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Least squares and classification algorithms

THEOREM Let A = UΣV T be the SVD of the m-by-n matrix A, where
m ≥ n. (There are analogous results for m < n.)

1. Suppose that A is symmetric, with eigenvalues λi and
orthonormal eigenvectors ui . In other words A = UΛUT is an
eigendecomposition of A, with Λ = diag(λ1, . . . , λn), and
U = [u1, . . . , un], and UUT = I . Then an SVD of A is A = UΣV T ,
where σi = |λi | and υi = sign(λi )ui , where sign(0) = 1.

2. The eigenvalues of the symmetric matrix ATA are σ2
i . The right

singular vectors υi are corresponding orthonormal eigenvectors.

3. The eigenvalues of the symmetric matrix AAT are σ2
i and m − n

zeroes. The left singular vectors ui are corresponding orthonormal
eigenvectors for the eigenvalues σ2

i . One can take any m − n other
orthogonal vectors as eigenvectors for the eigenvalue 0.

4. Let H = [
0 AT

A 0
], where A is square and A = UΣV T is the

SVD of A. Let Σ = diag(σ1, . . . , σn), U = [u1, . . . , un], and
V = [υ1, . . . , υn]. Then the 2n eigenvalues of H are ±σi , with

corresponding unit eigenvectors 1√
2

[
υi
±ui

]

.

2 / 64



Least squares and classification algorithms

5. If A has full rank, the solution of minx ‖Ax − b‖2 is
x = VΣ−1UTb.

6. ‖A‖2 = σ1. If A is square and nonsingular, then ‖A−1‖−1
2 = σn

and ‖A‖2 · ‖A−1‖2 = σ1

σn
.

7. Write V = [υ1, υ2, . . . , υn] and U = [u1, u2, . . . , un], so
A = UΣV T =

∑n
i=1 σiuiυ

T
i (a sum of rank-1 matrices). Then a

matrix of rank k < n closest to A (measured with || · ||2) is
Ak =

∑k
i=1 σiuiυ

T
i and ||A− Ak ||2 = σk+1. We may also write

Ak = UΣkV
T where Σk = diag(σ1, . . . , σk , 0, . . . , 0).
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Proof.
1. Suppose that A is symmetric, with eigenvalues λi and

orthonormal eigenvectors ui . In other words A = UΛUT is an

eigendecomposition of A, with Λ = diag(λ1, . . . , λn), and
U = [u1, . . . , un], and UUT = I . Then an SVD of A is

A = UΣV T , where σi = |λi | and υi = sign(λi )ui , where
sign(0) = 1.
This is true by the definition of the SVD.
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2. The eigenvalues of the symmetric matrix ATA are σ2
i . The

right singular vectors υi are corresponding orthonormal

eigenvectors.

ATA = VΣUTUΣV T = VΣ2V T . This is an eigendecomposition
of ATA, with the columns of V the eigenvectors and the diagonal
entries of Σ2 the eigenvalues.
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3. The eigenvalues of the symmetric matrix AAT are σ2
i and

m − n zeroes. The left singular vectors ui are corresponding

orthonormal eigenvectors for the eigenvalues σ2
i . One can

take any m − n other orthogonal vectors as eigenvectors for

the eigenvalue 0.

Choose an m-by-(m − n) matrix Ũ so that [U, Ũ] is square and
orthogonal. Then write

AAT = UΣV TVΣUT = UΣ2UT =
[

U, Ũ
]

·
[
Σ2 0
0 0

]

·
[

U, Ũ
]T

.

This is an eigendecomposition of AAT .
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4. Let H = [
0 AT

A 0
], where A is square and A = UΣV T is the

SVD of A. Let Σ = diag(σ1, . . . , σn), U = [u1, . . . , un], and
V = [υ1, . . . , υn]. Then the 2n eigenvalues of H are ±σi , with

corresponding unit eigenvectors 1√
2

[
υi
±ui

]

.
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We substitute A = UΣV T into H to get:

H =

[
0 VΣUT

UΣV T 0

]

Choose orthogonal matrix G such that

G =
1√
2

[
V V
U −U

]

It is orthogonal since

I = GGT = 1
2

[
VV T + VV T 0

0 UUT + UUT

]

Then we observe that

G

[
Σ 0
0 Σ

]

GT =

[
0 VΣUT

UΣV T 0

]

= H

Then using the spectral theorem we can conclude that the 2n
eigenvalues of H are ±σi , with corresponding eigenvectors

1
√

2

[
vi
±ui

]

.

8 / 64



Least squares and classification algorithms

5. If A has full rank, the solution of minx ‖Ax − b‖2 is

x = VΣ−1UTb.
‖Ax − b‖22 = ||UΣV T x − b||22. Since A has full rank, so does Σ,
and thus Σ is invertible. Now let [U, Ũ] be square and orthogonal
as above so

||UΣV T x − b||22 =

∥
∥
∥
∥

[
UT

ŨT

]

(UΣV T x − b)

∥
∥
∥
∥

2

2

=

∥
∥
∥
∥

[
ΣV T x − UTb

−ŨTb

]∥
∥
∥
∥

2

2

= ||ΣV T x − UTb||22 + ‖ŨTb‖22.

This is minimized by making the first term zero, i.e.,
x = VΣ−1UTb.
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6. ‖A‖2 = σ1. If A is square and nonsingular, then ‖A−1‖−1
2 = σn

and ‖A‖2 · ‖A−1‖2 = σ1

σn
.

It is clear from its definition that the two-norm of a diagonal matrix is
the largest absolute entry on its diagonal. Thus, by property of the norm,
‖A‖2 = ‖UTAV ‖2 = ‖UTUΣV TV ‖2 = ‖Σ‖2 = σ1 and
‖A−1‖2 = ‖V TA−1U‖2 = ‖Σ−1‖2 = σ−1

n .
Remark:
‖A−1‖2 = ‖V TA−1U‖2 = ‖V T (UΣV T )−1U‖2 = ‖Σ−1‖2 = σ−1

n .
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7. Write V = [υ1, υ2, . . . , υn] and U = [u1, u2, . . . , un], so
A = UΣV T =

∑n
i=1 σiuiυ

T
i (a sum of rank-1 matrices). Then a

matrix of rank k < n closest to A (measured with || · ||2) is
Ak =

∑k
i=1 σiuiυ

T
i and ||A− Ak ||2 = σk+1. We may also write

Ak = UΣkV
T where Σk = diag(σ1, . . . , σk , 0, . . . , 0).
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7. Write V = [υ1, υ2, . . . , υn] and U = [u1, u2, . . . , un], so
A = UΣV T =

∑n
i=1 σiuiυ

T
i (a sum of rank-1 matrices). Then a matrix

of rank k < n closest to A (measured with || · ||2) is Ak =
∑k

i=1 σiuiυ
T
i

and ||A− Ak ||2 = σk+1. We may also write Ak = UΣkV
T where

Σk = diag(σ1, . . . , σk , 0, . . . , 0).
Ak has rank k by construction and

||A− Ak ||2 =
∥
∥
∥
∥
∥

n∑

i=1

σiuiυ
T
i −

k∑

i=1

σiuiυ
T
i

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

n∑

i=k+1

σiuiυ
T
i

∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥
∥
∥
∥
∥

U








0
σk+1

. . .

σn







V T

∥
∥
∥
∥
∥
∥
∥
∥
∥
2

= σk+1.
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It remains to show that there is no closer rank k matrix to A. Let B be
any rank k matrix, so its null space has dimension n − k . The space
spanned by {υ1, ..., υk+1} has dimension k + 1. Since the sum of their
dimensions is (n − k) + (k + 1) > n, these two spaces must overlap. Let
h be a unit vector in their intersection. Then

‖A− B‖22 ≥ ‖(A− B)h‖22 = ‖Ah‖22 =
∥
∥UΣV Th

∥
∥
2

2

=
∥
∥Σ(V Th)

∥
∥
2

2
≥ σ2

k+1

∥
∥V Th

∥
∥
2

2
= σ2

k+1.

�
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Example of application of linear systems: image
compression using SVD
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a) Original image b) Rank k=20 approximation
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Example of application of linear systems: image
compression using SVD in Matlab

See path for other pictures:
/matlab-2012b/toolbox/matlab/demos
load clown.mat;
Size(X) = m × n = 320× 200 pixels.
[U,S,V] = svd(X);
colormap(map);
k=20;
image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’);
Now: size(U)= m × k , size(V)= n × k .
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Image compression using SVD in Matlab
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a) Original image b) Rank k=4 approximation b) Rank k=5 approximation
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c) Rank k=6 approximation d) Rank k=10 approximation d) Rank k=15 approximation
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Example of application of linear systems: image
compression using SVD for arbitrary image

To get image on the previous slide, I took picture in jpg-format and
loaded it in matlab. You can also try to use following matlab code for
your own pictures:
A = imread(’Child.jpg’);
Real size of A: size(A) ans= 218 171 3
figure(1); image(DDA);
DDA=im2double(A);
[U1,S1,V1] = svd(DDA(:,:,1)); [U2,S2,V2] = svd(DDA(:,:,2));
[U3,S3,V3] = svd(DDA(:,:,3));
k=15;
svd1 = U1(:,1:k)*S1(1:k,1:k)*V1(:,1:k)’;
svd2 = U2(:,1:k)*S2(1:k,1:k)*V2(:,1:k)’;
svd3 = U3(:,1:k)*S3(1:k,1:k)*V3(:,1:k)’;
DDAnew = zeros(size(DDA));
DDAnew(:,:,1) = svd1; DDAnew(:,:,2) = svd2; DDAnew(:,:,3) = svd3;
figure(2); image(DDAnew);

17 / 64



Least squares and classification algorithms

Perturbation Theory for the Least Squares Problem

When A is not square, we define its condition number with respect to the
2-norm to be k2(A) ≡ σmax(A)/σmin(A). This reduces to the usual
condition number when A is square. The next theorem justifies this
definition.
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THEOREM Suppose that A is m-by-n with m ≥ n and has full rank.
Suppose that x minimizes ‖Ax − b‖2. Let r = Ax − b be the residual.
Let x̃ minimize ‖(A+ δA)x̃ − (b + δb)‖2. Assume

ǫ ≡ max(‖δA‖2

‖b‖2
, ‖δb‖2

‖b‖2
) < 1

k2(A)
= σmin(A)

σmax (A)
. Then

‖x̃ − x‖
‖x‖ ≤ ǫ ·

{
2 · k2(A)
cos θ

+ tan θ · k2
2 (A)

}

+ O(ǫ2) ≡ ǫ · kLS + O(ǫ2),

where sin θ = ‖r‖2

‖b‖2
. In other words, θ is the angle between the vectors b

and Ax and measures whether the residual norm ‖r‖2 is large (near ‖b‖)
or small (near 0). kLS is the condition number for the least squares
problem.
Sketch of Proof. Expand x̃ = ((A+ δA)T (A+ δA))−1(A+ δA)T (b + δb)
in powers of δA and δb. Then remove all non-linear terms, leave the
linear terms for δA and δb. �
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Introduction

Machine learning is a field of artificial intelligence which gives
computer systems the ability to “learn” using available data.

We will study linear and polynomial classifiers and some artificial
neural networks algorithms (multilayer perceptron). We will discover
convergence for all these algorithms and compare their performance
with respect to applicability, reliability, accuracy, and efficiency.
Programs written in Matlab will demonstrate performance for every
algorithm.

Studied algorithms should be applied in comp.ex.3 in numerical
studies and comparison of different machine learning algorithms to
detect inter-class boundaries.
Reference literature: Miroslav Kurbat, An Introduction to Machine Learning, Springer, 2017.

Christopher M. Bishop, Pattern recognition and machine learning, Springer, 2009.

L. Beilina, E. Karchevskii, M. Karchevskii, Numerical Linear Algebra: Theory and Applications, Springer,
2017 – see link to GitHub with Matlab code
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Classification problem

Suppose that we have data points (xi , yi ), i = 1, ...,m. These points
are separated into two classes A and B . Assume that these classes
are linearly separable.

Definition

Let A and B are two data sets of points in an n-dimensional
Euclidean space. Then A and B are linearly separable if there exist
n + 1 real numbers ω1, ..., ωn, l such that every point x ∈ A satisfies
∑n

i=1 ωixi > l and every point x ∈ B satisfies
∑n

i=1 ωixi < −l .

Our goal is to find the decision line which will separate these two
classes. This line will also predict in which class will the new point
fall.
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Least squares and classification

Least squares can be used for classification problems appearing in
machine learning algorithms.
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Figure: Examples of working least squares for classification.

Least squares minimization minx ‖Ax − b‖22 for classification is working
fine when we know that two classes are linearly separable.
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Least squares and classification

Least squares can be used for classification problems appearing in
machine learning algorithms.
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Figure: Examples of working least squares for classification.

Least squares minimization minx ‖Ax − b‖22 for classification is working
fine when we know that two classes are linearly separable.
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Least squares and classification

Least squares can be used for this classification problem. Let us consider
two-class model. Let the first class consisting of l points with coordinates
(xi , yi ), i = 1, ..., l is described by it’s linear model

f1(x , c) = c1,1φ1(x) + c2,1φ2(x) + ...+ cn,1φn(x). (1)

Let the second class consisting of k points with coordinates
(xi , yi ), i = 1, ..., k is also described by the same linear model

f2(x , c) = c1,2φ1(x) + c2,2φ2(x) + ...+ cn,2φn(x). (2)

Here, functions φj(x), j = 1, ..., n are called basis functions. Our goal is
to find the vector of parameters c = ci,1 = ci,2, i = 1, ..., n of the size n
which will fit best to the data yi , i = 1, ...,m,m = k + l of both model
functions, f1(xi , c), i = 1, ..., l and f2(xi , c), i = 1, ..., k with
f (x , c) = [f1(xi , c), f2(xi , c)] such that

min
c

m∑

i=1

(yi − f (xi , c))
2 (3)

with m = k + l . If the function f (x , c) is linear then we can solve the
problem (3) using least squares method.
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Least squares and classification

Let now the matrix A in Ax = b will have entries
aij = φj(xi ), i = 1, ...,m; j = 1, ..., n, and vector b will be such that
bi = yi , i = 1, ...,m. Then a linear data fitting problem takes the form

Ac = b (4)

Elements of the matrix A are created by basis functions φj(x), j = 1, ..., n.
Solution of (4) can be found by the method of normal equations:

c = (ATA)−1ATb = A+b (5)

Different basis functions can be chosen. We have considered
φj(x) = x j−1, j = 1, ..., n in the problem of fitting to a polynomial. The
matrix A constructed by these basis functions is a Vandermonde matrix.
Linear splines (or hat functions) and bellsplines also can be used as basis
functions.
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Least squares and classification: example

Least squares minimization for classification is working fine when we
know that two classes are linearly separable. Higher degree of polynomial
separates two classes better. However, since Vandermonde’s matrix can
be ill-conditioned for high degrees of polynomial, we should carefully
choose appropriate polynomial to fit data.
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Least squares and classification

Examples below present computation of decision line for separation of
two classes with m = 100 using basis functions φj(x) = x j−1, j = 1, ..., d ,
where d is degree of the polynomial.
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Machine learning algorithms: linear and polynomial
classifiers

Let us consider boolean domains where each attribute is true or
false. and we will represent true by 1 and false by 0.
Below we present a table where is presented a boolean domain
with two classes and two boolean attributes (here, true is 1 and

false is 0).

x y Class

1 1 positive
1 0 negative
0 1 negative
0 0 negative

We observe that these two classes

can be separated by linear equation

ω1 + ω2x + ω3y = 0. (6)

Our goal is to find weights ω1, ω2, ω3 in order to determine the
decision line y(x). The decision line which will separate two classes
will have the form y(x) = (−ω1 − ω2x)/ω3.
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Linear and polynomial classifiers

On the figure below, two classes should be separated:one example we
labeled as positive class, another one as negative. In this case, two
classes can be separated by linear equation

ω1 + ω2x + ω3y = 0 (7)
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Figure: Examples of working perceptron learning algorithm which
computes weights for decision line to separate two classes.

29 / 64



Least squares and classification algorithms

Linear and polynomial classifiers

In common case, two classes can be separated by the general equation

ω0 + ω1x1 + ω2x2 + ...+ ωnxn = 0 (8)

which also can be written as

n∑

i=0

ωixi = 0 (9)

with x0 = 1. If n = 2 then the above equation defines a line, if n = 3 -
plane, if n > 3 - hyperplane. Our problem is to determine weights ωi and
the task of machine learning is to determine their appropriate values.
Weights ωi , i = 1, ..., n determine the angle of the hyperplane, ω0 is
called bias and determines the offset, or the hyperplanes distance from
the origin of the system of coordinates.
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Machine learning: Perceptron learning algorithm

Let us assume that every training example x = (x1, ..., xn) is
described by n attributes with values xi = 0 or xi = 1.

We will label positive examples with c(x) = 1 and negative with
c(x) = 0.

Let us denote by h(x) the classifier’s hypothesis which also will have
binary values h(x) = 1 or h(x) = 0.

We will also assume that all examples where c(x) = 1 are linearly
separable from examples where c(x) = 0.
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Machine learning: Perceptron learning algorithm

Step 0. Initialize weights ωi to small random numbers.

Step 1. If
∑n

i=0 ωixi > 0 we will say that the example is positive
and h(x) = 1.

Step 2. If
∑n

i=0 ωixi < 0 we will say the the example is negative and
h(x) = 0.

Step 3. Update every weight using the formula

ωi = ωi + η · [c(x)− h(x)] · xi .

Step 4. If c(x) = h(x) for all learning examples - stop. Otherwise
return to step 1.

Here, η ∈ (0, 1] is called the learning rate.
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Polynomial of the second order

Coefficients of polynomials of the second order can be obtained by the
same technique as coefficients for linear classifiers.
The second order polynomial function is:

ω0 + ω1 x1
︸︷︷︸

z1

+ω2 x2
︸︷︷︸

z2

+ω3 x21
︸︷︷︸

z3

+ω4 x1x2
︸︷︷︸

z4

+ω5 x22
︸︷︷︸

z5

= 0 (10)

This polynomial can be converted to the linear classifier if we introduce
notations:

z1 = x1, z2 = x2, z3 = x21 , z4 = x1x2, z5 = x22 .

Then equation (10) can be written in new variables as

ω0 + ω1z1 + ω2z2 + ω3z3 + ω4z4 + ω5z5 = 0 (11)

which is already linear function. Thus, the Perceptron learning algorithm
can be used to determine weights ω0, ..., ω5 in (11).
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Polynomial of the second order

Suppose that you have determined weights ω0, ..., ω5 in (11). To present
the decision line you need to solve the quadratic equation for x2:

ω0 + ω1x1 + ω2x2 + ω3x
2
1 + ω4x1x2 + ω5x

2
2 = 0 (12)

with known weights ω0, ..., ω5 and known x1. We can rewrite (12) as

ω5
︸︷︷︸

a

x22 + x2 (ω2 + ω4x1)
︸ ︷︷ ︸

b

+ω0 + ω1x1
︸ ︷︷ ︸

c

= 0 (13)

or as
ax22 + bx2 + c = 0. (14)

Solutions of (14) will be

x2 =
−b ±

√
D

2a
,

D = b2 − 4ac .
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Perceptron learning algorithm for polynomial of the second
order: example
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Figure: Separation of two classes by polynomials of the second order for 4
points.
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Perceptron learning algorithm for polynomial of the second
order: example
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Figure: Separation of two linearly separated classes by polynomials of the
second order for 100 points.
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Perceptron learning algorithm for polynomial of the second
order: example
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Figure: Separation of two linearly separated classes by polynomials of the
second order.
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Perceptron learning algorithm for polynomial of the second
order: example

Figure: Separation of the solution of Poisson equation in 2D on the
square (see example 8.1.3 in the course book) by polynomials of the
second order.
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Perceptron learning algorithm for polynomial of the second
order: example

Figure: Separation of the solution of Poisson equation in 2D on the
square (see example 8.1.3 in the course book) by polynomials of the
second order.
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Machine learning: WINNOW learning algorithm

Perceptron learning algorithm used additive rule, while WINNOW
algorithm uses multiplicative rule: weights are multiplied in this rule.
We will again assume that all examples where c(x) = 1 are linearly
separable from examples where c(x) = 0. Main steps in the WINNOW
learning algorithm are:
Step 0. Initialize weights ωi = 1. Choose parameter α > 1, usually α = 2.
Step 1. If

∑n
i=0 ωixi > 0 we will say that the example is positive and

h(x) = 1.
Step 2. If

∑n
i=0 ωixi < 0 we will say the the example is negative and

h(x) = 0.
Step 3. Update every weight using the formula

ωi = ωi ∗ αc(x)−h(x).

Step 4. If c(x) = h(x) for all learning examples - stop. Otherwise return
to step 1.
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Perceptron learning algorithm vs. WINNOW: example
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Figure: Comparison of two classification algorithms for separation of two
classes: Perceptron learning algorithm (red line) and WINNOW (blue
line).
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Artificial neural networks

Figure: Example of neural network which contains two interconnected layers (M. Kurbat, An Introduction to

machine learning, Springer, 2017.)

In an artificial neural network simple units - neurons- are
interconnected by weighted links into into structures of high
perfomance.

We will consider multilayer perceptrons and radial basis
function networks.
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Neurons

Figure: Structure of a typical neuron (Wikipedia).

A neuron, also known as a nerve cell, is an electrically excitable cell
that receives, processes, and transmits information through
electrical and chemical signals. These signals between neurons
occur via specialized connections called synapses.

An artificial neuron is a mathematical function which presents a
model of biological neurons, a neural network. 43 / 64
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Artificial neurons

Figure: Perceptron neural network consisting of one neuron (source: DataCamp(datacamp.com)).

Artificial neurons are elementary units in an artificial neural network.
The artificial neuron receives one or more inputs and sums them to
produce an output (or activation, representing a neuron’s action
potential which is transmitted along its axon).

Each input is separately weighted by weights ωkj , and the sum
∑

k ωkjxk is passed as an argument Σ =
∑

k ωkjxk through a
non-linear function f (Σ) which is called the activation function or
transfer function.

Assume that attributes xk are normalized and belong to the interval
[−1, 1].
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Artificial neurons: transfer functions
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Figure: Sigmoid and Gaussian (for b = 1, σ = 3 in (16)) transfer functions.

Different transfer (or activation) functions f (Σ) with Σ =
∑

k ωkjxk
are used. We will study sigmoid and gaussian functions.

Sigmoid function:

f (Σ) =
1

1 + e−Σ
(15)

Gaussian function centered at b for a given variance σ2

f (Σ) =
e−(Σ−b)2

2σ2
(16)
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Forward propagation

Figure: Example of neural network called multilayer perceptron (one hidden layer of neurons and one output

layer). (M. Kurbat, An Introduction to machine learning, Springer, 2017.)

Neurons in adjacent layer are fully interconnected.

Forward propagation is implemented as

yi = f (Σjω
(1)
ji xj) = f (Σjω

(1)
ji f (Σkω

(2)
kj xk)

︸ ︷︷ ︸

xj

), (17)

where ω
(1)
ji and ω

(2)
kj are weights of the output and the hidden

neurons, respectively, f is the transfer function. 46 / 64
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Example of forward propagation through the network

Figure: Source: M. Kurbat, An Introduction to machine learning, Springer, 2017.

Using inputs x1, x2 compute inputs of hidden-layer neurons:

x
(2)
1 = 0.8 ∗ (−1.0) + 0.1 ∗ 0.5 = −0.75, x

(2)
2 = 0.8 ∗ 0.1 + 0.1 ∗ 0.7 = 0.15

Compute transfer function (sigmoid f (Σ) = 1
1+e−Σ in our case):

h1 = f (x
(2)
1 ) = 0.32, h2 = f (x

(2)
2 ) = 0.54.

Compute input of output-layer neurons

x
(1)
1 = 0.32 ∗ 0.9 + 0.54 ∗ 0.5 = 0.56, x

(1)
2 = 0.32 ∗ (−0.3) + 0.54 ∗ (−0.1) = −0.15.

Compute outputs of output-layer neurons using transfer function (sigmoid in our case):

y1 = f (x
(1)
1 ) = 0.66, y2 = f (x

(1)
2 ) = 0.45. 47 / 64
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Backpropagation of error through the nework

Our goal is to find optimal weights ω
(1)
ji and ω

(2)
kj in forward propagation

yi = f (Σjω
(1)
ji xj) = f (Σjω

(1)
ji f (Σkω

(2)
kj xk)

︸ ︷︷ ︸

xj

). (18)

To do this we introduce functional

F (ω
(1)
ji , ω

(2)
kj ) =

1

2
‖ti − yi‖2 =

1

2

m∑

i=1

(ti − yi )
2. (19)

Here, t = t(x) is the target vector which depends on the concrete
example x . In the domain with m classes the target vector
t = (t1(x), ..., tm(x)) consists of m binary numbers such that

ti (x) =

{

1, example x belongs to i-th class,
0, otherwise.

(20)
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Examples of target vector and mean square error

Let there exist three different classes c1, c2, c3. Let the example x belongs
to the class c2. Then the target vector is t = (t1, t2, t3) = (0, 1, 0).
The mean square error is defined as

E =
1

m
‖ti − yi‖2 =

1

m

m∑

i=1

(ti − yi )
2. (21)

Let us assume that we have two different networks to choose from, every
network with 3 output neurons corresponding to classes c1, c2, c3. Let
t = (t1, t2, t3) = (0, 1, 0) and for the example x the first network output is
y1 = (0.5, 0.2, 0.9) and the second network output is y2 = (0.6, 0.6, 0.7).

E1 =
1

3

3∑

i=1

(ti − yi )
2 =

1

3
((0− 0.5)2 + (1− 0.2)2 + (0− 0.9)2)) = 0.57,

E2 =
1

3

3∑

i=1

(ti − yi )
2 =

1

3
((0− 0.6)2 + (1− 0.6)2 + (0− 0.7)2)) = 0.34.

Since E2 < E1 then the second network is less wrong on the example x
than the first network.
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Backpropagation of error through the nework

To find minimum of the functional (19) F (ω) with ω = (ω
(1)
ji , ω

(2)
kj ), recall

it below:

F (ω) = F (ω
(1)
ji , ω

(2)
kj ) =

1

2
‖ti − yi‖2 =

1

2

m∑

i=1

(ti − yi )
2, (22)

we need to solve the minimization problem

min
ω

F (ω) (23)

and find a stationary point of (22)) with respect to ω such that

F ′(ω)(ω̄) = 0, (24)

where F ′(ω) is the Fréchet derivative such that

F ′(ω)(ω̄) = F ′
ω

(1)
ji

(ω)(ω̄
(1)
ji ) + F ′

ω
(2)
kj

(ω)(ω̄
(2)
kj ). (25)
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Backpropagation of error through the nework

Recall now that yi in the functional (22) is defined as

yi = f (
∑

j

ω
(1)
ji xj) = f (

∑

j

ω
(1)
ji f (

∑

k

ω
(2)
kj xk)

︸ ︷︷ ︸

xj

). (26)

Thus, if the transfer function f in (28) is sigmoid, then

F ′
ω

(1)
ji

(ω)(ω̄
(1)
ji ) = (ti − yi ) · y ′

i (ω
(1)
ji

)
(ω̄

(1)
ji )

= (ti − yi ) · xj · f (
∑

j

ω
(1)
ji xj)(1− f (

∑

j

ω
(1)
ji xj))(ω̄

(1)
ji )

= (ti − yi ) · xj · yi (1− yi ))(ω̄
(1)
ji ),

(27)

since for the sigmoid function f ′(Σ) = f (Σ)(1− f (Σ)) (prove this).
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Backpropagation of error through the nework

Again, since

yi = f (
∑

j

ω
(1)
ji xj) = f (

∑

j

ω
(1)
ji f (

∑

k

ω
(2)
kj xk)

︸ ︷︷ ︸

xj

). (28)

for the sigmoid transfer function f we also get

F ′
ω

(2)
kj

(ω)(ω̄
(2)
kj ) = (ti − yi ) · y ′

i (ω
(2)
kj

)
(ω̄

(2)
kj )

=




hj(1− hj)
︸ ︷︷ ︸

f ′(hj )

·






∑

i

yi (1− yi )
︸ ︷︷ ︸

f ′(yi )

(ti − yi )ω
(1)
ji




 · xk




 (ω̄

(2)
kj ),

(29)

since for the sigmoid function f we have:
f ′(hj) = f (hj)(1− f (hj)), f

′(yi ) = f (yi )(1− f (yi )) (prove this). Hint:

hj = f (
∑

k ω
(2)
kj xk), yi = f (

∑

j ω
(1)
ji xj).
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Backpropagation of error through the nework

Usually, F ′
ω

(1)
ji

(ω)/xj ,F
′
ω

(2)
kj

(ω)/xk in (27), (29) are called responsibilities of

output layer neurons and hidden-layer neurons δ
(1)
i , δ

(2)
i , respectively, and

they are defined as

δ
(1)
i = (ti − yi )yi (1− yi ),

δ
(2)
j = hj(1− hj) ·

∑

i

δ
(1)
i ω

(1)
ji .

(30)

By knowingf responsibilities (30), weights can be updates using usual
gradient update formulas:

ω
(1)
ji = ω

(1)
ji + ηδ

(1)
i xj ,

ω
(2)
kj = ω

(2)
kj + ηδ

(2)
j xk .

(31)

Here, η is the step size in the gradient update of weights and we use
value of learning rate for it such that η ∈ (0, 1).
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Algorithm of backpropagation of error through the nework
with one hidden layer

Step 0. Initialize weights and take l = 1.

Step 1. Take example x l in the input layer and perform forward propagation.

Step 2. Let y l = (y l1, ..., y
l
m) be the output layer and let t l = (t l1, ..., t

l
m) be the target vector.

Step 3. For every output neuron y li , i = 1, ...,m calculate its responsibility (δ
(1)
i

)l as

(δ
(1)
i

)
l
= (t

l
i − y

l
i )y

l
i (1 − y

l
i ). (32)

Step 4. For every hidden neuron compute responsibility (δ
(2)
j

)l for the network’s error as

(δ
(2)
j

)
l
= h

l
j (1 − h

l
j ) ·

∑

i

(δ
(1)
i

)
l
(ω

(1)
ji

)
l
, (33)

where (δ
(1)
i

)l are computed using (32).

Step 5. Update weights with learning rate ηl ∈ (0, 1) as

(ω
(1)
ji

)
l+1

= (ω
(1)
ji

)
l
+ η

l
(δ

(1)
i

)
l
x
l
j ,

(ω
(2)
kj

)
l+1

= (ω
(2)
kj

)
l
+ η

l
(δ

(2)
j

)
l
x
l
k .

(34)

Step 6. If the mean square error less than tolerance, or ‖(ω
(1)
ji

)l+1 − (ω
(1)
ji

)l‖ < ǫ1 and

‖(ω
(2)
kj

)l+1 − (ω
(2)
kj

)l‖ < ǫ2 stop, otherwise increase number of iterations of the algorithm l = l + 1 and

go to the step 1. Here, ǫ1, ǫ2 are tolerances chosen by the user.

54 / 64



Least squares and classification algorithms

Example of backpropagation of error through the nework

Figure: Source: M. Kurbat, An Introduction to machine learning, Springer, 2017.

Assume that after forward propagation with sigmoid transfer function we have

h1 = f (x
(2)
1 ) = 0.12, h2 = f (x

(2)
2 ) = 0.5,

y1 = f (x
(1)
1 ) = 0.65, y2 = f (x

(1)
2 ) = 0.59.

Let the target vector be t(x) = (1, 0) for the output vector y = (0.65, 0.59).

Compute responsibility for the output neurons:

σ
(1)
1 = y1 ∗ (1 − y1)(t1 − y1) = 0.65(1 − 0.65)(1 − 0.65) = 0.0796,

σ
(1)
2 = y2 ∗ (1 − y2)(t2 − y2) = 0.59(1 − 0.59)(0 − 0.59) = −0.1427
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Example of backpropagation of error through the nework

Figure: Source: M. Kurbat, An Introduction to machine learning, Springer, 2017.

Compute the weighted sum for every hidden neuron

δ1 = σ
(1)
1 w

(1)
11 + σ

(1)
2 w

(1)
12 = 0.0796 ∗ 1 + (−0.1427) ∗ (−1) = 0.2223,

δ2 = σ
(1)
1 w

(1)
21 + σ

(1)
2 w

(1)
22 = 0.0796 ∗ 1 + (−0.1427) ∗ 1 = −0.0631.

Compute responsibility for the hidden neurons for above computed δ1, δ2:

σ
(2)
1 = h1(1 − h1)δ1 = −0.0235, σ

(2)
2 = h2(1 − h2)δ2 = 0.0158.
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Example of backpropagation of error through the nework

Compute new weights ω
(1)
ji

for output layer with learning rate η = 0.1 as:

ω
(1)
11 = ω

(1)
11 + ησ

(1)
1 h1 = 1 + 0.1 ∗ 0.0796 ∗ 0.12 = 1.00096,

ω
(1)
21 = ω

(1)
21 + ησ

(1)
1 h2 = 1 + 0.1 ∗ 0.0796 ∗ 0.5 = 1.00398,

ω
(1)
12 = ω

(1)
12 + ησ

(1)
2 h1 = −1 + 0.1 ∗ (−0.1427) ∗ 0.12 = −1.0017,

ω
(1)
22 = ω

(1)
22 + ησ

(1)
2 h2 = 1 + 0.1 ∗ (−0.1427) ∗ 0.5 = 0.9929.

Compute new weights ω
(2)
kj

for hidden layer with learning rate η = 0.1 as:

ω
(2)
11 = ω

(2)
11 + ησ

(2)
1 x1 = −1 + 0.1 ∗ (−0.0235) ∗ 1 = −1.0024,

ω
(2)
21 = ω

(2)
21 + ησ

(2)
1 x2 = 1 + 0.1 ∗ (−0.0235) ∗ 1 = 1.0024,

ω
(2)
12 = ω

(2)
12 + ησ

(2)
2 x1 = 1 + 0.1 ∗ 0.0158 ∗ 1 = 1.0016,

ω
(2)
22 = ω

(2)
22 + ησ

(2)
2 x2 = 1 + 0.1 ∗ 0.0158 ∗ (−1) = 0.9984.

Using computed weights for hidden and output layers, one can test a neural network for a new example.
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Computer exercise 3 (2 p.)

In this exercise we will study different linear and quadratic
classifiers: least squares classifier, perceptron learning algorithm,
WINNOW algorithm using training sets described below.
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Figure: Examples of working perceptron learning algorithm which
computes weights for decision line to separate two classes.

Implement in MATLAB all these classification algorithms and
present decision lines for following training sets:
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a) b)

I) for randomly distributed data yi , i = 1, ...,m generated by

−1.2 + 0.5x + y = 0

on the interval x = [−10, 10]. Generate random noise δ to data y(x)
using the formula

yδ(x) = y(x)(1 + δα),

where α ∈ (−1, 1) is randomly distributed number and δ ∈ [0, 1] is the
noise level. For example, if noise in data is 5%, then δ = 0.05. Perform
different experiments with different number of generated data m > 0
which you choose as you want. Using least squares approach you can get
similar results as presented in Figure b).
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II)

Generate your own data and try separate them. You can take
experimental data from the link
https://archive.ics.uci.edu/ml/datasets.html
Or download *.xlsx file with data for grey seals and classify
time-dependent data in this file for length and weight of seals. Another
option is classification of weight-dependent data on length and thikness
of seals.
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Try answer to the following questions:

Analize what happens with performance of perceptron learning
algorithm if we take different learning rates η ∈ (0, 1] ? For what
values of η perceptron learning algorithm is more sensitive and when
the iterative process is too slow?

Analyze which one of the studied classification algorthms perform
best and why?

Try to explain why least squares approach can fail in the case when
usual linear classifier is used.
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Hints:

1. In this exercise we will assume that we will work in domains with
two classes: positive class and negative class. We will assume that
each training example x can have values 0 or 1 and we will label
positive examples with c(x) = 1 and negative with c(x) = 0.

2. We will also assume that these classes are linearly separable. These
two classes can be separated by a linear function of the form

ω0 + ω1x + ω2y = 0, (35)

where x , y are Cartesian coordinates. Note that the equation (35)
can be rewritten for the case of a linear least squares problem as

ω0 + ω1x = −ω2y (36)

or as
− ω0

ω2
− ω1

ω2
x = y . (37)
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3. Suppose that we have measurements yi , i = 1, ...,m in (37) and our
goal is to determine coefficients in (37) from these measurements.
We can determine coefficients ω0, ω1, ω2 by solving the following
least squares problem:

min
ω

‖Aω − y‖22 (38)

with ω = [ω1, ω2]
T = [−ω0

ω2
,−ω1

ω2
]T , rows in matrix A given by

[1, xk ], k = 1, ...,m,

and vector y = [y1, ...., ym]
T .

4. The perceptron learning algorithm is the following:

Perceptron learning algorithm

Assume that two classes c(x)=1 and c(x)=0 are linearly separable.

Step 0. Initialize all weights ωi in
n∑

i=0

ωixi = 0

to small random numbers (note x0 = 1). Choose an appropriate
learning rate η ∈ (0, 1].
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Step 1. For each training example x = (x1, ..., xn) whose class is
c(x) do:

(i) Assign h(x) = 1 if

n∑

i=0

ωixi > 0

and assign h(x) = 0 otherwise.
(ii) Update each weight using the formula

ωi = ωi + η · [c(x)− h(x)] · xi .

Step 2. If c(x) = h(x) for all training examples stop, otherwise go
to Step 1.

5. The decision line can be presented in Matlab for already computed
weights by Perceptron learning algorithm using the formula (37).
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