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Linear Least Squares Problems

Linear Least Squares Problems

Suppose that we have a matrix A of the size m× n and the vector b
of the size m× 1. The linear least square problem is to find a vector
x of the size n × 1 which will minimize ||Ax − b||2.
In the case when m = n and the matrix A is nonsingular we can get
solution to this problem as x = A−1b.

When m > n (more equations than unknows) the problem is
overdetermined

When m < n (more unknows than equations) the problem is
underdetermined

Applications: curve fitting, statistical modelling.
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Linear Least Squares Problems

Matrix Factorizations that Solve the Linear Least Squares
Problem

The linear least squares problem has several explicit solutions that we will
discuss:

1 normal equations: the fastest but least accurate; it is adequate
when the condition number is small.

2 QR decomposition,

is the standard one and costs up to twice as much as the first
method.

3 SVD, is of most use on an ill-conditioned problem, i.e., when A is
not of full rank; it is several times more expensive again.

4 Iterative refinement to improve the solution when the problem is
ill-conditioned. Can be adapted to deal efficiently with sparse
matrices [Å. Björck. Numerical Methods for Least Squares
Problems].

We assume initially for methods 1 and 2 that A has full column rank n.
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Linear Least Squares Problems

Further we assume that we will deal with overdetermined problems when
we have more equations than unknowns. This means that we will be
interested in the solution of linear system of equations

Ax = b, (1)

where A is of the size m× n with m > n, b is vector of the size m, and x
is vector of the size n.
In a general case we are not able to get vector b of the size m as a linear
combination of the n columns of the matrix A and n components of the
vector x , or there is no solution to (1) in the usual case. We will consider
methods which can minimize the residual r = b − Ax as a function on x
in principle in any norm, but we will use 2-norm because of the
convenience from theoretical (relationships of 2-norm with the inner
product and orthogonality, smoothness and strict convexity properties)
and computational points of view. Also, because of using 2-norm method
is called least squares.
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We can write the least squares problem as problem of the minimizing of
the squared residuals

‖r‖22 =
m∑

i=1

r2i =
m∑

i=1

(Axi − b)2. (2)

In other words, our goal is to find minimum of this residual using least
squares:

min
x

‖r‖22 = min
x

m∑

i=1

r2i = min
x

m∑

i=1

(Axi − b)2. (3)
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Normal Equations

Our goal is to minimize the residual ‖r(x)‖22 = ||Ax − b||22. To find
minimum of this functional and derive the normal equations, we look for
the x where the gradient of ||Ax − b||22 = (Ax − b)T (Ax − b) vanishes, or
where ‖r ′(x)‖22 = 0. So we want

0 = lim
e→0

(A(x + e)− b)T (A(x + e)− b)− (Ax − b)T (Ax − b)

||e||2
= lim

e→0

2eT (ATAx − ATb) + eTATAe

||e||2

The second term |eTATAe|
||e||2

≤ ||A||22||e||
2
2

||e||2
= ||A||22||e||2 approaches 0 as e

goes to 0, so the factor ATAx − ATb in the first term must also be zero,
or ATAx = ATb. This is a system of n linear equations in n unknowns,
the normal equations.

6 / 52



Linear Least Squares Problems

Normal Equations

Thus, normal equations are

ATAx = ATb, (4)

which is a symmetric linear system of the n × n equations.
Using ‖r(x)‖22 = ||Ax − b||22 we can compute the Hessian matrix
H = 2ATA . If the Hessian matrix H = 2ATA is positive definite, then x
is indeed a minimum. We can show that the matrix ATA is positive
definite if, and only if, the columns of A are linearly independent, or when
r(A) = n.
If the matrix A has a full rank (r(A) = n) then the system (4) is of the
size n-by-n and is symmetric positive definite system of normal equations.
It has the same solution x as the least squares problem minx ‖Ax − b‖22
of the size m-by-n.
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Normal Equations

To solve system (4) one can use Cholesky decomposition

ATA = LLT (5)

with L lower triangular matrix. Then the solution of (4) will be given by
the solution of triangular system

Ly = ATb,

LT x = y .
(6)
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Normal Equations

However, in practice the method of normal equations can be inaccurate
by two reasons.

The condition number of ATA is twice more than twice more than
the condition number of the original matrix A:

cond(ATA) = cond(A)2. (7)

Thus, the method of normal equations can give a squared condition
number even when the fit to data is good and the residual is small.
This makes the computed solution more sensitive. In this sense the
method of normal equations is not stable.

Information can be lost during computation of the product of ATA.
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Normal Equations: loss of information in a given
floating-point system

Example

A =





1 1
δ 0
0 δ



 (8)

with 0 < δ <
√
ε in a given floating-point system. In floating-point

arithmetics we can compute ATA:

ATA =

(
1 δ 0
1 0 δ

)

·





1 1
δ 0
0 δ



 =

(
1 + δ2 1

1 1 + δ2

)

=

(
1 1
1 1

)

, (9)

which is singular matrix in the working precision.
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Data fitting

In this example we present the typical application of least squares called
data or curve fitting problem. This problem appears in statistical
modelling and experimental engineering when data are generated by
laboratory or other measurements.
Suppose that we have data points (xi , yi ), i = 1, ...,m, and our goal is to
find the vector of parameters c of the size n which will fit best to the
data yi of the model function f (xi , c), where f : Rn+1 → R , in the least
squares sense:

min
c

m∑

i=1

(yi − f (xi , c))
2. (10)

If the function f (x , c) is linear then we can solve the problem (10) using
least squares method.
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The function f (x , c) is linear if we can write it as a linear combination of
the functions φj(x), j = 1, ..., n as:

f (x , c) = c1φ1(x) + c2φ2(x) + ...+ cnφn(x). (11)

Functions φj(x), j = 1, ..., n are called basis functions.
Let now the matrix A will have entries
aij = φj(xi ), i = 1, ...,m; j = 1, ..., n, and vector b will be such that
bi = yi , i = 1, ...,m. Then a linear data fitting problem takes the form of
(1) with x = c :

Ac ≈ b (12)

Elements of the matrix A are created by basis functions
φj(x), j = 1, ..., n. We will consider now different examples of choosing
basis functions φj(x), j = 1, ..., n.
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Problem of the fitting to a polynomial

In the problem of the fitting to a polynomial

f (x , c) =
d∑

i=1

cix
i−1 (13)

of degree d − 1 to data points (xi , yi ), i = 1, ...,m, basis functions
φj(x), j = 1, ..., n can be chosen as φj(x) = x j−1, j = 1, ..., n. The matrix
A constructed by these basis functions in a polynomial fitting problem is
a Vandermonde matrix:

A =










1 x1 x21 . . . xd−1
1

1 x2 x22 . . . xd−1
2

1 x3 x23 . . . xd−1
3

...
...

. . .
. . .

...
1 xm x2m . . . xd−1

m










. (14)

Here, xi , i = 1, ....,m are discrete points on the interval for
x = [xleft , xright ].
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Suppose, that we choose d = 4 in (10). Then we can write the

polynomial as f (x , c) =
∑4

i=1 cix
i−1 = c1 + c2x + c3x

2 + c4x
3 and our

data fitting problem (12) for this polynomial takes the form










1 x1 x21 x31
1 x2 x22 x32
1 x3 x23 x33
...

...
. . .

...
1 xm x2m x3m










·







c1
c2
c3
c4






=









b0
b1
b2
...
bm









. (15)
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The right hand side of the above system represents measurements or
function which we want to fit. Our goal is to find such coefficients
c = {c1, c2, c3, c4} which will minimize the residual
ri = f (xi , c)− bi , i = 1...,m. Since we want minimize squared 2-norm of
the residual, or ‖r‖22 =

∑m
i=1 r

2
i , then we will solve the linear least

squares problem.
Let us consider an example when the right hand side bi , i = 1, ...m is
taken as a smooth function b = sin(πx/5)+ x/5. Figure on the next slide
shows polynomial fitting to the function b = sin(πx/5)+ x/5 for different
d in (13) on the interval x ∈ [−10, 10]. Using this figure we observe that
with increasing of the degree of the polynomial d − 1 we have better fit
to the exact function b = sin(πx/5) + x/5. However, for the degree of
the polynomial more than 18 we get erratic fit to the function. This
happens because matrix A becomes more and more ill-conditioned with
increasing of the degree of the polynomial d . And this is, in turn, because
of the linear dependence of the columns in the Vandermonde’s matrix A.
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Figure: Polynomial fitting for different d in (13) to the function b = sin(πx/5) + x/5 on the interval

x ∈ [−10, 10] using the method of normal equations. On the left figures: fit to the 100 points xi , i = 1, ..., 100;

on the right figures: fit to the 10 points xi , i = 1, ..., 10. Lines with blue stars represent computed function and

with red circles - exact one. 16 / 52



Linear Least Squares Problems

Approximation using linear splines

When we want to solve the problem (10) of the approximation to the
data vector yi , i = 1, ...,m with linear splines we use following basis
functions φj(x), j = 1, ..., n, in (11) which are called also hat functions:

φj(x) =

{
x−Tj−1

Tj−Tj−1
, Tj−1 ≤ x ≤ Tj ,

Tj+1−x

Tj+1−Tj
, Tj ≤ x ≤ Tj+1.

(16)

Here, the column j in the matrix A is constructed by the given values of
φj(x) at points Tj , j = 1, .., n, which are called conjunction points and
are chosen by the user. Using (16) we can conclude that the first basis

function is φ1(x) =
T2−x
T2−T1

and the last one is φn(x) =
x−Tn−1

Tn−Tn−1
.

Figure on the next slide shows approximation of a function
b = sin(πx/5) + x/5 on the interval x ∈ [−10, 10] using linear splines
with different number n of conjunction points Tj , j = 1, ..., n.
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Figure: Polynomial fitting to the function b = sin(πx/5) + x/5 on the interval x ∈ [−10, 10] using linear

splines with different number n of conjunction points Tj , j = 1, ..., n in (16). Blue stars represent computed

function and red circles - exact one.
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Approximation using bellsplines

In the case when we want to solve the problem (10) using bellsplines, the
number of bellsplines which can be constructed are n + 2, and the
function f (x , c) in (10) is written as

f (x , c) = c1φ1(x) + c2φ2(x) + ...+ cn+2φn+2(x). (17)
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We define

φ0
j (x) =

{
1, Tj ≤ x ≤ Tj+1,
0, otherwise.

(18)

Then all other basis functions, or bellsplines,
φk
j (x), j = 1, ..., n + 2; k = 1, 2, 3 are defined as follows:

φk
j (x) = (x − Tk)

φk−1
j (x)

Tj+k − Tj
+ (Tj+k+1 − x)

φk−1
j+1 (x)

Tj+k+1 − Tj+1
. (19)

Here, the column j in the matrix A is constructed by the given values of
φj(x) at conjunction points Tj , j = 1, .., n which are chosen by the user.
If in (19) we obtain ratio 0/0, then we assign φk

j (x) = 0. We define
additional three points T−2,T−1,T0 at the left side of the input interval
as T−2 = T−1 = T0 = T1, and correspondingly three points
Tn+1,Tn+2,Tn+3 on the right side of the interval as
Tn = Tn+1 = Tn+2 = Tn+3. All together we have n + 6 conjunction
points Tj , j = 1, ..., n + 6. Number of bellsplines which can be
constructed are n + 2.
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If conjunction points Tj are distributed uniformly, then we can introduce
the mesh size h = Tk+1 − Tk and bellsplines can be written explicitly as

φj(x) =







1
6 t

3 if Tj−2 ≤ x ≤ Tj−1, t = 1
h (x − Tj−2),

1
6 + 1

2 (t + t2 − t3) if Tj−1 ≤ x ≤ Tj , t = 1
h (x − Tj−1),

1
6 + 1

2 (t + t2 − t3) if Tj ≤ x ≤ Tj+1, t = 1
h (Tj+1 − x),

1
6 t

3 if Tj+1 ≤ x ≤ Tj+2, t =
1
h (Tj+2 − x).

(20)
In the case of uniformly distributed bellsplines we place additional points
at the left side of the input interval as
T0 = T1 − h,T−1 = T1 − 2h,T−2T1 − 3h, and correspondingly on the
right side of the interval as
Tn+1 = Tn + h,Tn+2 = Tn + 2h,Tn+3 = Tn + 3h. Then the function
f (x , c) in (10) will be the following linear combination of n + 2 functions
φj(x) for indices j = 0, 1, ..., n + 1:

f (x , c) = c1φ0(x) + c2φ1(x) + ...+ cn+2φn+1(x). (21)

Figure on the next slide shows approximation of a function
b = sin(πx/5) + x/5 on the interval x ∈ [−10, 10] using bellsplines.
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Figure: Polynomial fitting to the function b = sin(πx/5) + x/5 on the interval x ∈ [−10, 10] with different

number of bellsplines. Blue stars represent computed function and red circles - exact one.
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Nonlinear least squares problems

Suppose that for our data points (xi , yi ), i = 1, ...,m we want to
find the vector of parameters c = (c1, ..., cn) which will fit best to
the data yi , i = 1, ...,m of the model function f (xi , c), i = 1, ...,m.
We consider the case when the model function f : Rn+1 → R is
nonlinear now. Our goal is to find minimum of the residual
r = y − f (x , c) in the least squares sense:

min
c

m∑

i=1

(yi − f (xi , c))
2. (22)
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To solve problem (58) we can still use the linear least squares method if
we can transform the nonlinear function f (x , c) to the linear one. This
can be done if the function f (x , c) can be represented in the form
f (x , c) = A expcx ,A = const. Then taking logarithm of f (x , c) we get:
ln f = lnA+ cx , which is already linear function. Then linear least
squares problem after this transformation can be written as

min
c

m∑

i=1

(ln yi − ln f (xi , c))
2. (23)
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Another possibility how to deal with nonlinearity is consider the least
squares problem as an optimization problem. Let us define the residual
r : Rn → Rm as

ri (c) = yi − f (xi , c), i = 1, ...,m. (24)

Our goal is now minimize the function

F (c) =
1

2
r(c)T r(c) =

1

2
‖r(c)‖22. (25)

To find minimum of (25) we should have

∇F (c) =
∂F (c)

∂ci
= 0, i = 1, ...,m. (26)

Direct computations show that the gradient vector ∇F (c) is

∇F (c) =
dF

dc
= JT (c)r(c), (27)

where JT is the transposed Jacobian matrix of the residual r(c).
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For a sufficiently smooth function F (c) we can write its Taylor expansion
as

F (c) = F (c0) +∇F (c0)(c − c0) + O(h2), (28)

with |h| = ‖c − c0‖. Since our goal is to find minimum of F (c), then at
a minimum point c∗ we should have ∇F (c∗) = 0. Taking derivative with
respect to c from (28) we obtain

H(F (c0))(c − c0) + ∇F (c0)
︸ ︷︷ ︸

compare with (27)

= 0, (29)

where H denotes the Hessian matrix of the function F (c0). Using (27)
we also can write

∇F (c0) =
dF

dc
(c0) = JT (c0)r(c0). (30)
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Using (30) in (29) we obtain

H(F (c0))(c − c0) + JT (c0)r(c0) = 0, (31)

and from this expression we observe that we have obtained a system of
linear equations

H(F (c0))(c − c0) = −JT (c0)r(c0) (32)

which can be solved again using linear least squares method. The
Hessian matrix H(F (c0)) can be obtained from (30)

∇F (c0) =
dF

dc
(c0) = JT (c0)r(c0). (33)

as

H(F (c0)) = JT (c0)J(c0) +
m∑

i=1

ri (c0)H(ri ), (34)

where H(ri ) denotes the Hessian matrix of the residual function ri (c).
These m matrices H(ri ) are inconvenient to compute, but since they are
multiplied to the small residuals ri (c0), the second term in (34) is often
very small at the solution c0 and this term can be dropped out.
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Then the system (31) is transformed to the following linear system

JT (c0)J(c0)(c − c0) = −JT (c0)r(c0), (35)

which actually is a system of normal equations for the m × n linear least
squares problem

J(c0)(c − c0) = −r(c0). (36)

The system (35) determines the Gauss-Newton method for the solution
of the least squares problem as an iterative process

ck+1 = ck − [JT (ck)J(ck)]
−1JT (ck)r(ck), (37)

where k is the number of iteration.
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An alternative to the Gauss-Newton method is Levenberg-Marquardt
method. This method is based on the finding of minimum of the
regularized function

F (c) =
1

2
r(c)T r(c) +

1

2
γ(c − c0)

T (c − c0) =
1

2
‖r(c)‖22 +

1

2
γ‖c − c0‖22,

(38)
where c0 is a good initial guess for c and γ is a small regularization
parameter. Then we repeat all steps which we have performed for the
obtaining the Gauss-Newton method, see (27)-(34).
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Finally, In the Levenberg-Marquardt method the linear system which
should be solved at every iteration k is

(JT (ck)J(ck) + γk I )(c
k+1 − ck) = −JT (ck)r(ck), (39)

and the corresponding linear least squares problem is

[
J(ck)√
γk I

]

· (ck+1 − ck) ≈
[
−r(ck)

0

]

. (40)
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Example 1

Let us consider the nonlinear model equation

AeE/T−T0 = y. (41)

Our goal is to determine parameters A,E and T0 in this equation by
knowing y and T . We rewrite (41) as a nonlinear least squares problem
in the form

min
A,E ,T0

m∑

i=1

(yi − AeE/Ti−T0)2. (42)

We will show how to obtain from the nonlinear problem (42) the linear
one. We take logarithm of (41) to get

lnA+
E

T − T0
= ln y . (43)
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Now multiply both sides of (43) by T − T0 to obtain:

lnA(T − T0) + E = ln y(T − T0). (44)

and rewrite the above equation as

T lnA
︸︷︷︸

c2

−T0 lnA+ E
︸ ︷︷ ︸

c3

+ T0
︸︷︷︸

c1

ln y = T ln y . (45)

Let now define the vector of parameters c = (c1, c2, c3) with
c1 = T0, c2 = lnA, c3 = E − T0 lnA. Now the problem (45) can be
written as

c1 ln y + c2T + c3 = T ln y , (46)

which is already a linear problem. Now we can rewrite (46) denoting by
f (c , y ,T ) = c1 ln y + c2T + c3 as a linear least squares problem in the
form

min
c

m∑

i=1

(Ti ln yi − f (c , yi ,Ti ))
2. (47)
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The system of linear equations which is needed to be solved is








ln y1 T1 1
ln y2 T2 1
...

...
...

ln ym Tm 1







·





c1
c2
c3



 =








T1 ln y1
T2 ln y2

...
Tm ln ym








(48)
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Example 2

Suppose that the nonlinear model function is given as

f (x , c) = Aec1x + Bec2x, A,B = const. > 0, (49)

and our goal is to fit this function using Gauss-Newton method. In other
words, we will use iterative formula (36) for iterative update of
c = (c1, c2). The residual function will be

r(c) = y − f (x , c) = y − Aec1x − Bec2x, (50)

where y = yi , i = 1, ...,m are data points.
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First, we compute Jacobian matrix J(c), where two columns in this
matrix will be given by

J(c)i,1 =
∂ri
∂c1

= −xiAe
c1xi , i = 1, ...,m,

J(c)i,2 =
∂ri
∂c2

= −xiBe
c2xi , i = 1, ...,m.

(51)

If we will take initial guess for the parameters c0 = (c01 , c
0
2 ) = (1, 0), then

we have to solve the following problem at iteration k = 1:

J(c0)(c1 − c0) = −r(c0), (52)

and the next update for parameters c1 = (c11 , c
1
2 ) in the Gauss-Newton

method can be computed as

c1 = c0 − [JT (c0)J(c0)]
−1JT (c0)r(c0). (53)
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Here, r(c0) and J(c0) can be computed explicitly as follows:

r(c0) = yi − f (xi , c
0) = yi −(Ae1·xi +Be0·xi) = yi−Aexi −B, i = 1, ...,m,

(54)
and noting that c0 = (c01 , c

0
2 ) = (1, 0) two columns in the Jacobian

matrix J(c0) will be

J(c0)i,1 = −xiAe
1·xi = −xiAe

xi , i = 1, ...,m,

J(c0)i,2 = −xiBe
0·xi = −xiB, i = 1, ...,m.

(55)
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Substituting (54), (55) into (52) yields following linear system of
equations








−x1Ae
x1 −x1B

−x2Ae
x2 −x2B

...
...

−xmAe
xm −xmB







·
[
c11 − c01
c12 − c02

]

= −








y1 − Aex1 − B

y2 − Aex2 − B
...

ym − Aexm − B








(56)
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which is solved for c1 − c0 using method of normal equations as








−x1Ae
x1 −x1B

−x2Ae
x2 −x2B

...
...

−xmAe
xm −xmB








T

·








−x1Ae
x1 −x1B

−x2Ae
x2 −x2B

...
...

−xmAe
xm −xmB







·
[
c11 − c01
c12 − c02

]

= −








−x1Ae
x1 −x1B

−x2Ae
x2 −x2B

...
...

−xmAe
xm −xmB








T

·








y1 − Aex1 − B

y2 − Aex2 − B
...

ym − Aexm − B








(57)

This system can be solved for c1 − c0, and next values c1 are obtained by
using (53).
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Nonlinear least squares problems

Suppose that for our data points (xi , yi ), i = 1, ...,m we want to
find the vector of parameters c = (c1, ..., cn) which will fit best to
the data yi , i = 1, ...,m of the model function f (xi , c), i = 1, ...,m.
We consider the case when the model function f : Rn+1 → R is
nonlinear now. Our goal is to find minimum of the residual
r = y − f (x , c) in the least squares sense:

min
c

m∑

i=1

(yi − f (xi , c))
2. (58)
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To solve problem (58) we can still use the linear least squares method if
we can transform the nonlinear function f (x , c) to the linear one. This
can be done if the function f (x , c) can be represented in the form
f (x , c) = A expcx ,A = const. Then taking logarithm of f (x , c) we get:
ln f = lnA+ cx , which is already linear function. Then linear least
squares problem after this transformation can be written as

min
c

m∑

i=1

(ln yi − ln f (xi , c))
2. (59)
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Computer exercise 2 (1 p.)

Consider the nonlinear equation

y(T ) = A · exp−
E

T−T0

presenting one of the models of the viscosity of glasses (see paper G. S.
Fulcher, “ANALYSIS OF RECENT MEASUREMENTS OF THE
VISCOSITY OF GLASSES” on the course homepage). Here, T is the
known temperature, y(T ) is the known output data. Determine
parameters A,E ,T0 which are positive constants by knowing T and
output data y(T ). Determine parameters A,E ,T0 which are positive
constants by knowing T and output data y(T ).
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Hints:

1. Transform first the nonlinear function y(T ) to the linear one and
solve then linear least squares problem. Discretize T by N points
and compute discrete values of y(T ) as yi = y(Ti ) for the known
values of parameters A,E ,T0. Then forget about these parameters
(we will call them exact parameters A∗,E∗,T ∗

0 ) and solve the linear
least squares problem to recover these exact parameters.

2. You can choose exact parameters A∗,E∗,T ∗
0 as well as T as some

positive constants. For example, take
E∗ = 6 ·103,A∗ = exp−2.64,T ∗

0 = 400,T = 750+10∗ i , i = 1, ...,N,
where N is the number of discretization points. See Table II in the
paper G. S. Fulcher, “ANALYSIS OF RECENT MEASUREMENTS
OF THE VISCOSITY OF GLASSES” for some other possible
choises of these constants.

42 / 52



Linear Least Squares Problems

3. Add random noise δ to data y(T ) using the formula

yδ(T ) = y(T )(1 + δα),

where α ∈ (−1, 1) is randomly distributed number and δ ∈ [0, 1] is
the noise level. For example, if noise in data is 5%, then δ = 0.05.

4. Solve the linear least squares problem using the method of normal
equations, QR and then SVD decompositions. Analyze obtained
results by computing the relative errors eA, eE , eT0

in the computed
parameters depending on the different noise level δ ∈ [0, 1] in data
yσ(T ) for every method.

The relative errors eA, eE , eT0
in the computed parameters A,E ,T0

are given by:

eA =
|A− A∗|
|A∗| ,

eE =
|E − E∗|
|E∗| ,

eT0
=

|T0 − T ∗
0 |

|T ∗
0 |

.

(60)
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Here, A∗,E∗,T ∗
0 are exact values and A,E ,T0 are computed one.

Present results how relative errors (60) depend on the relative noise
δ ∈ [0, 1] in graphical form and in the corresponding table.

5. Choose different number of discretization points N and present
results of computations in graphical form and in the corresponding
table. More precisely, present how relative errors (60) depend on the
number of measurements N if you solve the linear least squares
problem using the method of normal equations, QR and then SVD
decomposition.

6. Using results obtained in items 4 and 5, analyze, what is the minimal
number of observations N should be chosen to get reasonable
reconstruction of parameters A,E ,T0 within the noise level σ ?
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QR Decomposition

THEOREM QR decomposition. Let A be m-by-n with m ≥ n. Suppose
that A has full column rank. Then there exist a unique m-by-n
orthogonal matrix Q(QTQ = In) and a unique n-by-n upper triangular
matrix R with positive diagonals rii > 0 such that A = QR.

Proof. Can be two proofs of this theorem: using the Gram-Schmidt
orthogonalization process and using the Hauseholder reflections. The first
proof: this theorem is a restatement of the Gram-Schmidt
orthogonalization process [P. Halmos. Finite Dimensional Vector Spaces.
Van Nostrand, New York, 1958]. If we apply Gram-Schmidt to the
columns ai of A = [a1, a2, . . . , an] from left to right, we get a sequence of
orthonormal vectors (if they are orthogonal and unit vectors) q1
through qn spanning the same space: these orthogonal vectors are the
columns of Q. Gram-Schmidt also computes coefficients rji = qTj ai
expressing each column ai as a linear combination of q1 through qi :
ai =

∑i
j=1 rjiqj . The rji are just the entries of R .
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ALGORITHM The classical Gram-Schmidt (CGS) and modified
Gram-Schmidt (MGS) Algorithms for factoring A = QR :

for i = 1 to n /* compute ith columns of Q and R */
qi = ai
for j = 1 to i − 1 /* subtract component in qj direction from ai */

{
rji = qTj ai CGS

rji = qTj qi MGS
qi = qi − rjiqj

end for
rii = ||qi ||2
if rii = 0 /* ai is linearly dependent on a1, . . . , ai−1 */
quit

end if
qi = qi/r ii

end for

If A has full column rank, rii will not be zero.
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Notes:

Unfortunately, CGS is numerically unstable in floating point
arithmetic when the columns of A are nearly linearly dependent.

MGS is more stable and will be used in algorithms later in this
course but may still result in Q being far from orthogonal
(||QTQ − I || being far larger than ε) when A is ill-conditioned

Literature on this subject:

Å. Björck. Solution of Equations volume 1 of Handbook of
Numerical Analysis, chapter Least Squares Methods. Elsevier/North
Holland, Amsterdam, 1987.

Å. Björck. Least squares methods. Mathematics Department
Report, Linkoping University, 1991.

Å. Björck. Numerical Methods for Least Squares Problems. SIAM,
Philadelphia, PA, 1996.

N. J. Higham. Accuracy and Stability of Numerical Algorithms.
SIAM, Philadelphia, PA, 1996.
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We will derive the formula for the x that minimizes ||Ax − b||2 using the
decomposition A = QR in three slightly different ways. First, we can
always choose m − n more orthonormal vectors Q̃ so that [Q, Q̃] is a
square orthogonal matrix and thus Q̃TQ = 0 (for example, we can
choose any m − n more independent vectors X̃ that we want and then
apply QR Algorithm to the n-by-n nonsingular matrix [Q, X̃ ]). Then

||Ax − b||22 = ||[Q, Q̃]T (Ax − b)||22
=

∥
∥
∥
∥

[
QT

Q̃T

]

(QRx − b)

∥
∥
∥
∥

2

2

=

∥
∥
∥
∥

[
I n×n

O(m−n)×n

]

Rx −
[

QTb

Q̃Tb

]∥
∥
∥
∥

2

2

=

∥
∥
∥
∥

[
Rx − QTb

−Q̃Tb

]∥
∥
∥
∥

2

2

=
∥
∥Rx − QTb

∥
∥
2

2
+ ‖Q̃Tb‖22

≥ ‖Q̃Tb‖22.

We can solve Rx −QTb = 0 for x , since A and R have the same rank, n,
and so R is nonsingular. Then x = R−1QTb, and the minimum value of
||Ax − b||2 is ||Q̃Tb||2.
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Here is a second, slightly different derivation that does not use the matrix
Q̃. Rewrite Ax − b as

Ax − b = QRx − b = QRx − (QQT + I − QQT )b
= Q(Rx − QTb)− (I − QQT )b.

Note that the vectors Q(Rx − QTb) and (I − QQT )b are orthogonal,
because (Q(Rx − QTb))T ((I − QQT )b) =
(Rx − QTb)T [QT (I − QQT )]b = (Rx − QTb)T [0]b = 0. Therefore, by
the Pythagorean theorem,

‖Ax − b‖22 = ‖Q(Rx − QTb)‖22 + ‖(I − QQT )b‖22
= ‖Rx − QTb‖22 + ‖(I − QQT )b‖22.

where we have used ||Qy ||22 = ||y ||22. This sum of squares is minimized
when the first term is zero, i.e., x = R−1QTb.
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Finally, here is a third derivation that starts from the normal equations
solution:

x = (ATA)−1ATb
= (RTQTQR)−1RTQTb = (RTR)−1RTQTb
= R−1R−TRTQTb = R−1QTb.
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Singular values

The singular values, or s-numbers of a compact operator T : X → Y
acting between Hilbert spaces X and Y , are the square roots of the
eigenvalues of the nonnegative self-adjoint operator T ∗T : X → X
(where T ∗ denotes the adjoint of T ).

σ(T ) =
√

λ(T ∗T ).

The singular values are nonnegative real numbers, usually listed in
decreasing order (s1(T ), s2(T ), ...). If T is self-adjoint, then the largest
singular value s1(T ) is equal to the operator norm of T .
In the case of a normal matrix A (or A∗A = AA∗, when A is real then
ATA = AAT ), the spectral theorem can be applied to obtain unitary
diagonalization of A as A = UΛU∗. Therefore,

√
A∗A = U|Λ|U∗ and so

the singular values are simply the absolute values of the eigenvalues.
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Singular Value Decomposition

THEOREM SVD. Let A be an arbitrary m-by-n matrix with m ≥ n. Then
we can write A = UΣV T , where U is m-by-n and satisfies UTU = I , V
is n-by-n and satisfies V TV = I , and Σ = diag(σ1, . . . , σn), where
σ1 ≥ · · · ≥ σn ≥ 0. The columns u1, . . . , un of U are called left singular

vectors. The columns v1, . . . , vn of V are called right singular vectors.
The σi are called singular values. (If m < n, the SVD is defined by
considering AT .)
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