εr (x)
1

c2
− iµ0

σ(x)

ω
, (13)

where εr (x) = ε(x)/ε0 and σ(x) are the dimensionless relative dielectric
permittivity and electric conductivity functions, respectively, ε0, µ0 are
the permittivity and permeability of the free space, respectively, and
c = 1/

√
ε0µ0 is the speed of light in free space, and ω is the angular

frequency.
Take appropriate values for ω, ε

′
, J. For example, take

ω = {40, 60, 80, 100}, εr = {2, 4, 6};σ = {5, 0.5, 0.05}, J = 1.
41 / 70

Linear Equation Solving

Hints (more information see on the course page):

1. Study Example 12.5 of [BKK] where is presented solution of the
Dirichlet problem for the Poisson’s equation using PETSc. PETSc
programs for solution of this problem are available download from
the course homepage: go to the link of the book [BKK] and click to
“GitHub Page with MATLAB R© Source Codes” on the bottom of
this page.

2. Modify PETSc code of the Example 12.5 of [BKK], or PETSc code
on the course homepage (see it at the end of this lecture) such that
the equation (12) can be solved. Note that solution of the equation
(12) is complex. You should include in PETSc code

#include <complex>

to be able work with complex numbers in C++.

L. Beilina, E. Karchevskii, M. Karchevskii, Numerical Linear Algebra: Theory and Applications, Springer, 2017.

42 / 70

Linear Equation Solving

Below is an example of definition of the complex array in C++ and
assigning values to the real and imaginary parts:

complex<double> *complex2d = new complex<double>[nno];

double a = 5.4;

double b = 3.1;

for (int i=0; i < nno; i++)

complex2d[i].real() = a;

complex2d[i].imag() = b;

delete[] complex2d;

43 / 70

Linear Equation Solving

Example of the definition of the complex right hand side in PETSc is
presented below:

PetscScalar rhs(const PetscReal x, const PetscReal y)

PetscReal realpart, imagpart;

PetscReal pi = 3.14159265359;

realpart = pi*sin(2*pi*x)*cos(2*pi*y);

imagpart = x*x + y*y;

PetscScalar f(rpart, ipart);

return f;

44 / 70

Linear Equation Solving

3. Example of Makefile for running C++/PETSc code with real
numbers at Chalmers is presented in Example 12.5 of [BKK].

Further information about PETSc can be found on the link:

https://www.mcs.anl.gov/petsc/

4. Choose the two-dimensional convex computational domain Ω as you
prefer. For example, Ω = [0, 1]× [0, 1]. Choose boundary condition
at the boundary of ∂Ω such that the condition
lim|x|→∞ u (x , ω) = 0 is satisfied, for example, take some functions

in the form of Gaussian exp−x2

.

5. Take appropriate values for ω, ε′, J. Analyze obtained results for
different ω, εr , σ, J. For example, take

ω = {40, 60, 80, 100}, εr = {2, 4, 6};σ = {5, 0.5, 0.05}, J = 1.

6. Values of c , µ0, ε0 in (13) are known constants.

45 / 70

Linear Equation Solving

Vacuum permittivity, sometimes called the electric constant ε0 and
measured in F/m (farad per meter):

ε0 ≈ 8.85 · 10−12

The permeability of free space,or the magnetic constant µ0

measured in H/m (henries per meter):

µ0 ≈ 12.57 · 10−7

The speed of light in a free space is given by formula c = 1/
√
ε0µ0

and is measured in m/c (metres per second):

c ≈ 300 000 000

46 / 70

Linear Equation Solving

Example of the Makefile to compile PETSc program with complex
numbers is presented below:

PETSC ARCH=/chalmers/sw/sup64/petsc-3.10.4c

include ${PETSC ARCH}/lib/petsc/conf/variables
include ${PETSC ARCH}/lib/petsc/conf/rules
MPI INCLUDE = ${PETSC ARCH}/include/mpiuni
CXX = g++

CXXFLAGS = -Wall -Wextra -g -O0 -c -Iinclude

-I${PETSC ARCH}/include -I${MPI INCLUDE}
LD = g++

LFLAGS =

OBJECTS = Program.o

RUN = runprogram

all: $(RUN)

$(CXX) $(CXXFLAGS) -o $@ $<

$(RUN): $(OBJECTS)

$(LD) $(LFLAGS) $(OBJECTS) $(PETSC LIB) -o $@

47 / 70

Linear Equation Solving

Solution of the test problem

Now we illustrate how C++/PETSc solver can be used for solution of
the following Dirichlet problem for Helmholtz equation in two dimensions:

△u(x) + ω2ε(x)u = f (x) in Ω,

u = 0 on ∂Ω.
(14)

Here f (x) is a given function, u(x) is the unknown function to be
computed, and the domain Ω is the unit square
Ω = {(x1, x2) ∈ (0, 1)× (0, 1)}.
The exact solution of (14) with the right hand side

f (x1, x2) = −(8π2) sin(2πx1) sin(2πx2)− 2ix1(1− x1)− 2ix2(1− x2)

+ ω2ε(x)(sin(2πx1) sin(2πx2) + ix1(1− x1)x2(1− x2))

(15)

is the function

u(x1, x2) = sin(2πx1) sin(2πx2) + ix1(1− x1)x2(1− x2). (16)

48 / 70

Linear Equation Solving

Description of C++/PETSc solver

We set the computational domain to be the unit square
Ω = {(x1, x2) ∈ (0, 1)× (0, 1)} and discretize it as it described in the
previous section. The main program

cplxmaxwell.cpp

is compiled using version of PETSc

petsc-3.10.4c

on 64 bits Red Hat Linux Workstation as

make runmaxwell

49 / 70

Linear Equation Solving

Makefile

An example of Makefile used for compilation of PETSc program
cplxmaxwell.cpp which we present below is:

PETSC_ARCH=/chalmers/sw/sup64/petsc-3.10.4c

include ${PETSC_ARCH}/lib/petsc/conf/variables

include ${PETSC_ARCH}/lib/petsc/conf/rules

MPI_INCLUDE = ${PETSC_ARCH}/include/mpiuni

CXX = g++

CXXFLAGS = -Wall -Wextra -g -O0 -c

-Iinclude -I${PETSC_ARCH}/include -I${MPI_INCLUDE}

LD = g++

LFLAGS =

OBJECTS = cplxmaxwell.o

RUNMAXWELL = runmaxwell

all: $(RUNMAXWELL)

%.o: %.cpp

$(CXX) $(CXXFLAGS) -o $@ $<

$(RUNMAXWELL): $(OBJECTS)

$(LD) $(LFLAGS) $(OBJECTS) $(PETSC_LIB) -o $@
50 / 70

Linear Equation Solving

For solution of system of linear equations Ax = b was used inbuilt PETSc
function with the scalable linear equations solvers (KSP) component.
This component provides interface to the combination of a Krylov
subspace iterative method and a preconditioner which can be chosen by
user [PETSc]. It is possible choose between three different
preconditioners which are encoded by numbers:

1- Jacobi’s method

2 - Gauss-Seidel method

3 - Successive Overrelaxation method (SOR)

To run the main program cplxmaxwell.cpp one need to write:

>runmaxwellv2 argv[1] argv[2]

Here, arguments are defined as follows:

argv[1] - preconditioner (should be 1,2 or 3)

argv[2] - number of discretization points in x and y directions

[PETSc] Portable, Extensible Toolkit for Scientific Computation PETSc at http://www.mcs.anl.gov/petsc/

51 / 70

Linear Equation Solving

Preconditioning for Linear Systems

Preconditioning technique is used for the reduction of the condition
number of the considered problem. For the solution of linear system of
equations Ax = b the preconditioner matrix P of a matrix A is a matrix
P−1A such that P−1A has a smaller condition number then the original
matrix A. This means that instead of the solution of a system Ax = b we
will consider solution of the system

P−1Ax = P−1b. (17)

The matrix P should have the following properties:

P is s.p.d. matrix;

P−1A is well conditioned;

The system Px = b should be easy solvable.

The preconditioned conjugate gradient method is derived as follows. First
we multiply both sides of (17) by P1/2 to get

(P−1/2AP−1/2)(P1/2x) = P−1/2b. (18)

52 / 70

Linear Equation Solving

Preconditioning for Linear Systems

We note that the system (18) is s.p.d. since we have chosen the matrix
P such that P = QQT which is the eigendecomposition of P . Then the
matrix P1/2 will be s.p.d. if it is defined as

P1/2 = Q1/2QT .

Defining
Ã := P−1/2AP−1/2, x̃ := P1/2x , b̃ = P−1/2b

we can rewrite (18) as the system Ãx̃ = b̃. Matrices Ã and P−1A are
similar since P−1A = P−1/2ÃP1/2. Thus, Ã and P−1A have the same
eigenvalues. Thus, instead of the solution of P−1Ax = P−1b we will
present preconditioned conjugate gradient (PCG) algorithm for the
solution of Ãx̃ = b̃.

53 / 70

Linear Equation Solving

Preconditioned conjugate gradient algorithm

Initialization: r = 0; x0 = 0; R0 = b; p1 = P−1b; y0 = P−1R0

repeat
r = r + 1
z = A · pr
νr = (yT

r−1Rr−1)/(p
T
r z)

xr = xr−1 + νrpr
Rr = Rr−1 − νrz
yr = P−1Rr

µr+1 = (yT
r Rr)/(y

T
r−1Rr−1)

pr+1 = yr + µr+1pr
until ||Rr ||2 is small enough

54 / 70

Linear Equation Solving

Common preconditioners

Common preconditioner matrices P are:

Jacobi preconditioner P = (a11, ..., ann). Such choice of the
preconditioner reduces the condition number of P−1A around factor
n of its minimal value.

block Jacobi preconditioner

P =




P1,1 ... 0
...
0 ... Pr ,r


 (19)

with Pi,i = Ai,i , i = 1, ..., r , for the block matrix A given by

A =




A1,1 ... A1,r

...
Ar ,1 ... Ar ,r


 (20)

with square blocks Ai,i , i = 1, ..., r . Such choice of preconditioner P
minimizes the condition number of P−1/2AP−1/2 within a factor of
r .

55 / 70

Linear Equation Solving

Method of SSOR can be used as a block preconditioner as well. If
the original matrix A can be split into diagonal, lower and upper
triangular as A = D + L+ LT then the SSOR preconditioner matrix
is defined as

P = (D + L)D−1(D + L)T

It can also be parametrised by ω as follows:

P(ω) =
ω

2− ω

(
1

ω
D + L

)
D−1

(
1

ω
D + L

)T

Incomplete Cholesky factorization with A = LLT is often used for
PCG algorithm. In this case a sparse lower triangular matrix L̃ is
chosen to be close to L. Then the preconditioner is defined as
P = L̃L̃T .

Incomplete LU preconditioner.

56 / 70

Linear Equation Solving

Solution of the problem (14) using the C++/PETSc
program cplmaxwell.cpp via SOR with nx = ny = 21.

For example, to execute the main program cplxmaxwell.cpp using SOR
method and 21 discretization points in x and y directions, one should run
this program, as follows:

>runmaxwell 3 21

The results will be printed in the files

nodes.m

values.m

and can be visualized in Matlab using the file

viewer.m

which is available for download on the course homepage, see also below.

57 / 70

Linear Equation Solving

Solution of the problem (14) using the C++/PETSc
program cplmaxwell.cpp via SOR with nx = ny = 21.

58 / 70

Linear Equation Solving

Program cplxmaxwell.cpp

// to run

// runmaxwell argv[1] argv[2]

// Arguments:

// argv[1] - preconditioner (should be 1,2 or 3)

// argv[2] - number of discretization points in x and y directions

static char help[] ="";

#include<iostream>

#include<fstream>

#include<petsc.h>

#include<petscvec.h>

#include<petscmat.h>

#include<petscksp.h>

#include<complex>

using namespace std;

char METHOD_NAMES[8][70] = {

"invalid method",

"Jacobi’s method",

"Gauss-Seidel method",

"Successive Overrelaxation method (SOR)"};

char *GetMethodName(PetscInt method) {

if (method < 0 || method > 3)

return METHOD_NAMES[0];

else

return METHOD_NAMES[method];

}

59 / 70

Linear Equation Solving

PetscScalar epsilon(const PetscReal x, const PetscReal y)

{

PetscReal rpart, ipart;

PetscReal x_0=0.5;

PetscReal y_0=0.5;

PetscReal c_x=1;

PetscReal c_y=1;

rpart=2*exp(-((x-x_0)*(x-x_0)/(2*c_x*c_x) +(y-y_0)*(y-y_0)/(2*c_y*c_y)));

ipart = 0;

PetscScalar scalareps(rpart, ipart);

return scalareps;

60 / 70

Linear Equation Solving

PetscScalar right_hand_side(const PetscReal x, const PetscReal y,

const PetscReal omega)

{

PetscReal rpart, ipart, pi = 3.14159265359;

PetscReal x_0=0.5;

PetscReal y_0=0.5;

PetscReal c_x=1;

PetscReal c_y=1;

PetscReal epsilon_real =

2*exp(-((x-x_0)*(x-x_0)/(2*c_x*c_x) +(y-y_0)*(y-y_0)/(2*c_y*c_y)));

rpart = -(8*pi*pi)*sin(2*pi*x)*sin(2*pi*y)

+ omega*omega*epsilon_real*(sin(2*pi*x)*sin(2*pi*y));

ipart = -2*(x - x*x + y - y*y)

+ omega*omega*epsilon_real*x*(1-x)*y*(1-y);

PetscScalar f(rpart, ipart);

return f;

61 / 70

Linear Equation Solving

PetscScalar wave_number(const PetscReal kreal, const PetscReal kimag)

{

//PetscReal rpart, ipart;

//rpart = 1;

//ipart = 1;

PetscScalar k(kreal, kimag);

return k;

}

62 / 70

Linear Equation Solving

int main(int argc, char **argv)

{

PetscErrorCode ierr;

cout << "Initializing ..." << endl;

// PetscInitialize(&argc, &argv, NULL, NULL);

ierr = PetscInitialize(&argc, &argv,(char *)0, help);CHKERRQ(ierr);

PetscInt method = atoi(argv[1]);

PetscBool methodSet = PETSC_FALSE;

ierr = PetscOptionsGetInt(NULL, NULL, "-m", &method, &methodSet);

if (method < 1 || method > 7) {

cout << "Invalid number of the selected method: "

<< method << ".\nExiting..." << endl;

exit(-1);

}

PetscPrintf(PETSC_COMM_WORLD, "Using %s\n", GetMethodName(method));

cout << "Setting parameters..." << endl;

Vec b, u;

Mat A;

KSP ksp;

PC preconditioner;

PetscInt Nx = atoi(argv[2]), Ny = Nx, Nsys, node_idx = 0, col[5], nadj;

Nsys = Nx*Ny; // dimension of linear system = number of nodes

PetscReal x[Nx], y[Ny], nodes[Nsys][2];

PetscScalar value, value_epsilon, diffpoints[5], h;

63 / 70

Linear Equation Solving

// Set up vectors

cout << "Setting up vectors..." << endl;

ierr = VecCreate(PETSC_COMM_WORLD, &b); CHKERRQ(ierr);

ierr = VecSetSizes(b, PETSC_DECIDE, Nsys); CHKERRQ(ierr);

ierr = VecSetType(b, VECSTANDARD); CHKERRQ(ierr);

ierr = VecDuplicate(b, &u);

// Set up matrix

cout << "Setting up matrix..." << endl;

ierr = MatCreate(PETSC_COMM_WORLD, &A); CHKERRQ(ierr);

ierr = MatSetSizes(A,PETSC_DECIDE, PETSC_DECIDE, Nsys, Nsys);

CHKERRQ(ierr);

ierr = MatSetFromOptions(A); CHKERRQ(ierr);

ierr = MatSetUp(A); CHKERRQ(ierr);

// Create grid

cout << "Constructing grid..." << endl;

h = 1.0/(Nx - 1);

for (int i = 0; i < Nx; i++)

x[i] = 1.0*i/(Nx - 1);

for (int j = 0; j < Ny; j++)

y[j] = 1.0*j/(Ny - 1);

64 / 70

Linear Equation Solving

// Assemble linear system ...

cout << "Assembling system..." << endl;

PetscScalar k;

double omegareal=40;

for (int i = 0; i < Nx; i++)

{

for (int j = 0; j < Ny; j++)

{

nodes[node_idx][0] = x[i];

nodes[node_idx][1] = y[j];

k = omegareal*omegareal*epsilon(x[i], y[j]);

value_epsilon = h*h*k;

diffpoints[0] = -4.0 + h*h*k;

diffpoints[1] = 1.0;

diffpoints[2] = 1.0;

diffpoints[3] = 1.0;

diffpoints[4] = 1.0;

if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) // interior

{

col[0] = node_idx;

col[1] = node_idx - 1;

col[2] = node_idx + 1;

col[3] = node_idx - Ny;

col[4] = node_idx + Ny;

nadj = 5;

value = h*h*right_hand_side(x[i], y[j],omegareal);

} else
65 / 70

Linear Equation Solving

// on boundary

{

col[0] = node_idx;

nadj = 1;

value = 0.0;

}

ierr = MatSetValues(A, 1, &node_idx, nadj, col, diffpoints, INSERT_VALUES);

CHKERRQ(ierr);

ierr = VecSetValues(b, 1, &node_idx, &value, INSERT_VALUES);

CHKERRQ(ierr);

node_idx++;

}

}

ierr = MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);

ierr = MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);

// Solve linear system

cout << "Solving linear system ..." << endl;

ierr = KSPCreate(PETSC_COMM_WORLD, &ksp); CHKERRQ(ierr);

ierr = KSPSetOperators(ksp, A, A); CHKERRQ(ierr);

66 / 70

Linear Equation Solving

// set preconditioner

ierr = KSPGetPC(ksp, &preconditioner); CHKERRQ(ierr);

if (method == 1)

{

ierr = PCSetType(preconditioner,PCJACOBI); CHKERRQ(ierr);

}

else if (method == 2)

{

ierr = PCSetType(preconditioner, PCSOR);

CHKERRQ(ierr);

}

else if (method == 3)

{

const PetscReal omega = 1.5;

ierr = PCSetType(preconditioner, PCSOR); CHKERRQ(ierr);

ierr = PCSORSetOmega(preconditioner, omega); CHKERRQ(ierr);

}

ierr = KSPSetFromOptions(ksp); CHKERRQ(ierr);

ierr = KSPSolve(ksp, b, u); CHKERRQ(ierr);

67 / 70

Linear Equation Solving

// Print to files

cout << "Writing to files..." << endl;

FILE* nodefile = fopen("nodes.m", "w");

for (int idx = 0; idx < Nsys; idx++)

fprintf(nodefile, "%f \t %f \n", nodes[idx][0], nodes[idx][1]);

fclose(nodefile);

FILE* solfile = fopen("values.m", "w");

for (int idx = 0; idx < Nsys; idx++)

{

ierr = VecGetValues(u, 1, &idx, &value);

fprintf(solfile, "%f \t %f \n", real(value), imag(value));

}

fclose(solfile);

// Clean up

ierr = VecDestroy(&b); CHKERRQ(ierr);

ierr = VecDestroy(&u); CHKERRQ(ierr);

ierr = MatDestroy(&A); CHKERRQ(ierr);

ierr = KSPDestroy(&ksp); CHKERRQ(ierr);

// Finalize and finish

ierr = PetscFinalize();

return 0;

}

68 / 70

Linear Equation Solving

Matlab program viewer.m for visualization of results

load nodes.m

load values.m

u = @(x, y) sin(2*pi*x).*sin(2*pi*y) + 1i*x.*(1 - x).*y.*(1 - y);

x_0=0.5;

y_0=0.5;

c_x= 0.1;

c_y=0.1;

epsilon = @(x, y) 2*exp(-((x-x_0).*(x-x_0)/(2*c_x.*c_x) ...

+(y-y_0).*(y-y_0)/(2*c_y.*c_y)));

% for test 2

%epsilon = @(x, y) 1+2*exp(-((x-0.5).*(x-0.5) +(y-0.7).*(y-0.7))/0.001) ...

+ 3*exp(-((x-0.2).*(x-0.2) +(y-0.6).*(y-0.6))/0.001);

n = sqrt(size(nodes, 1));

X = reshape(nodes(:, 1), n, n);

Y = reshape(nodes(:, 2), n, n);

Ur = reshape(values(:, 1), n, n);

Ui = reshape(values(:, 2), n, n);

[Xe, Ye] = meshgrid(linspace(0, 1, 30), linspace(0, 1, 30));

ur = real(u(Xe, Ye));

ui = imag(u(Xe, Ye));

Eps = epsilon(Xe, Ye)

69 / 70

Linear Equation Solving

subplot(3, 2, 1)

surf(X’, Y’, Ur)

title(’u_h Real, computed’)

view(2)

subplot(3, 2, 2)

surf(Xe, Ye, ur)

title(’u Real, exact’)

view(2)

subplot(3, 2, 3)

surf(X’, Y’, Ui)

title(’u_h Imag, computed’)

view(2)

subplot(3, 2, 4)

surf(Xe, Ye, ui)

title(’u Imag, exact’)

view(2)

subplot(3, 2, 5)

surf(Xe, Ye, Eps)

title(’exact epsilon, 3D view’)

subplot(3, 2, 6)

surf(Xe, Ye, Eps)

view(2)

title(’exact epsilon, 2D’)

shg

70 / 70

	Linear Equation Solving

