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Special Linear Systems

It is important to exploit any special structure of the matrix to increase
speed of solution and decrease storage. We will consider only real
matrices:

s.p.d. matrices,

symmetric indefinite matrices,

band matrices,

general sparse matrices,

dense matrices depending on fewer than n2 independent parameters.
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Real Symmetric Positive Definite Matrices

Recall that a real matrix A is s.p.d. if and only if A = AT and xTAx > 0
for all x 6= 0. In this section we will show how to solve Ax = b in half the
time and half the space of Gaussian elimination when A is s.p.d.
PROPOSITION
1. If X is nonsingular, then A is s.p.d. if and only if XTAX is s.p.d.
2. If A is s.p.d. and H is any principal submatrix of A(H = A(j : k , j : k)
for some j ≤ k), then H is s.p.d.
3. A is s.p.d. if and only if A = AT and all its eigenvalues are positive.
4. If A is s.p.d., then all aii > 0, and maxij |aij | = maxi aii > 0.
5. A is s.p.d. if and only if there is a unique lower triangular nonsingular
matrix L, with positive diagonal entries, such that A = LLT . A = LLT is
called the Cholesky factorization of A, and L is called the Cholesky factor
of A.
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We may rewrite this induction as the following algorithm.

ALGORITHM Cholesky algorithm:
for j = 1 to n
ljj = (ajj −

∑j−1
k=1 l

2
jk)

1/2

for i = j + 1 to n
lij = (aij −

∑j−1
k=1 lik ljk)/ljj

end for
end for

If A is not positive definite, then (in exact arithmetic) this
algorithm will fail by attempting to compute the square root of a
negative number or by dividing by zero; this is the cheapest way to
test if a symmetric matrix is positive definite.
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The number of flops in Cholesky algorithm

In Cholesky algorithm L can overwrite the lower half of A. Only the lower
half of A is referred to by the algorithm, so in fact only n(n + l)/2
storage is needed instead of n2. The number of flops is

Number of operations in Cholesky algorithm

=
n∑

j=1



2j +
n∑

i=j+1

2j



 =
1

3
n3 + O(n2).

(1)

The number of operations for LU decomposition is 2
3n

3 + O(n2).
Pivoting is not necessary for Cholesky to be numerically stable. Why? To
explain this we perform the same analysis as for Gaussian elimination.
We can show that we will have similar formula for error E in Cholesky
decomposition as in the LU decomposition:

A = LLT + E , (2)

where error in Cholesky decomposition will be bounded as

|E | ≤ nǫ|L| · |LT |.
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Taking norms we get

‖E‖ ≤ nǫ‖ |L| ‖ · ‖ |LT | ‖.
We can rewrite expression above as

‖E‖ ≤ nǫ‖L‖ · ‖LT‖. (3)

Thus, in formula (3) we have obtained error estimate in decomposition
A = L · LT . To show how the error (2) can be obtained we again solve
L LT x
︸︷︷︸

y

= b via Ly = b and LT x = y . Solving Ly = b gives as a

computed solution ŷ such that (L+ δL)ŷ = b where |δL| ≤ nε|L|. The
same is true for (LT + δLT )x̂ = ŷ with |δLT | ≤ nε|LT |. Combining both
estimates into one we get

b = (L+ δL)ŷ = (L+ δL)(LT + δLT )x̂

= (LLT + LδLT + δLLT + δLδLT )x̂

= (A−E + LδLT + δLLT + δLδLT
︸ ︷︷ ︸

δA

)x̂

= (A+ δA)x̂ .
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Recall
δA = −E + LδLT + δLLT + δLδLT .

Now we combine all bounds for E , δLT , δL and use triangle inequality to
get

|δA| ≤ | − E + LδLT + δLLT + δLδLT |
≤ |E |+ |L| · |δLT |+ |δL| · |LT |+ |δL| · |δLT |

≤ nε|L| · |LT |+ nε|L| · |LT |+ nε|L| · |LT |+ n2ε2|L| · |LT |
≈ 3nε|L| · |LT |.
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Assuming that ‖ |X | ‖ = ‖X‖ is true (as before for Frobenius, infinity,
one-norms but not for two-norms) we obtain

||δA|| ≤ 3nε||L|| · ||LT ||. (4)

Thus, from (4) follows that the computed solution x̃ satisfies
(A+ δA)x̃ = b with |δA| ≤ 3nε|L| · |LT |. But by the Cauchy-Schwartz
inequality and proposition (part 4) we have that for every entry (i , j) of
|L| · |LT | we can write estimate

(|L| · |LT |)ij =
∑

k

|lik | · |ljk |

≤
√∑

k l
2
ik

√
∑

k l
2
jk

≤ √
aii · √ajj ≤ maxij |aij | = maxi aii > 0.

Cholesky algorithm

for j = 1 to n

ljj = (ajj −
∑j−1

k=1 l
2
jk)

1/2

for i = j + 1 to n

lij = (aij −
∑j−1

k=1 lik ljk)/ljj
end for

end for 8 / 30
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Then applying this estimate to all n entries of |L| · |LT | we have

‖ |L| · |LT | ‖∞ ≤ n‖A‖∞. (5)

Substituting (5) into (4) we get the following estimate

‖δA‖∞ ≤ 3n2ε‖A‖∞. (6)

From it follows that Cholesky is stable when

‖δA‖∞
‖A‖∞

≤ 3n2ε. (7)
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Symmetric Indefinite Matrices

The question of whether we can still save half the time and half the
space when solving a symmetric but indefinite (neither positive
definite nor negative definite) linear system naturally arises. It turns
out to be possible, but a more complicated pivoting scheme and
factorization is required.

If A is nonsingular, one can show that there exists a permutation P ,
a unit lower triangular matrix L, and a block diagonal matrix D with
1-by-1 and 2-by-2 blocks such that PAPT = LDLT .

To see why 2-by-2 blocks are needed in D, consider the matrix
[

0 1
1 0

]

. This factorization can be computed stably, saving about

half the work and space compared to standard Gaussian elimination.
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Band Matrices

A matrix A is called a band matrix with lower bandwidth bL, and upper
bandwidth bU if aij = 0 whenever i > j + bL or i < j − bU :

A =














a11 · · · a1,bU+1 0
... a2,bU+2

abL+1,1
. . .

abL+2,2 an−bU ,n

. . .
...

0 an,n−bL · · · an,n














.

Band matrices arise often in practice and are useful to recognize because
their L and U factors are also ”essentially banded”, making them cheaper
to compute and store. We consider LU factorization without pivoting
and show that L and U are banded in the usual sense, with the same
band widths as A.
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Example of a bandmatrix

The matrix A which appears after discretization of Laplacian in the
Poisson’s equation −△u = f is a bandmatrix. After discretization of
laplacian we should solve system in the form Au = b. The vector b has
the components bi,j = h2fi,j . The explicit elements of the matrix A are
given by the following block matrix

A =









AN −IN

−IN
. . .

. . .
. . .

. . . −IN
−IN AN









with blocks AN of order N given by

AN =









4 −1 0 0 · · · 0
−1 4 −1 0 · · · 0
0 −1 4 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 −1 4









,
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Example: ODE

Example

Consider the ordinary differential equation (ODE)
y ′′(x)− p(x)y ′(x)− q(x)y(x) = r(x) on the interval [a, b] with
boundary conditions y(a) = α, y(b) = β. We also assume
q(x) ≥ q > 0. This equation may be used to model the heat flow
in a long, thin rod, for example. To solve the differential equation
numerically, we discretize it by seeking its solution only at the
evenly spaced mesh points xi = a+ ih, i = 0, . . . ,N + 1, where
h = (b − a)/(N + 1) is the mesh spacing. Define pi = p(xi ),
ri = r(xi ), and qi = q(xi ).
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Example

We need to derive equations to solve for our desired approximations
yi ≈ y(xi ), where y0 = α and yN+1 = β. To derive these equations, we
approximate the derivative y ′(xi ) by the following finite difference
approximation:

y ′(xi ) ≈
yi+1 − yi−1

2h
.

(Note that as h gets smaller, the right-hand side approximates y ′(xi )
more and more accurately.) We can similarly approximate the second
derivative by

y ′′(xi ) ≈
yi+1 − 2yi + yi−1

h2
.

Inserting these approximations into the differential equation yields

yi+1 − 2yi + yi−1

h2
− pi

yi+1 − yi−1

2h
− qiyi = ri , 1 ≤ i ≤ N.
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Example

Multiplying by −h2/2 we get:

−yi+1

2
+ yi −

yi−1

2
+ pi

yi+1h

4
− pi

yi−1h

4
+ qiyi

h2

2
= − − rih

2

2

Rewriting this as a linear system we get Ay = b, where

y =










y1

...

yN










, b =
−h2

2










r1

...

rN










+










( 12 + h
4p1)α
0
...
0

( 12 − h
4pN)β










,
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Example

and recalling

−yi+1

2
+ yi −

yi−1

2
+ pi

yi+1h

4
− pi

yi−1h

4
+ qiyi

h2

2
= − − rih

2

2

−yi+1

2
+ yi −

yi−1

2
+ pi

yi+1h

4
− pi

yi−1h

4
+ qiyi

h2

2
= − − rih

2

2

we have

A =









a1 −c1

−b2
. . .

. . .
. . .

. . . −cN−1

−bN aN









,

ai = 1 + h2

2 qi ,

bi = 1
2 [1 +

h
2pi ],

ci = 1
2 [1− h

2pi ].

Note that ai > 0 and also bi > 0 and ci > 0 if h is small enough.
This is a nonsymmetric tridiagonal system to solve for y . We will show
how to change it to a symmetric positive definite tridiagonal system, so
that we may use band Cholesky to solve it. 16 / 30
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Example

Choose D = diag(1,
√

c1
b2
,
√

c1c2
b2b3

, . . . ,
√

c1c2···cN−1

b2b3···bN
). Then we may change

Ay = b to (DAD−1
︸ ︷︷ ︸

Ã

) (Dy)
︸ ︷︷ ︸

ỹ

= Db
︸︷︷︸

b̃

or Ãỹ = b̃, where

Ã =











a1 −
√
c1b2

−
√
c1b2 a2 −

√
c2b3

−
√
c2b3

. . .
. . .

. . . −
√

cN−1bN
−
√

cN−1bN aN











.

It is easy to see that Ã is symmetric, and it has the same eigenvalues as
A because A and Ã = DAD−1 are similar. We will use the next theorem
to show it is also positive definite.
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Gershgorin’s Theorem

THEOREM ( Gershgorin’s) Let B be an arbitrary matrix. Then the
eigenvalues λ of B are located in the union of the n disks

|λ− bkk | ≤
∑

j 6=k

|bkj |.

Proof. Given λ and x 6= 0 such that Bx = λx , let 1 = ||x ||∞ = xk by

scaling x if necessary. Then
∑N

j=1 bkjxj = λxk = λ, so

λ− bkk =
∑N

j = 1
j 6= k

bkjxj , implying

|λ− bkk | ≤
∑

j 6=k

|bkjxj | ≤
∑

j 6=k

|bkj ||xj | ≤
∑

j 6=k

|bkj | = Rk . �
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Examples of using Gershgorin’s circle theorem

Example

Example 1.
Use the Gershgorin circle theorem to estimate the eigenvalues of

A =







10 −1 0 1
0.2 8 0.2 0.2
1 1 2 1
−1 −1 −1 −11






.

Starting with row one, we take the element on the diagonal, aii as the
center for the disc. We then take the remaining elements in the row and
apply the formula:

∑

j 6=i

|aij | = Ri

to obtain the following four discs:
D(10, 2),D(8, 0.6),D(2, 3), and D(−11, 3)
The eigenvalues are: 9.8218, 8.1478, 1.8995, -10.86
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Example

−15 −10 −5 0 5 10 15
−3

−2

−1

0

1

2

3

 

 

 D(10,2)

 D(8,0.6)

 D(2,3)

D(−11,3)

eigenvalues

centers

Example 1

In example 1 the eigenvalues are: 9.8218, 8.1478, 1.8995, -10.86
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Examples of using Gershgorin’s circle theorem

Example

Example 2.
Use the Gershgorin circle theorem to estimate the eigenvalues of

A =







7 5 2 1
2 8 3 2
1 1 5 1
1 1 1 6






.

Starting with row one, we take the element on the diagonal, aii as the
center for the disc. We then take the remaining elements in the row and
apply the formula:

∑

j 6=i

|aij | = Ri

to obtain the following four discs:
D(7, 8),D(8, 7),D(5, 3),D(6, 3)
The eigenvalues are: 12.2249 + 0.0000i; 4.4977 + 0.6132i; 4.4977 -
0.6132i; 4.7797 + 0.0000i;
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Example

−2 0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

 

 

 D(7,8)

 D(8,7)

 D(5,3)

D(6,3)

eigenvalues

centers

Example 2

In example 2 the eigenvalues are: 12.2249 + 0.0000i; 4.4977 + 0.6132i; 4.4977 - 0.6132i; 4.7797 + 0.0000i. 22 / 30
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Example: ODE (continuation)

Example

If h is so small that for all i , | h2pi | < 1, then

|bi |+|ci | =
1

2

(

1 +
h

2
pi

)

+
1

2

(

1− h

2
pi

)

= 1 < 1+
h2

2
q ≤ 1+

h2

2
qi = ai .

Therefore all eigenvalues of A lie inside the disks centered at
1 + h2qi/2 ≥ 1 + h2q/2 with radius 1; in particular, they must all
have positive real parts.

Since Ã is symmetric, its eigenvalues are real and hence positive, so
Ã is positive definite. Its smallest eigenvalue is bounded below by
qh2/2.

Thus, it can be solved by Cholesky.
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Linear Least Squares Problems

Suppose that we have a matrix A of the size m× n and the vector b
of the size m× 1. The linear least square problem is to find a vector
x of the size n × 1 which will minimize ||Ax − b||2.
In the case when m = n and the matrix A is nonsingular we can get
solution to this problem as x = A−1b.

When m > n (more equations than unknows) the problem is
overdetermined

When m < n (more unknows than equations) the problem is
underdetermined

Applications: curve fitting, statistical modelling.
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Matrix Factorizations that Solve the Linear Least Squares
Problem

The linear least squares problem has several explicit solutions that we will
discuss:

1 normal equations: the fastest but least accurate; it is adequate
when the condition number is small.

2 QR decomposition,

is the standard one and costs up to twice as much as the first
method.

3 SVD,

is of most use on an ill-conditioned problem, i.e., when A is not of
full rank; it is several times more expensive again.

4 Iterative refinement to improve the solution when the problem is
ill-conditioned. Can be adapted to deal efficiently with sparse
matrices [Å. Björck. Numerical Methods for Least Squares
Problems].

We assume initially for methods 1 and 2 that A has full column rank n.
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Linear Least Squares Problems

Further we assume that we will deal with overdetermined problems when
we have more equations than unknowns. This means that we will be
interested in the solution of linear system of equations

Ax = b, (8)

where A is of the size m× n with m > n, b is vector of the size m, and x
is vector of the size n.
In a general case we are not able to get vector b of the size m as a linear
combination of the n columns of the matrix A and n components of the
vector x , or there is no solution to (8) in the usual case. In this chapter
we will consider methods which can minimize the residual r = b − Ax as
a function on x in principle in any norm, but we will use 2-norm because
of the convenience from theoretical (relationships of 2-norm with the
inner product and orthogonality, smoothness and strict convexity
properties) and computational points of view. Also, because of using
2-norm method is called least squares.
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We can write the least squares problem as problem of the minimizing of
the squared residuals

‖r‖22 =
m∑

i=1

r2i =

m∑

i=1

(Axi − b)2. (9)

In other words, our goal is to find minimum of this residual using least
squares:

min
x

‖r‖22 = min
x

m∑

i=1

r2i = min
x

m∑

i=1

(Axi − b)2. (10)
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Normal Equations

Our goal is to minimize ‖r(x)‖22 = ||Ax − b||22. To find minimum we
derive the normal equations: look for the x where the gradient of
||Ax − b||22 = (Ax − b)T (Ax − b) vanishes, or where ‖r ′(x)‖22 = 0. So we
want

0 = lim
e→0

(A(x + e)− b)T (A(x + e)− b)− (Ax − b)T (Ax − b)

||e||2
= lim

e→0

2eT (ATAx − ATb) + eTATAe

||e||2

The second term |eTATAe|
||e||2

≤ ||A||22||e||
2
2

||e||2
= ||A||22||e||2 approaches 0 as e

goes to 0, so the factor ATAx − ATb in the first term must also be zero,
or ATAx = ATb. This is a system of n linear equations in n unknowns,
the normal equations.
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Data fitting

In this example we present the typical application of least squares called
data or curve fitting problem. This problem appears in statistical
modelling and experimental engineering when data are generated by
laboratory or other measurements.
Suppose that we have data points (xi , yi ), i = 1, ...,m, and our goal is to
find the vector of parameters c of the size n which will fit best to the
data yi of the model function f (xi , c), where f : Rn+1 → R , in the least
squares sense:

min
c

m∑

i=1

(yi − f (xi , c))
2. (11)

If the function f (x , c) is linear then we can solve the problem (11) using
least squares method.
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The function f (x , c) is linear if we can write it as a linear combination of
the functions φj(x), j = 1, ..., n as:

f (x , c) = c1φ1(x) + c2φ2(x) + ...+ cnφn(x). (12)

Functions φj(x), j = 1, ..., n are called basis functions.
Let now the matrix A will have entries
aij = φj(xi ), i = 1, ...,m; j = 1, ..., n, and vector b will be such that
bi = yi , i = 1, ...,m. Then a linear data fitting problem takes the form of
(8) with x = c :

Ac ≈ b (13)

Elements of the matrix A are created by basis functions
φj(x), j = 1, ..., n. We will consider now different examples of choosing
basis functions φj(x), j = 1, ..., n.
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